
Introduction

The use of various distributions with a short period of
recorded annual peak discharge data enables researchers
to predict discharges corresponding to higher return
periods than can be estimated with the existent lengths of
data records. Furthermore, frequency analyses with
probability distributions help designers to predict
estimates as precisely as possible. The generalized Pareto
(GP) distribution was introduced by Pickands (1975) as a
two-parameter distribution and has been used widely by
many scientists (van Montfort and Witter, 1985; Hosking

and Wallis, 1987; Joe, 1987; Smith, 1991; Wang, 1991;
Barrett, 1992; Rosbjerg et al., 1992; Moharram et al.,
1993; Vogel et al., 1993; Prudhomme et al., 2003) in
flood frequency analysis. A review of the literature shows
that this distribution does not appear to have been
employed for the analysis of any Turkish river data. The
properties of the generalized Pareto distribution stated
by Hosking and Wallis (1987) and Singh and Guo (1995)
make the distribution a logical candidate for the analysis
of extreme events. After determining the method for
estimating the parameters of best fit, the generalized
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Abstract: The generalized Pareto distribution, which is a special case of both exponential and Wakeby distribution, has good
potential for the analysis of flood peaks because of its inherent properties. In this paper, the parameter estimation methods of the
moments, probability-weighted moments, maximum likelihood, principle of maximum entropy, and least squares to estimate the
parameters in the three-parameter generalized Pareto distribution are compared. The usefulness and applicability of each method is
discussed by application to observed annual discharge data for 50 different rivers, most of them in Turkey. The comparisons are
based on the ability of each method to predict the elements of the sample series whose non-exceedence probabilities were
determined by the Cunnane plotting position formula. Altogether the results demonstrate that for the annual discharge time series
considered in this paper the moments method is superior to all the other parameter estimation methods employed.
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Üç Parametreli Genellefltirilmifl Pareto Da¤›l›m› için Parametre
Tahmin Yöntemlerinin Karfl›laflt›r›lmas›

Özet: Üstel ve Wakeby da¤›l›mlar›n›n özel bir durumu olan genellefltirilmifl Pareto da¤›l›m›, yap›s›ndaki özelliklerinden dolay› en
yüksek debilerin analizi için iyi bir potansiyele sahiptir. Bu makalede, üç parametreli genellefltirilmifl Pareto da¤›l›m› için parametre
tahmin yöntemlerinden momentler, olas›l›k a¤›rl›kl› momentler, maksimum olas›l›k, maksimum entropy prensibi ve en küçük kareler
yöntemi karfl›laflt›r›lm›flt›r. Her yöntemin faydal›l›¤› ve uygulanabilirli¤i, ço¤unlu¤u Türkiye’den farkl› elli adet nehrin y›ll›k en yüksek
debi setleri kullan›larak tart›fl›lm›flt›r. Karfl›laflt›rmalar, her yöntemin afl›lmama olas›l›klar› Cunnane pozisyon çizim formülü ile
belirlenen örnek serilerin elemanlar›n› tahmin etme kabiliyetine dayand›r›lm›flt›r. Sonuçlar, dikkate al›nan debi serileri için, momentler
yönteminin di¤er yöntemlere göre daha iyi oldu¤unu göstermifltir.

Anahtar Sözcükler: Üç parametreli genellefltirilmifl Pareto da¤›l›m›, moment, olas›l›k a¤›rl›kl› moment, maksimum olas›l›k,
maksimum entropy prensibi, en küçük kareler
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Pareto distribution can be employed and compared with
previously employed distributions for the analysis of
Turkish river data. 

