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Abstract: Spectral analyses, one of the most advanced remote sensing techniques, were used as a possible means of identifying the
mineralogy of the clay fractions that corresponded to the Kiiciik Menderes Plain, south of izmir, Turkey. Different spectral processes
were used to execute the prospective spectral analyses. The processes include: i. the reflectance calibration of TM images belonging
to the studied area, ii. using minimum noise fraction (MNF) transformation and iii. creating the pixel purity index (PPI), which was
used to the most “spectrally pure”, extreme, pixel in multi-spectral images. Spectral analyses of the clay mineralogy of the studied
area were obtained by matching the unknown spectra of the purest pixels to pre-defined (library) spectra providing scores with
respect to the library spectra. Three methods, namely Spectral Feature Fitting (SFF), Spectral Angle Mapper (SAM) and Binary
Encoding (BE) were used to produce a score between O and 1, where the value of 1 equals a perfect match showing the exact mineral
type. We were able to identify 4 clay minerals i.e., vermiculite, kaolinite, montmorillonite and illite, recording different scores related
to their abundance in the soils. In order to check the validity and accuracy of the results obtained regarding the spectral signatures
of the minerals identified, soil samples taken from the same localities were subjected to X- ray analysis. As a result a good correlation
was found between the spectral signatures and the X- ray diffractions.
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e

ileri Spektral Analiz Teknikleri Kullanilarak Kil Minerallerinin Belirlenebilirligi

Ozet: Izmir ilinin giineyinde bulunan Kiigiik Menderes deltasi topraklarinda kil mineral tiplerinin belirlenmesinde uzaktan algilama
tekniklerinden spektral analiz teknigi kullaniimistir. Bu amacla calisma alanina ait TM gérintilerinin yansima kalibrasyonu yapilmistir.
Minimum Noise Fraction (MNF) yontemi ile goruntiideki bozukluklar gerekli matematiksel algoritmalar kullanilarak azaltiimistir. Pixel
Purity Index (PPI) teknidi kullanilarak gérintinin piksel boyutundaki mineral tanecik yansimalari belirlenmistir. MNF ve PPI
teknikleri beraberce kullaniimis ve 3 boyutlu gérinim yardimiyla en iyi yansimayi veren piksellerin yerini bulmak, tanimlamak ve
siniflandirarak ayrimli mineraller icin en iyi spektral yansimalar belirlenmistir. Calisma alanina ait bilinmeyen spektral yansima
analizleri minerallerin yansima ¢zellikleri ile Karsilagtiriimistir. Spectral Feature Fitting (SFF), Spectral Angle Mapper (SAM) ve Binary
Encoding (BE) teknikleri kullanilarak spektral yansimalarla mineral yansimalari arasinda eslestirilme yapilarak ayrimli mineral tipleri
belirlenmistir. Bu yontemlerde O ile 1 arasinda degisen sayilar kullaniimigtir. 1 en uygun eslemeye Karsilik gelen spektral ¢zellik olup,
bir mineralin spektral ¢zelligine tam olarak uyan yansimayi géstermektedir. Calisma alani topraklarinda bulunma yogunluguna gore
kil mineralleri vermikulit, kaolinit, illit ve montmorillonit'tir. Kullanilan spektral yontemlerde bulunan minerallere ait spektral
degerlerin dogruluk analizleri icin spektral analizlerin yapildigi alanlardan toprak oérnekleri alinmis ve toprak érneklerinin X-ray
sonuglart ile spektral analiz sonuclari arasinda pozitif iliski belirlenmistir.

Anahtar Sézcikler: Uzaktan algilama, spektral analiz, X-ray difraktometresi, kil mineralgjisi.

Introduction

The current work focused on a small portion of the
Kicuk Menderes valley for the identification of the
mineralogy of clay samples. The study was in line with the

* Correspondence to: altinbas@ziraat.ege.edu.tr

philosophy of remote sensing, which is based on
identifying objects or natural resources without physical
connection remotely by the use of different sensors. The
main objective of the current work was a trial to
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recognize the dominant clay minerals of the Kucik
Menderes soils, by applying the highly advanced remote
sensing techniques of spectral analyses.

Olsen et al. (2000) described research aimed at
determining the feasibility of using reflectance
spectroscopy to identify and characterize the expansive
clays and clay-shales along the Colorado Front Range
Urban Corridor, both at the laboratory/field scale, and at
the remote-sensing scale.

