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Abstract: Th e fi rst 19 bands of a moderate-resolution imaging spectrometer (MODIS), covering the visible to shortwave 
infrared spectral wavelength, were simulated by ground-level refl ectance spectra. All spectral indices similar to the 
normalized diff erence vegetation index (NDVI) and ratio vegetation index (RVI) formed by every 2 bands were calculated 
to obtain their determination coeffi  cients, with theoretical and real yield. Results revealed that the combinative near-
infrared (NIR) index (band 2 and band 19, symbol b2 and b19, and other similar ones) and the (b16, b19) of MODIS 
were strongly correlated with rice yield, especially the correlative coeffi  cient that exceeded signifi cant levels in the 
maturing stage. However, combinative visible light index was correlated with rice yield strongly in the early stage and 
poorly in the latter stage. Th e best spectral indices for predicting rice yield in whole rice growth were the combinations 
of (b2, b19) and (b16, b19). Based on the 2-band combination of the (b2, b19) of MODIS and the constructed estimating 
model, the rice yield of Zhejiang Province was estimated and its spatial distribution was mapped. Estimated results 
based on MODIS images were validated using 8 measured validation sites. Errors in the estimated rice yield ranged from 
3.2% to 20.3%, with a mean value of 10.1%. Th e results indicated that the 2-band combination of the (b2, b19) MODIS 
index was most suitable for monitoring rice yield.
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Introduction
Among the various modern methods for estimating 

rice yield, remote sensing is of primary importance. 
Th is is a result of its capability to provide synoptic 
information over wide areas with high acquisition 
frequency. Remote sensing techniques have been 
employed to estimate various plant parameters 
(Wiegant et al. 1979; Price 1995; Mirik et al. 2007) and 
crop yield (Cheng 2004; Cheng 2006). Remote sensing 
provides quantitative information on agricultural 
crops instantaneously and nondestructively (Clevers 
1988; Mirik et al. 2006), and the spatial and temporal 

distributions of crop production off er valuable 
information for agricultural management and 
biogeochemical modeling eff orts (Lobell et al. 2003; 
Sonmez and Sari 2006).

Many vegetation indices have been developed and 
applied in vegetation studies since the fi rst vegetation 
index, the ratio vegetation index (RVI) (Jordan 1969; 
Broge and Leblanc 2000). Vegetation indices may 
employ simple ratios of any 2 single wavelength 
combinations. Th ese ratios were found to be fairly 
eff ective in normalizing the eff ect of refl ectance 
variation in soil background (Colwell 1973). 
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Th e originally normalized diff erence vegetation 
index (NDVI), discussed by Rouse et al. (1973), is 
an eff ective vegetation measure since it is suffi  ciently 
stable to permit meaningful comparisons between 
seasonal and interannual changes in vegetation 
growth and activity. Th is is because it can reduce 
diff erent forms of multiplicative noise (illumination 
diff erences, cloud shadows, atmospheric attenuation, 
and certain topographic variations) present in 
multiple bands (Myneni et al. 1995). Many models 
for simulating rice growth using vegetation indices 
have been developed, such as SIMRIW (Horie et al. 
1992), RICAM (Yin and Qi 1994), and a rice-weed 
competition model (Graf et al. 1990). Using 16 years of 
NOAA AVHRR satellite data (collected between 1987 
and 2002) (Wall et al. 2008), the NDVI was employed 
to model weekly wheat yield in 40 census agricultural 
regions (CAR) in the Canadian prairies throughout 
the entire growing season. Th e simulated broad-band 
NDVI and narrow-band NDVI-type indices, which 
include all possible 2-band combinations of the 102 
bands in the hyperspectral imagery, were calculated 
and related to yield.