In the literature various investigations can be found
that have discussed the moments (MOM), probability-
weighted moments (PWM), L-moments, maximum
likelihood (ML), principle of maximum entropy (POME)
and least squares (LS) methods to determine the
parameters in the GP3 distribution. Moharram et al.
(1993) used the methods of MOM, PWM, ML, and LS to
determine the parameters of the GP3 distribution. The
performances of these methods were compared by Monte
Carlo simulated data and the annual maximum flood
series (Ahmad et al., 1988a, 1988b) of 2 rivers. In
addition to MOM, PWM and ML, Singh and Guo (1995)
employed the POME method for estimating the
parameters of the GP3 distribution using Monte Carlo
simulated data. They reported that the performance of
the 4 estimation methods varied with the values of
skewness (Cs) of samples and the values of the non-
exceedence or cumulative probabilities (F). 

Including Moharram et al. (1993) and Singh and Guo
(1995), the review of the literature shows that MOM,
PWM, ML, LS, and POME methods for estimating the
parameters of the GP3 distribution using a wide range of
observed annual peak discharge data of rivers were not
compared with each other. Furthermore, the methods of
LS and POME were not compared with each other either.
The objective of the work presented in this paper is to
determine the best parameter estimation methods among
the MOM, PWM, ML, LS, and POME for the GP3
distribution using observed annual peak data series.

Generalized Pareto Distribution and Parameter
Estimation Methods

The cumulative distribution function for the three-
parameter form of the GP distribution (GP3) is

(1)

(2)

where a is the shape parameter, b is the positive scale
parameter, c is the position or location parameter, x is
the random variable, and F(x) is the cumulative
probability of x. 

To estimate the parameters in equations (1) and (2) a
variety of different methods have found widespread use
in the field of hydrology. These include the MOM, PWM,
L-moments, ML, POME and LS fitting methods. 

The general log-likelihood function form of the GP3
distribution is

(3)

where xi is sample value and n is sample size. The
procedures for estimating the parameters of the GP3
distribution using the ML method are based on
maximizing equation (3). The procedures may employ a
Golden Section Search (GSS) (Mathews, 1992; Press et
al., 1992; Polak, 1997; Rheinboldt, 1998) for direct
maximization of equation (3) or Newton-Raphson (NR)
(Mathews, 1992; Press et al., 1992; Polak, 1997;
Rheinboldt, 1998) by solving the partial derivative
equations with respect to each unknown parameter. The
parameters estimation equations for the ML method are

(4)

(5)

Since equation (3) is unbounded with respect to c (Singh
and Guo, 1995; Singh, 1998), a ML estimator cannot be
obtained for parameter c. Therefore, the lower sample
value of x is used as an estimate of parameter c.

Following Hosking and Wallis (1987), the method of
MOM equations for estimating parameters of the GP3
distribution are

(6)

(7)
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(8)

where –x, S2 and Cs are the mean, variance and skewness
of the sample, respectively.

The PWM method estimators of the GP3 distribution
are

(9)

(10)

(11)

where l1 = M0 - x1, with x1 being the smallest element of
the sample series, and l2 = M0 - 2M1. The probability
weighted moment values (M0, M1) of the sample are
calculated using

(12)

where Pi = (i-0.35)/n is the plotting position (Hosking
and Wallis, 1987).

As given by Singh (1998) and Singh and Guo (1995),
the entropy function of the GP3 distribution is

(13)

The parameter estimation equations for the POME
method are

(14)

(15)

(16)

where E[.] is the mean of the bracketed quantity and
Var[.] is the variance of the bracketed quantity. 

Equations for estimating the parameters of the GP3
distribution using the LS method are

(17)

(18)

(19)

where

and fi is the Cunnane plotting position formula (Cunnane,
1978) given as (Moharram et al., 1993):

(20)

where i is the rank number of the i’th element in the
sample series arranged in ascending order.

Materials and Methods

In order to assess the performances of the parameter
estimation methods such as MOM, PWM, ML, LS, and
POME for the GP3 distribution, 50 sets of observed
annual maximum discharge series for the unregulated
rivers in Anatolia (Turkey) (Haktanir, 1992), the Spey at
Kinrara and the Tay at Pitnacree (Scotland) (Ahmad et al.,
1988a, 1988b), the Potomac at Rocks (USA) (Smith,
1987), the St. Marys at Stillwater (Canada) (Kite, 1978),
and the Harricana at Amos (Canada) (Bobee and Ashkar,
1991) were used in this study. The data from the rivers
in Anatolia were updated until the year 2000. 