Chabrillat et al. (2001) established the correlation of
clay mineralogy with swelling potential indices and the
expansion of existing correlations of laboratory
reflectance spectra with clay mineralogy, examining also
direct correlations between reflectance data and swelling
potential.

Materials

The Kiigiik Menderes valley occupies about 400 km?
in the western part of Turkey. It is located between 37°
45" and 38° 00" N latitudes and between 27° 15" and 28°
30" E longitudes. The valley represents the most
important agricultural area, the south part of the city
[zmir. The valley is surrounded by highlands acting
together as catchments areas that supply the Kicuk
Menderes river tributaries with rainwater and weathered
materials. The valley is separated from the other
neighboring valleys by 2 mountainous chains, which
define its natural boundaries. Near the Aegean coast the
Kiguk Menderes penetrates a narrow valley, forming a
delta near the city of Selcuk, where the meanders drain
into the Aegean Sea.

Methods
Digital image processing

Image processing using ENVI 3.4 software includes
the following processes:

a) Calibration of a Landsat 7 (taken in 2003) ETM
image to reflectance. Filtering by the adaptive filters to
reduce noise by smoothing while preserving sharp edges.
b) Stretching using Gaussian stretching methods using a
mean DN of 127 with the data values of 3 standard
deviations set to 0 and 255. c¢) Geometric correction
using image to image methods for adding ground control
points with 3 m average RMSE and nearest method use
as a resampling method, and image projection using the
Universal Transverse Mercator (UTM).
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Fieldwork

A reconnaissance survey was conducted in the
investigated area in order to gain an appreciation of the
broad soil patterns according to the obtained spectra end
members. GPS Garmin12XL (+-,5-8 m) was used in the
field to recognize the accurate locations of the end
members for soil sampling. Four surface soil samples
representing the major soils in the area were collected for
X-ray diffraction analyses.

Using USGS Spectral Library (Minerals)

The spectra that represent the USGS spectral library
were measured on a custom-modified, computer-
controlled Beckman spectrometer at the USGS Denver
Spectroscopy Lab., U S A. Wavelength accuracy was in the
order of 0.0005 pm (0.5 nm) in the near-IR and 0.0002
um (0.2 nm) in visible light (http://speclab.cr.usgs.gov/
spectral-lib.html).

X-Ray Diffraction Analyses

The clay fraction was separated after being pretreated
according to the procedure described by Jackson (1975).
The clay samples were X-rayed after they had been Ca-
saturated at 25 °C, Ca-saturated and glycolated, and K-
saturated at 25 °C. Apart from the above treatment,
sample no. 1 (Ca-saturated) was also heated to 300 °C
and 520 °C.

X-ray diffraction patterns were obtained with the
Philips P.W. (1060/100) X- ray diffractometer with Cu-a
radiation and an iron filter. Identification of the clay
minerals was carried out following the guidelines
provided by Black (1965), MacEwan (1980), Carroll
(1970) and Weed (1977).

Results and Discussion

Many obstacles and atmospheric and environmental
conditions (i.e., weathering processes) are still hampering
the accurate identification of land resources due to their
influence on the accuracy of measured spectra. Thus, the
tool of spectral analyses is not foolproof. Nevertheless, it
is meant to be used as a starting point for identifying
materials in an image scene. When used properly, spectral
analysis tools in conjunction with a good spectral library
could provide excellent suggestions for identification of
objects on the land surface. Spectral analyses were used
to identify the clay minerals of the Kiglik Menderes soils
using the following procedures.



Display of Color Composite ETM Image

1. A color composite ETM image has been filtered to
produce output images in which the brightness value at a
given pixel is a function of some weighted average of the
brightness of the surrounding pixels.

2. Enhanced and stretched. The results obtained from
Gaussian stretching improved the visual display of the
spectra information as shown in Figure 1

3. Geometrically corrected and displayed using a band
combination of 3 2 1 (RGB - true color) as shown in
Figure 2.

Calibration of the ETM Image

A reflectance calibration was required for Landsat
ETM data to compare image spectra with library
reflectance spectra and to run some Minimum Noise
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Fraction (MNF) and Pixel Purity Index (PPI) routines.
ETM image calibration was been used with pre-launch
gains and offsets calculated for Landsat sensors
(Markham and Barker, 1986).