Meanwhile, an enhanced vegetation index 
(EVI) was developed to improve sensitivity over 
high biomass regions and vegetation monitoring 
capabilities by decoupling the canopy background 
signal and reducing atmospheric infl uences (Liu and 
Huete 1995). Th e RVI, NDVI, enhanced vegetation 
index (EVI), wide dynamic range vegetation index 
(WDRVI), and several hyperspectral refl ectance 
indices were used to estimate crop yield (Dalezios 
et al. 2001; Wong et al. 2006; Zhao et al. 2007), and 
the ability of various vegetative indices (VIs) were 
evaluated to detect canopy architectures in wheat 
genotypes (Zhao et al. 2009).

Spectral data from the current generation of 
earth-orbiting satellites carrying broadband sensors, 
such as Landsat TM and NOAA/AVHRR, are saddled 
by limitations in providing accurate estimates of crop 
yield (Th enkabail et al. 1995; Fassnacht et al. 1997). 
Th ese limitations have motivated the inclusion of 
hyperspectral sensors onboard the new generation 
of satellites planned by various governments and the 
private sector in the United States. Th e upcoming 
narrow-band hyperspectral sensors include the 
following: 1) Hyperion sensor with 220 spectral 

bands, each with narrow bands 10 nm in width, 
onboard the Earth Observer-1 (EO-1) of the 
National Atmospheric and Space Administration’s 
(NASA) New Millennium Program; 2) hyperspectral 
imaging spectrometer sensor with 105 spectral 
bands onboard the Australian Resource Information 
Environmental Satellite-1; 3) moderate resolution 
imaging spectrometer (MODIS) with 36 channels, 
onboard Terra (Running et al. 1999). 

Th e MODIS aboard the Terra (EOS AM) and 
Aqua (EOS PM) satellites improves the performance 
of AVHRR by providing higher spatial and spectral 
resolution, enabling more detailed analyses of earth 
systems. MODIS products are designed to provide 
consistent spatial and temporal comparisons between 
diff erent global vegetation conditions that can be 
used to monitor photosynthetic activity and forecast 
crop yields (Vazifedoust et al. 2009). MODIS-NDVI 
data, with 250-m resolution, was used to estimate the 
winter wheat yield in one of the main winter wheat 
growing regions (Ren et al. 2008).

Rice is by far the most important genus of 
Chinese crops. Only a few studies in the past have 
dealt with the relationship between the combinative 
bands of simulated MODIS bands and rice yield. 
Th erefore, the objective of this study was to establish 
relationships between simulated MODIS bands and 
rice yield, determine the suitable index for estimating 
rice yield, map the rice yield of Zhejiang Province 
based on the suitable index and MODIS image, 
and validate Zhejiang Province’s rice yield based on 
ground-measured data. 

Materials and methods
Experimental fi eld description
Th e experiment was conducted in a paddy fi eld 

at the Zhejiang University experimental farm in 
Hangzhou, China (30°14ʹN, 120°10ʹE) in 2002 and 
2003. Mean annual precipitation is 1320.9 mm and 
mean annual temperature is 16.2 °C. Th e experimental 
fi eld contains paddy soil, sandy loam in texture, with 
the following properties: available N, 188.5 mg kg-1; 
available P, 34.8 mg kg-1; available K, 72.7 mg kg-1; 
organic matter, 9.96 g kg-1; and pH, 6.78. Measuring 
methods were based on those of Bao (2005). 
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Single plants were transplanted at a spacing of 
0.13 by 0.17 m in 24 randomly chosen plots for every 
4.76 × 4.68 m. Th e plots were composed of 2 cultivars 
and 3 nitrogen levels (0, 120, and 240 kg N ha-1) with 
4 replications. Th e 3 treatment levels represented: 
no nitrogen fertilizer, a proper application, and 
a superabundant dose. Furthermore, 533.3 kg 
Ca(H2PO4)2 ha-1 was applied as a base fertilizer and 
300 kg KCl ha-1 as a heading fertilizer.