This study assumed the c parameter to be the smallest
value as used by Moharram et al. (1993), Singh (1998),
and Singh and Guo (1995). To determine the parameters
of a and b, the NR procedure as suggested by van
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Montfort and Witter (1985) was used to solve equations
(4) and (5) with their partial derivatives. When Cs < 1.0,
a = 0.5 and b = –x + x1; otherwise a = 1.0 x 10-7 and b =
–x - x1 were used for the ML initial estimates. For
convergence criteria, decreases in both absolute values of
(∂L/∂a) plus (∂L/∂b) and increments/parameters were
expected. As an alternative to the NR, the GSS procedure
was also employed for the direct maximization of
equation (3) with the c ≤ x1 constraint. 

For the MOM estimate, equation (8) was solved for
parameter a by employing the bisection procedure
(Mathews, 1992; Press et al., 1992), and then equations
(7) and (6) were used to determine parameters b and c. 

After determining the probability weighted moment
values with equation (12), estimating the parameters
with the PWM method is straightforward just using
equations (9), (10), and (11). 

The parameters of GP3 by the POME were estimated
by the NR procedure using equations (14), (15), and (16)
with the first and second partial derivatives of those being
used. When a non-convergence criterion was encountered
in the NR procedure, the process was continued with a
direct maximization of equation (13). 

The parameters by the LS method were estimated by
solving parameter a in equation (17) with the NR
procedure first, and then parameters b and c were
estimated by equations (18) and (19). 

A fortran program was developed to determine the
parameters by following all the steps mentioned above. In
order to obtain accurate results, the loops employed in
the program were terminated when the ratio of
increment/parameter was less than 10-5. 

Quantiles for the non-exceedence cumulative
probabilities of the Cunnane formula (equation (20)),
were predicted by equations (1) and (2), after solving
these equations for x.

The agreements between predicted quantiles and
observed annual flood values for the non-exceedence
cumulative probabilities of the Cunnane formula were
quantified by computing the average deviation (AD),
mean residual error (MRE), average relative percent
error (ARPE), and coefficient of efficiency (CE) as
follows:

(21)

(22)

(23)

(24)

where Xi is predicted quantile (m3 s-1), Oi is observed
annual peak discharge (m3 s-1), and 

–
O is mean observed

annual discharge (m3 s-1). The MRE (m3 s-1) gives
information as to whether the method is over- or under-
predicting; the ARPE (%) expresses this on a percentage
basis, while the AD (m3 s-1) is an indicator of quantitative
dispersion between predicted and observed values. The
CE evaluates the error relative to the natural variation in
the observed values. A CE value of 1.0 represents a
perfect prediction, while a value of zero represents a
prediction that is not better than the random variation in
the observed data. Increasingly negative values of CE
indicate increasingly poorer predictions. 

Results and Discussion

The predicted parameters and calculated AD, MRE,
ARPE, and CE statistics for 8 selected station data sets
and for each parameter estimation method are given in
Table 1. Five of these stations are located outside Turkey
and it is easy to obtain their annual peak discharges
through the relevant references for further studies and
comparison purposes. The other 3 stations, located in
Turkey, are randomly selected to represent the other
stations. Most of these parameters are obtained with an
uncertainty less than 10-5. The NR procedure used for the
LS is sensitive to the initial estimate value of parameter c
as stated by Moharram et al. (1993). The use of initial
estimates c = 0.3 when Cs > 1, and c = 0.6 when Cs < 1,
gave the best results for almost all the sets. 
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Table 1. Estimated values of GP3 distribution parameters by POME, ML, LS, PWM and MOM+ methods and statistical comparison for 8 selected
rivers.