Minimum Noise Fraction

MNF transformation is a method similar to principal
components. It was used to determine the inherent
dimension of the image data, to segregate noise in the
data, and to reduce the computational requirements for
subsequent processing (Boardman and Kruse, 1994). The
MNF is used as a preparatory transformation to put most
of the essential components into just a few spectral bands
and to order those bands from the most interesting (that
can segregate noise perfectly) to the least interesting.
Two cascaded principal components transformations
were implemented in the current work. The first

put Streteh:Gau

Figure 1. Gaussian-stretching results of TM image.
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Figure 2. The true color composite 3 2 1 of the investigated area.

21



Using Advanced Spectral Analyses Techniques as Possible Means of Identifying Clay Minerals

transformation, based on an estimated noise covariance
matrix, decorrelates and rescales the noise in the data.
This first step results in transformed data in which the
noise has unit variance and no band-to-band correlations.
The second step is a standard principal components
transformation of the noise-whitened data. For the
purposes of further spectral processing, the inherent
dimension of the data is determined by the examination
of the final eigenvalues (of noise segregation) and the
associated image bands. The data space could be divided
into 2 parts: one part associated with large eigenvalues
and coherent eigenimages, and a complementary part
with near unity eigenvalues and noise dominated images.
By using only the coherent portions, the noise was
separated from the data, thus improving spectral
processing results. The decreasing eigenvalue with
increasing MNF band as shown in the eigenvalue plot in
Figure 3 shows how noise is segregated in the higher
number MNF bands and it was noted that there was a
decrease in spatial coherency with increasing MNF band
number as shown in Figures 4 and 5.

Noise segregation

N~

Band No.

Figure 3. Noise segregation plot.

Figure 4. MNF band 1.
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Figure 5. MNF band 6.

Pixel Purity Index

The PPI function finds the most spectrally pure or
“extreme” pixels in multispectral and hyperspectral data
(Boardman and Kruse, 1994; Boardman et al., 1995).
The extreme pixels correspond to the materials with
spectra that combine linearly to produce all of the spectra
in the image. The PPI was computed by using projections
of n-dimensional scatter plots to 2-D space and marking
the extreme pixels in each prgjection. The extreme pixels
in each projection were recorded and the total number of
times each pixel was marked as extreme was noted. The
output is an image (the PPI image) in which the digital
number (DN) of each pixel in the image corresponds to
the number of times that pixel was recorded as extreme.
Thus, bright pixels in the image showed the spatial
location of spectral endmembers. Image thresholding was
used to select several thousand pixels for further analysis,
thus significantly reducing the number of pixels to be
examined (Figure 6).

The PPI, as shown in Figure 7, indicated the total
extreme pixels for the studied area, whereas 5212 pixels
were recorded throughout iteration no. equal to 4000
times for a pixels threshold of 3.

Chabrillat et al. (2002) used AVIRIS and HyMap
images acquired recently with a high signal-to-noise ratio
(SNR) to detect clays. The results showed the extent to
which laboratory spectra of swelling soils field samples
could be used to detect and discriminate different clays,
smectite, illite and kaolinite, related to variable swelling
potential.

Goetz et al. (2001) and Olsen et al. 2000 used near-
infrared reflectance spectroscopy to discriminate among
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Figure 6. Flow chart of the PPl procedures.
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Figure 7. PPI index.

pure smectite and mixed-layer I/S samples, based on
characteristic absorption bands in the 1900-2400 nm
spectral region.

The following single band images, as seen in Figures
8 and 9, represent the PPI, where the extreme (purest)
pixels are white in Figure 8. It is noted that the extreme
pixels occupied the region of interest, as shown in Figure
9.

n-Dimensional Visualization and Extracted

Endmember Spectra

The n-D visualization was used in conjunction with the
MNF and PPI tools to locate, identify and cluster the
purest pixels and the most extreme spectral responses in
a data set. If spectral signatures are recorded properly
and the curve shape is accurate they could be used for
remote sensing applications (Salisbury et al., 1991).

Spectra can be thought of as points in a dimensional
scatter plot, where n is the number of bands (Boardman

Figure 9. Region of interest.

et al.,1995). The coordinates of the points in n-space
consists of “n” values that are simply the spectral radiance
or reflectance values in each band for a given pixel. The
distributions of these points in n-space were used to
estimate the number of spectral endmembers (4
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highlighted segmentations), as shown in Figure 10,
producing 4 pure spectral signatures, which were
extracted and plotted in an n-D visualizer plot
representing the selected endmembers, as shown in
Figure 11.

Figure 10. 3-D visualization.