Rice cultivars Xiushui 110 (commonly known as 
japonica rice, with a growing period of approximately 
145 days) and Xieyou 9308 (hybrid indica rice, with 
a growing period of approximately 140 days) were 
selected for investigation. Th ese were seeded on 2 
June 2002 and 3 June 2003 and transplanted on 25 
June 2002 and 27 June 2003. Growth of Xiushui 110 
was observed on 2 September 2002 and 5 September 
2003, while growth of Xieyou 9308 was recorded on 
30 August 2002 and 29 August 2003.

Validating sample sites
Another validating sample site, the town of 

Yuhang, is located 40 km west of Hangzhou in 
Zhejiang Province, China. It measures approximately 
10 km2, its upper left  district is situated at 30°30ʹN, 
119°15ʹE, and its lower right district is situated 
at 30°10ʹN, 120°15ʹE (Figure 1). Fieldwork was 
conducted during a single rice growing season, from 
June to November 2002. Positions for all selected 
measurement points were recorded using a Magellan 
ProMark X global positioning system (GPS).

On 24 July, 2 September, 8 October, and 4 
November 2002, 4 fi eld campaigns were conducted at 
the Yuhang study fi eld. Each sampling site measured 
100 × 100 m, with 5 observation points (A1, A2, A3, 
A4, and A5) measuring 1 × 1 m in each sample plot 
(Figure 2). 

Spectral refl ectance measurement
An ASD FieldSpec Pro FR spectral radiometer 

(Analytical Spectral Devices, Boulder, Colorado) with 
a range of 350-2500 nm was used.  It had a spectral 
sampling interval of 1.4 and resolution of 3 nm for 
the 350-1000 nm range, and a sampling interval of 2 
and resolution of 10 nm for the 1000-2500 nm range. 
Canopy spectral refl ectance was determined on 
sunny days without clouds or wind at the heading, 
milking, and maturing stages of rice cultivation. 

Th e detector was placed approximately 0.70 m 
above the canopy. A sampling spectrum consisted 
of 10 readings, with 10 sampling spectra averaged 
to represent the canopy mean spectral refl ectance. 
Dark signals were subtracted and spectral data were 
compared to those of a standard white reference as 
spectral measurement.

MODIS image acquirement 
According to the farming practice in the study 

area, MOD09, covering the whole of Zhejiang 
Province, was acquired on 25 October 2002 with 
the support of NASA. Th e date corresponded with 
the late rice planting season. Th e soft ware packages 
employed for image and geoinformation analyses 
were ENVI 3.4 and ARC/INFO 8.1. Topographic 
maps, land maps with 1:250,000 scales, recently 
produced maps of vegetation types, land cover and 
land use maps, and other ancillary geoinformation 
were used in the study, as well. GPS was tapped to 
register the training samples.

Th eoretical and real yield acquirement
When the rice matured, effi  cient spikes at each 

sample socket from every plot were measured and 
average eff ective grain numbers were determined. 
Real yield at every plot was weighted. Th eoretical 
and real yields were calculated using the following 
formulas.

Th eoretical yield unit area = (effi  cient spikes every 
socket × eff ective grain numbers × 1000-grain weight 
× whole socket)/1000

Real yield unit area = real yield of plot/plot area
Methodology
Various vegetation indices have been developed for 

qualitative and quantitative assessment of vegetation 
using remote spectral measurements (Bannari et al. 
1995). Specifi cally, sensors with spectral bands in 
the red (RED) and near-infrared (NIR) are eff ective 
in vegetation monitoring, as the diff erence between 
them has been deemed a strong indicator of the 
amount of photosynthetically active green biomass 
(Tucker 1979). As a result, there is widespread use of 
the NDVI and RVI.

In this paper, fi eld-measured hyperspectral data 
with ranges from 350 to 2500 nm were employed 
to simulate the refl ectance of the fi rst 19 bands of 
MODIS (Table 1). 
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Figure 1. Location of the validating site in Hangzhou, distribution of the diff erent validating sample plots 
in Yuhang Town, and location of the study area (Zhejiang Province) in China (A, B, C, D, E, F, 
G, and H represent the validating sample sites).
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Th e following equation was used to simulate 
MODIS bands:  

                                                                                           (1)

where R and r pertain to the refl ectance of MODIS 
and ground spectral, i is the band name of MODIS, 
λ1 and λn are the beginning and ending bands of 
MODIS, and n is the band numbers between λ1 and 
λn.