Station Parameters
(RL)[Cs]{K}* Method AD MRE ARPE CE#

a b c (m3 s-1) (m3 s-1) (%)

Spey POME -0.0237 63.10 80.68 6.69 -1.51 -1.04 0.974
(31) ML -0.0265 62.89 80.70 6.64 -1.52 -1.05 0.975

[2.01] LS -0.00002 68.84 80.66 7.48 2.72 1.87 0.975
{4.75} PWM -0.0191 65.44 78.59 6.67 -1.53 -1.05 0.977

MOM -0.0019 67.00 78.18 6.97 -1.45 -1.00 0.975

Tay POME 0.0863 126.22 225.21 22.21 -2.16 -0.63 0.932
(31) ML# 0.4095 184.71 215.30 20.19 3.95 1.16 0.950

[0.73] LS 0.0001 123.01 215.22 22.25 -6.14 -1.80 0.907
{-0.85} PWM 0.0463 136.91 210.89 20.82 -2.37 -0.69 0.917

MOM 0.4014 211.74 190.64 17.18 -0.78 -0.23 0.966

Potomac POME 0.1063 2962.5 786.42 511.75 -57.89 -1.65 0.925
(92) ML 0.1468 3101.1 787.19 513.50 -28.94 -0.83 0.919

[2.28] LS -0.53x10-5 2499.0 787.01 505.00 -242.76 -6.92 0.935
{6.84} PWM 0.6349 4527.9 738.31 570.74 -1.86 -0.05 0.783

MOM -0.0422 1999.5 1420.2 303.89 -20.99 -0.60 0.969

St. Marys POME 0.1830 219.90 189.49 40.65 -35.09 -8.57 0.904
(59) ML# 0.2969 278.72 189.61 32.07 -5.67 -1.38 0.926

[1.42] LS -0.2x10-4 188.09 189.58 50.05 -33.98 -8.30 0.863
{3.20} PWM 0.8620 422.25 182.56 34.76 -0.07 -0.02 0.857

MOM 0.1267 186.48 243.82 19.08 -1.29 -0.30 0.971

Harricana POME 0.1664 90.02 106.92 19.16 -7.65 -4.00 0.767
(69) ML# 0.5463 136.25 98.80 16.65 -4.52 -2.36 0.836

[0.861] LS 0.9964 179.51 98.78 14.93 -2.62 -1.37 0.852
{1.35} PWM 1.6154 251.28 95.24 16.13 0.05 0.03 0.785

MOM 0.3334 82.56 129.40 7.88 -0.18 -0.10 0.953

Dolluk POME 0.0273 641.54 130.80 74.75 -8.62 -1.14 0.969
(61) ML 0.0697 669.29 131.00 72.67 -6.22 -0.82 0.962

[2.22] LS -0.00001 616.76 130.90 105.57 46.16 4.79 0.966
{6.90} PWM 0.2598 805.43 117.85 86.07 -1.94 -0.20 0.959

MOM -0.0338 537.70 200.65 52.53 -7.65 -1.01 0.977

Selçuk POME -0.0001 146.49 5.09 31.03 -3.02 -1.98 0.903
(44) ML 0.1256 164.85 5.09 28.78 -2.22 -1.46 0.893

[2.54] LS -0.0001 137.97 5.05 30.34 -11.48 -7.54 0.913
{9.04} PWM 0.6612 254.02 -0.60 31.61 -0.20 -0.13 0.749

MOM -0.0731 103.65 40.49 17.98 -2.35 -1.54 0.947

Kay›rl› POME 0.2168 212.25 36.54 41.58 -19.99 -8.69 0.816
(61) ML 0.5755 322.67 16.40 35.87 -9.13 -3.97 0.867

[0.58] LS 0.9978 419.59 16.33 29.61 -3.71 -1.61 0.896
{0.85} PWM 1.5252 562.24 7.41 28.44 0.13 0.06 0.857

MOM 0.4892 237.82 70.37 22.10 -0.30 -0.13 0.945

# AD: absolute deviation; MRE: mean residual error; ARPE: average relative percent error; CE: coefficient of efficiency. 
+ POME: principle of maximum entropy; ML: maximum likelihood; LS: least square; PWM: probability-weighted moments; MOM: moments.
* RL: record length; Cs: skewness; K: kurtosis.