Matching Unknown Spectra to Library Spectra

Spectral analyses and consequently clay mineral
identification could be obtained by matching the unknown
spectra extracted from the 3-D visualizer to pre-defined
(library) spectra, providing scores with respect to the
library spectra. Three weighting methods, i.e. Spectral
Feature Fitting (SFF), Spectral Angle Mapper (SAM)
and/or Binary Encoding (BE), were used to identify
mineral type, producing a score between O and 1, where
1 equals a perfect match. As is known, some minerals are
similar in one wavelength range, yet very different in
another. For the best results, a wavelength range that
contains the diagnostic absorption features was used to
distinguish among the minerals.

n-D class1

n-D class3

reflectance % (Offset for clarity)

1 n-D class2

il WP U SR W SRS T NSRS T ST

0.5 1.0 1.5 2.0 2.5
Wavelength

Figure 11. Classes of the selected spectra.

De Jong's (1992) correspondence analysis of the
spectral characteristics of soils revealed lime, clay, iron
and organic matter as the important variables, and pH
and the absorption features of lllite are generally broader
and less well defined compared with those of muscovite.
Nevertheless, the illite, muscovite and montmorillonite
spectra have similar absorption bands. lllite {(K,H,0)
(AlLMg,Fe), (Si,Al),O,,((OH),,H,0)} shows broad water
absorption features near 1.4 and 1.9 ym, and additional
Al-hydroxyl features at 2.2, 2.3 and 2.4 pm. lllite and
muscovite have absorption bands near 2.35 and 2.45 pm,
that are lacking in the montmorillonite spectrum.

The output of the spectral analysis is a ranked score
or weighted score for each of the materials in the input
spectral library, as shown in Table 1. The highest score
indicates the closest match and shows higher confidence
in the spectral similarity, where illite/smectite and
kaolinite, scored high values of 1.0 and 0.944,

Table 1. Weighting methods and mineral type/score of the extracted spectra.

Weighting Method (Score 0-1.0)

SAM SFF BE
Spectra class
Mineral type Score Mineral type Score Mineral type Score
1 0 Kaolinite 0.944 Kaolinite 0.833
2 0 Vermiculite 0.833 Vermiculite 0.667
3 0 Illite/Smectite 1.000 Illite/Smectite 0.883
4 0 Montmorillonite 0.667 Montmorillonite 0.500
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respectively, while vermiculite and montmorillonite
scored 0.833 and 0.667, respectively, using SFF
weighting. The same clay minerals recorded scores of
0.833, 0.833, 0.667 and 0.500, respectively, using BE
weighting. On the other hand, the SAM did not recognize
any kind of clay minerals (zero score).

According to Altinbas (1982), using X-ray analysis,
illite and kaolinite were the dominant clay minerals in the
acidic brown forest soils (Typic Dystrustrepts), followed
by vermiculite and montmorillonite. Basically, the clay
minerals found in these soil groups are products of the
transformation and decomposition of biotite, muscovite
and feldspars. In order to check the validity and accuracy
of our results concerning spectral signatures and to
define perfectly, the existing clay minerals, X-ray
diffraction analysis was the obvious choice. The results
obtained from X-ray diffraction indicated that the clay
fraction contained mainly illite and kaolinite as the
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dominant clay minerals, followed by vermiculite and
montmorillonite and small amounts of other minerals
(Figures 12-16).

Mermut et al. (1997) found that the soil loss from a
soil dominated by smectite was high. The splash and wash
erosion in 80 mm of rain were 23 and 2.1 Mg ha-1,
respectively, in a loamy soil in which smectite, mica and
vermiculite were the dominant clays, and 7.3 and 0.91
Mg ha-1 respectively, in a silt loam soil in which
vermiculite, mica and kaolinite were dominant.

lllite

Illite as a 2:1 clay mineral was recorded in the X-ray
diffractogram at 10.04 A. lllite is a widespread mineral in
Kicik Menderes soils (Altinbag, 1982). It may be formed
by the alteration of mica minerals. lllite was found as the
dominant clay mineral by X-ray analysis in the acidic
brown forest soils, which were developed on mica schist
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Figure 12. ID of kaolinite, illite, montmorillonite and vermiculite.
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Figure 15. X-ray diffraction of the clay fractions-sample no. 3 (0-5 cm)

Figure 13. X-ray diffraction of the clay fractions-sample no.1 (0-4 cm) with Ca™, K*, Ca"+Glyc at 25 °C.
with Ca™, K, Ca™+Glyc. at 25 °C.
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Figure 14. X-ray diffraction of the clay fractions-sample no. 2 (0-6 cm)

with Ca™, K-, Ca+Glyc at 25 °C. Figure 16. X-ray diffraction of the clay fractions-sample no. 4 (0-7 cm)

with Ca™, K*, Ca+Glyc at 25 °C.
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parent material similar to that of Kuicik Menderes
(Altinbag, 1982).