NDVI, RVI, and EVI were calculated using the 
following formulas:

NDVI(bj, bi) = (Rbj – Rbi) / (Rbj + Rbi)                  (2)          

RVI(bj, bi) = Rj / Ri                                                                                                         (3)

where bi and bj are the ith and jth bands and R is the 
refl ectance.

                                                                                   (4)
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Figure 2. Location of the sample points in the validating sample plot (A1, A2, A3, A4, and A5 represent the observation points).

Table 1. Bandwidth ranges of MODIS for bands 1-19.

Band Bandwidth  ranges (μm) Band Bandwidth  ranges (μm) Band Bandwidth  ranges (μm)

1 0.620-0.670 8 0.405-0.420 14 0.673-0.683

2 0.841-0.876 9 0.438-0.448 15 0.743-0.753

3 0.459-0.479 10 0.483-0.493 16 0.862-0.877

4 0.545-0.565 11 0.526-0.536 17 0.890-0.920

5 1.230-1.250 12 0.546-0.566 18 0.931-0.941

6 1.628-1.652 13 0.662-0.672 19 0.915-0.965
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where, , and are the surface refl ectance for the respec-
tive MODIS bands; L is a canopy background calibra-
tion factor that normalizes diff erential RED and NIR 
extinction through the canopy; and C1 and C2 are the 
weighing factors for the aerosol resistance. Th e coef-
fi cients adopted in the EVI algorithm were L = 1, C1 
= 6, and C2 = 7.5.

Results 
Th e best combination index of MODIS for 

monitoring rice yield
C2

19 combinations of NDVI and RVI spectral 
indices of the simulated fi rst 19 bands of MODIS 
were acquired aft er 2 bands were formed, and the 
coeffi  cient between the NDVI and RVI spectral indices 
was determined. Th e result of this comprehensive 
analysis is illustrated in contour plots of the R2 values 
in the maturing stage in Figures 3 and 4. 

 Results revealed that the determination coeffi  cient 
R2 of NDVI combinations (b2, b19) and (b16, b19), in 
theoretical and real yields, was highly signifi cant for 3 
growing stages, reaching the highest in the maturing 
stage with R2 = 0.74. Th e determination coeffi  cient R2 

of combinations (b17, b19) and (b16, b17) was high 
in the maturing stage, but lower in other growing 

stages. On the other hand, the determination 
coeffi  cient R2 of combinations (b1, b14), (b1, b13), 
(b8, b11), and (b9, b11) was the highest in the heading 
stage and did not exceed the signifi cant level in the 
maturing stage. Table 2 illustrates the determination 
coeffi  cient R2 of the MODIS spectral index in the 
3 growing stages, with theoretical and real yields. 
Table 2 shows that the determination coeffi  cient R2 
between EVI, combinations of (b2, b19) and (b16, 
b19), and rice yield in the whole stage was high, 
exceeding the extremely signifi cant level. Meanwhile, 
the determination coeffi  cient R2 between the NDVI 
of combination (b1, b2) was low, not exceeding the 
signifi cant level. Th e combination of NDVI and RVI 
was superior to EVI in monitoring rice yield in the 
middle and late stages. From Table 2, the best indices 
are seen to be the NDVI combinations of (b2, b19), 
(b16, b19), and EVI. 

Corresponding data in the fi eld obtained in 2003 
was applied to validate the accuracy of theoretical 
yield models of combinative EVI and NIR band 
combination. Th e accuracy of the model for the band 
combination (b2, b19) was 92.1%, the accuracy of 
(16, 19) was 91.9%, and the accuracy  of EVI was 
87.2% in the maturing stage (Table 3).
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Figure 3. Plot of the determination coeffi  cient between MODIS-
NDVI and the theoretical and real yields (theoretical 
yield above the diagonal, real yield below the diagonal) 
(3 October 2002).