The estimated parameters for the Spey and Tay rivers
by the ML, MOM, PWM, and LS are almost the same as
those obtained by Moharram et al. (1993). Minor
improvements with the parameters in Table 1 for AD,
MRE, ARPE, and CE values were obtained. 

For 23 of the 50 sets, the NR procedure for the ML
method did not converge, and therefore the GSS
procedure was used for these sets. For all the 23 sets,
parameter c obtained by the ML method was equal to the
smallest value of the sets. This confirms the statement
that the likelihood function (equation (3)) is maximum
with respect to c when c = x1 made by Singh and Guo
(1995). For each data set, parameter c obtained by the
PWM and LS methods is equal to or less than the smallest
observed annual peak discharge. However, the same
results were not found for parameter c estimated by the
POME and MOM. For 42 of the 50 sets, the highest c
values were obtained by the MOM such as for the last 5
stations listed in Table 1. 

For 44 and 45 sets out of the 50, the minimum AD
and maximum CE values were obtained with the MOM
such as for the last 7 stations listed in Table 1. The MOM
was followed by the ML method. Overall, the LS method
produced 18 times the highest AD values in 50 sets such
as for the stations on the Spey, Tay, St. Marys and Dolluk
in Table 1. The POME and PWM parameter estimation
methods yielded similar AD results. For all the sets, the
MOM and POME methods produced negative MRE and
ARPE values. This means that overall the POME and MOM
under-predicted the non-exceedence frequencies’
corresponding quantile values. For 44, 36, and 29 of the
50 sets, under-prediction was also observed by the ML,
PWM, and LS methods, respectively.

To further evaluate the goodness of fit of each
method, the observed and computed frequency curves
such as Figures 1-4 for the Spey, Tay and Potomac rivers,
and Dolluk station were plotted for each data set. Figures
1 and 2 are similar to Figures 1 and 2 in Moharram et al.
(1993). In these figures, the observed and computed
values were plotted against the corresponding EV1
reduced variates (-ln(-lnFi)). From the figures, it was
observed that the quantile estimation performances of
the methods vary with F. As mentioned before, this result
was also stated by Singh and Guo (1995). When F ≤ 0.90
and F > 0.90, the AD, MRE, ARPE, and CE values for the
estimation methods and for each station data set were

also obtained and are given in Table 2 for the same
stations listed in Table 1. 

When the figures of the frequency curves are
examined for F ≤ 0.90 (EV1 ≤ 2.25), it appears that all
the parameter estimation methods except for the LS and
POME gave comparable results. The LS and POME
methods gave evidently lower or higher quantiles than
observed annual peak values.

When F > 0.90, the number of the calculated
quantiles varied between 3 and 9 based on the sizes of
the samples, which were between 31 and 92. These
numbers may not be large enough to allow a comparison
of the performance of the estimation methods. The
frequency curves obtained by the estimation methods
when F > 0.90 are not in as close agreement as when F
≤ 0.90. This disagreement is especially evident in Figures
2 and 3. The values of the performance indices of AD,
MRE, ARPE, and CE were also worse when F > 0.90 than
when F ≤ 0.90 (see Table 2). For 24 of the 50, both the
least AD and the highest CE values were obtained with
the MOM. The ML produced the second, the LS produced
the third, the POME produced the fourth, and the PWM
produced the fifth lowest AD values. From the best to the
worst, CE values were obtained by the following order of
the estimation methods: MOM, ML, POME, LS, and PWM.
When MRE and ARPE values are considered, in 47 of the
50 sets, the PWM produced under-prediction, in contrast,
when F < 0.90. 

For the Turkish rivers, the order of the estimation
methods from the best to the worse changed sometimes
from region to region and a similarity in the order of the
methods for the stations located in the same region of
Turkey was noted.