Kaolinite

Kaolinite is a 1:1 clay mineral, the presence of which
was shown by the strong peak at 7.13 A (25 °C with K-
saturation). The peak disappeared only after heating to
520 °C. The presence of kaolinite confirms the
hydromorphic condition of the soils and its inheritance
from parent materials. Kaolinite may be formed by the
weathering of K-feldspars and Na-feldspars from
magmatic and metamorphic rocks or by a hydrothermal
attack of acid solutions on feldspars and micas. Kaolinite
is common in Kiicik Menderes soils. Kaolinite also may be
formed by the silicification of hydrargillite by silicic acid
solutions (Altinbas, 1982).

Vermiculite

Vermiculite, a 2:1 clay enriched with Mg, was
identified by the presence of the 14.96 A peak (Ca-
saturated and glycolated), which shifted to 10.04 A after
Ca- saturation and heating to 520 °C. The presence of
this mineral is explained on the premise that Mg-affected
conditions stimulate its formation either through
digenesis or through neogenesis. This mineral is not as
widespread as illite in these soils. It may be formed by
hydrothermal action on biotite in a magnesium-rich
environment. After erosion, the mineral is found in the
clay fraction of fluvial sediments. Vermiculite was found
in smaller amounts compared with illite and kaolinite in
the acidic brown forest soils that developed on mica schist
on the highlands that surround the study area (Altinbas,
1982).

Montmorillonite

Montmorillonite is a 2:1 clay mineral formed as a
result of the hydrothermal alteration of volcanic ashes.
The extreme thinness and flexibility of the flake-shaped
particles account for the plasticity of this mineral
(Altinbas, 1982).

Montmorillonite reflected at 19.65 A. [The mineral of
this group consists of unit layers formed by 1 Al (Mg, Fe,
Zn, Cr, Li) — OH octahedral sheet and with 2 Si(Al, Fe)-O
tetrahedral sheets]. The pattern indicates basal reflection
at about 14.96 A for Ca-saturated samples, which
expanded to 17.65 A upon glycerol salvation with a
second basal reflection. The peak collapsed to 9.92 A
upon Ca-saturation and heating for 4 h at 520 °C. This
mineral reflects the contribution of water to soil
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formation and its formation is favored by alkalies and
alkaline earth’s enrichment of the pedo-environments.
Montmorillonite is inherited from parent materials prior
to sedimentation (Altinbas, 1982).

Conclusions

1. The MNF method put most of the information into
a few spectral bands to reduce the volume of data and to
segregate the noise.

2. The PPl is a means of finding the most “spectrally
pure” pixel. The output is an image in which the DN of
each pixel in the image corresponds to the number of
times that pixel was recorded with iteration running as
extreme, thus significantly reducing the number of pixels.

Both the MNF and PPI operations effectively reduce
the data volume to be analyzed interactively. The PPI
image is used as an input for n-dimensional scatter
plotting that allows real time rotation in n-dimensions.
The n-D visualizer for image clustering was performed to
create classes (endmembers) by clustering the purest
pixels in the data set. Animation of the scatter-plots of
bands was used to select the endmembers. The results
show that there are 4 classes can be distinguished by
grouping pixels. After the classes were defined by
clustering, the selected classes were exported as regions
of interest and matched with the spectral library,
resulting in 4 classes representing different types of clay
minerals of kaolinite, montmorillonite, vermiculite and
illite.

3. N-Dimensional visualization for image clustering
using scatter plotting animation was performed.

4. Using the spectra extracted from the ETM image
with the aid of hyperspectral tools (MNF, PPl and N-
dimensional visualization) clay mineral type on the soil
surface can be identified.

Recommendations

The success of this effort implies that spectral
signatures can be used broadly and economically for
identifying clay minerals. Such an effort should
concentrate on automating image analysis to permit the
analysis of large volumes of data in a short time. When
implemented, the spectral signatures approach can be
used to supplement (and in some cases possibly even
replace) the X-ray analysis of clay minerals and potentially
bring new information to the spectra used in a variety of
soil subdisciplines.
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