Figure 4. Plot of the determination coeffi  cient between MODIS-
RVI and the theoretical and real yields for rice 
(theoretical yield above the diagonal, real yield below 
the diagonal) (3 October 2002).
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Table 2. Th e better combinations of NDVI and RVI and their corresponding determination coeffi  cients for the 3 growth stages of rice.

Heading stage (HS) (31 August 2002)

NDVI (b2, b19) (b16, b19) (b3, b11) (b8, b11) (b9, b11) (b1, b14) (b1, b13) (b1, b2)

TY 0.2696 0.2977 0.7212 0.7362 0.7470 0.8138 0.7672 0.2528

RY 0.2488 0.2463 0.7626 0.7417 0.7673 0.8047 0.7856 0.1877

RVI (b2, b19) (b16, b19) (b3, b11) (b8, b11) (b9, b11) (b1, b14) (b1, b13) (b1, b2)

TY 0.2725 0.2645 0.6981 0.7133 0.7216 0.8148 0.7696 0.2315

RY 0.2520 0.2495 0.7505 0.7374 0.7559 0.8012 0.7841 0.1585

Milking stage (MIS) (20 September 2002)

NDVI (b2, b19) (b16, b19) (b3, b11) (b3, b12) (b3, b4) (b1, b14) (b1, b13) (b1, b2)

TY 0.3573 0.3805 0.6989 0.6804 0.6876 0.6754 0.645 0.0029

RY 0.3082 0.3284 0.6726 0.6492 0.6495 0.6816 0.6614 0.0124

RVI (b2, b19) (b16, b19) (b3, b11) (b8, b11) (b9, b11) (b1, b14) (b1, b13) (b1, b2)

TY 0.3652 0.3881 0.7021 0.6826 0.6886 0.6716 0.6398 0.0184

RY 0.3148 0.3348 0.6732 0.6489 0.6486 0.6792 0.6574 0.0260

Maturing stage (MAS) (3 October 2002)

NDVI (b2, b19) (b16, b19) (b17, b19) (b16,  b17) (b2, b17) (b2, b18) (b16, b18) (b1, b2)

TY 0.7494 0.7502 0.7377 0.7283 0.7246 0.7374 0.7372 0.1184

RY 0.7657 0.7688 0.7606 0.7357 0.7271 0.7511 0.7531 0.1074

RVI (b2, b19) (b16, b19) (b17, b19) (b16,  b17) (b2, b17) (b2, b18) (b16, b18) (b1, b2)

TY 0.7565 0.7568 0.7435 0.7288 0.7256 0.7426 0.7417 0.0689

RY 0.7719 0.7746 0.7659 0.7360 0.7277 0.7555 0.7571 0.0659

HS TY RY MIS TY RY MAS TY RY

EVI 0.3349 0.3817 EVI 0.5633 0.4622 EVI 0.4955 0.5866

TY: theoretical rice yield, RY: real rice yield 
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Rice yield estimation of Zhejiang Province 
based on MODIS image   

Based on the above analysis (Table 2), the 
combinative index (b2, b19) of MODIS has a better 
correlation coeffi  cient than the combinative NIR 
index (b16, b19) in rice yield. Th us, the best index of 
combination (b2, b19) and MOD09 on 25 October 
2002 were selected and applied in the following 
model:

Y = 73214X + 10464,         R2 = 0.75,                    (5)
                 

where Y is the rice yield and X is the combinative 
index (b2, b19).

Th e rice yield of Zhejiang Province was estimated. 
Spatial distribution of rice on a large scale was 
determined by environmental factors such as 
climate, soil, moisture, and soil properties, as well as 
economic factors such as agricultural technology and 
historical culture. Paddy land and dry farming land 
in China possess signifi cant diff erences in terms of 
suitability to the geographical background. Th is may 
be characterized by their spatial distribution along 
the environmental zone.