When the kurtosis values of the samples are negative,
the chances of yielding higher quantiles with the LS
method are high (see Figure 2 for the river Tay). When
both skewness and kurtosis values are less than 1.0 for F
≤ 0.90, the chances of seeing lower quantiles with the
POME are high. This can be seen from the values of MRE
(-4.07 and -29.92) and ARPE (-1.28 and -14.52) for the
river Tay and station Kayirli in Table 2. 

Conclusions

In this paper, the parameter estimation methods of
the moments, probability weighted moments, maximum
likelihood, principle of maximum entropy, and least
squares are compared to estimate the parameters in the
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Figure 1. Comparison of the principle of maximum entropy (POME), maximum likelihood (ML), least squares
(LS), probability-weighted moments (PWM) and moments (MOM) methods of fitting the GP3
distribution to annual peak discharges for the River Spey at Kinrara, UK (1952-1982).

Figure 2. Comparison of the principle of maximum entropy (POME), maximum likelihood (ML), least squares
(LS), probability-weighted moments (PWM) and moments (MOM) methods of fitting the GP3
distribution to annual peak discharges for the River Tay at Pitnacree, UK (1952-1982).
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Figure 3. Comparison of the principle of maximum entropy (POME), maximum likelihood (ML), least squares (LS),
probability-weighted moments (PWM) and moments (MOM) methods of fitting the GP3 distribution to
annual peak discharges for the River Potomac at Rocks, USA (1895-1986).

Figure 4. Comparison of the principle of maximum entropy (POME), maximum likelihood (ML), least squares (LS),
probability-weighted moments (PWM) and moments (MOM) methods of fitting the GP3 distribution to
annual peak discharges for the river M. Kemalpafla at Dolluk, Turkey (1938-1998).
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Table 2. Statistical comparison of quantile estimates of GP3 distribution by POME, ML, LS, PWM and MOM+ methods when F ≤ 0.90 and F > 0.90
for 8 selected rivers.

F ≤ 0.90 F > 0.90

Station Method AD MRE ARPE CE AD MRE ARPE CE#

(m3 s-1) (m3 s-1) (%) (m3 s-1) (m3 s-1) (%)

Spey POME 5.45 0.29 0.22 0.97 18.26 -18.26 -6 0.81
ML 5.43 0.24 0.19 0.97 17.93 -17.93 -5.89 0.81
LS 6.64 3.88 3.02 0.95 15.33 -8.1 -2.66 0.88
PWM 5.66 -0.16 -0.13 0.97 16.05 -14.3 -4.7 0.85
MOM 5.85 0.08 0.06 0.96 17.4 -15.69 -5.15 0.83

Tay POME 21.57 -4.07 -1.28 0.91 28.22 15.74 2.84 -1.52
ML 20.53 6.2 1.94 0.92 17.04 -17.04 -3.07 0.38
LS 18.59 -10.14 -3.18 0.92 52.97 52.97 9.55 -8.41
PWM 17.18 -8.49 -2.66 0.93 54.73 54.73 9.87 -7.95
MOM 17.9 -1.86 -0.58 0.95 10.47 9.24 1.67 0.56

Potomac POME 480.69 -76.33 -2.6 0.77 798.28 112.21 1.28 0.86
ML 472.48 -28.7 -0.98 0.76 891.79 -31.14 -0.36 0.81
LS 475.47 401.44 13.65 0.71 2499.7 -2442.1 -27.96 -0.8
PWM 400.17 201.68 6.86 0.79 2143.7 -1878.9 -21.51 -0.26
MOM 251.81 12.33 0.42 0.93 784.2 -328.3 -3.76 0.89

St. Marys POME 39.91 -38.15 -10.2 0.79 47.18 -8.04 -1.12 0.85
ML 28.11 -10.06 -2.69 0.88 67.06 33.11 4.59 0.73
LS 48.27 -45.28 -12.1 0.71 65.81 65.81 9.13 0.78
PWM 26.14 9.66 2.58 0.91 110.92 -86.02 -11.94 -0.13
MOM 16.03 -2.07 -0.55 0.96 45.98 6.05 0.84 0.86

Harricana POME 17 -12.84 -7.12 0.67 38.3 38.3 13.26 -0.4
ML 16.11 -6.4 -3.55 0.7 21.38 12.13 4.2 0.54
LS 13.62 -0.73 -0.41 0.81 26.57 -19.39 -6.71 -0.05
PWM 13.49 4.53 2.51 0.8 39.58 -39.58 -13.7 -1.23
MOM 6.89 -0.2 -0.11 0.93 16.63 0 0 0.74

Dolluk POME 66.42 -7.15 -1.17 0.93 151.11 -22.14 -1.05 0.89
ML 62.08 1.21 0.2 0.93 169.75 -74.36 -3.51 0.83
LS 69.01 -17.82 -2.93 0.93 134.52 -9.8 -0.46 0.92
PWM 54.61 26.58 4.37 0.93 276.73 -272.25 -12.85 0.43
MOM 44.66 1.38 0.23 0.96 124.65 -90.41 -4.27 0.89

Selçuk POME 28.12 -6.49 -5.29 0.7 60.22 31.73 7.09 0.83
ML 24.97 -1.74 -1.42 0.74 66.89 -6.97 -1.56 0.71
LS 28.21 -13.06 -10.64 0.74 51.67 4.33 0.97 0.84
PWM 21.75 11.13 9.07 0.79 130.22 -113.52 -25.35 -0.31
MOM 14.43 0.03 0.02 0.91 53.4 -26.12 -5.83 0.8

Kay›rl› POME 38.37 -29.92 -14.52 0.74 71.02 71.02 15.79 0.12
ML 34.44 -13.52 -6.56 0.8 49.05 31.09 6.91 0.49
LS 25.59 -0.36 -0.17 0.89 66.48 -34.43 -7.65 0.08
PWM 22.31 8.67 4.21 0.91 84.63 -78.17 -17.38 -0.84
MOM 19.28 -0.23 -0.11 0.93 47.92 -0.94 -0.21 0.62

# AD: absolute deviation; MRE: mean residual error; ARPE: average relative percent error; CE: coefficient of efficiency.
+ POME: principle of maximum entropy; ML: maximum likelihood; LS: least square; PWM: probability-weighted moments; MOM: moments.



generalized Pareto distribution. To do this, annual
maximum discharge data for a set of 50 rivers, most of
them in Turkey, were used. To measure the adequacy of
the methods, the AD, MRE, ARPE, and CE statistics
between observed and predicted quantiles corresponding
to the non-exceedence cumulative probabilities of
Cunnane were calculated. 

The following conclusions can be drawn from this
study: 1) to prevent the sensitivity of the LS method to
the initial estimates of location parameter, the use of a
location parameter equal to 0.3 when the skewness of
the data set is greater than one, and the use of a location
parameter equal to 0.6 when skewness is less than one
may give better results; 2) to handle the non-convergence
problem when employing the NR procedure for the ML
method, the GSS procedure can be an alternative to the

NR; 3) in the case of the ML method, the location
parameter should be equal to the smallest value of the
data set; 4) there is a tendency to estimate high location
parameter values with the MOM method, such as 1420.2
for the Potomac river (Table 1); 5) quantile estimation
performances of the estimation methods vary with the
non-exceedence cumulative frequency values (F) (Table
2); 6) when F ≤ 0.90, the PWM showed a tendency to
over-predict and vice versa when F > 0.90 (see Figures 3
and 4 when EV1 < 2.25 and EV1 > 2.25); 7) the MOM
method is superior to the other methods and the MOM
was followed by the ML method (see Figures 1 and 2 and
Table 1), and 8) the POME and LS produced comparable
results for entire F and F > 0.90, and the POME yielded
better results when F ≤ 0.90.
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