Spatial distribution of Zhejiang Province’s rice 
yield, inferred for 2002, is presented in Figure 5. Yield 
varies according to the variety of rice as well as the 
soil type/topography in areas where this agricultural 

plant is cultivated. Th e images are presented in color 
scale. Th e dark green areas represent regions where 
the model provides high values. White or bright 
pixels represent areas with lower-yield values, while 
the variation of bright pixels indicates variation in 
rice yield.

Rice yields in the Huzhou, Jiaxing, and Jinghua 
regions are higher, while yields in the Hangzhou 
and Lishui regions are lower. Th e rice yield shown 
in Figure 5 provides valuable information for land-
use assessments and MODIS eff orts. For example, 
diff erent regions can be matched with diff erent 
tillage, fertilizer, and irrigation practices, providing 
the spatial constraints on management practices 
needed in biogeochemical models.

Validation of Zhejiang Province’s rice yield 
based on ground-measured data 

Estimation of rice yield for all sampling sites was 
performed based on the MODIS combinations of (b2, 
b19). Over the study site, 2 sets of nearly simultaneous 
in situ and satellite measurements were acquired 
using fi eld measurement and MODIS. Ground data 
was geolocated with the coarser MODIS data. 

Sample sites, located using GPS, were mapped to a 
georeferenced MODIS image from 25 October 2002. 
Th is resulted in a total of 8 pairs of rice yields. Th e 
mean of 5 measured rice yield points in the sample 
plot corresponded to 1 pixel of rice yield mapped, 
based on MODIS. 

Table 3. Th e spectral index estimation models of theoretical rice yield (kg ha-1) and estimation accuracy.

Band
combination

Heading stage (31 August 2002)
Estimation model              R2       A (%)      

Milking stage (20 September 2002)
Estimation model              R2            A (%)

Maturing stage (3 October 2002)
Estimation model            R2          A (%)

EVI y = 6772.7x + 5074.4    0.3349    85.0 y = 15864x + 1953.4      0.5633      86.3 y = 12987x + 4063.7     0.4955    87.2

Band (1, 2) y = 15958x – 5657        0.2528    55.1 y = - 1250.1x + 10012    0.0029     35.5 y = 7462.1x + 3193.9    0.1184    32.7

Band (2, 19) y = 53154x + 9977        0.2696    67.4 y = 94297x + 11642       0.3573      85.7 y = 73214x + 10464      0.7494    92.1

Band (16, 19) y = 53424x + 10077      0.2977    67.4 y = 102338x + 12067     0.3805      78.3 y = 77552x + 10737      0.7502    91.9

y: rice yield, x: spectral index of band combination, A: estimation accuracy 
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Estimated results were validated using 8 validation 
sites in the Yuhang area of Zhejiang Province (Figures 
1 and 2). Th e results presented in Table 4 indicate that 
the estimated rice yield was spatially variable among 
the sampling sites, ranging from 7953.6 kg ha-1 to 
9545.4 kg ha-1, with a mean of 8625.2 kg ha-1 and 
RMSE of 924.7 kg ha-1. Errors in the estimated rice 
yield ranged from 3.2% to 20.3%, with a mean value 
of 10.1%.

Discussion
In this experiment, rice canopy spectral data in 

the heading, milking, and maturing stages, as well 
as theoretical and real yields of plot, were measured. 
Th e fi rst 19 bands of MODIS were simulated. Th e 
relationships between NDVI and RVI, based on 
2-band combination and theoretical and real yields, 
were analyzed.

It is suffi  cient to display only the matrix below 
(or above) the diagonal matrix, as the R2 (b1, b2) 

values are symmetrical. Similar contour plots (too 
numerous to be presented in this study) were 
created for all other growing stages. Th e b1, b8, 
b9, b11, b13, and b14 symbols are situated in the 
visible light region, while b2, b16, and b19 are 
situated in the NIR-infrared region. Th is is because, 
in the heading stage, visible light can eff ectively 
refl ect sizeable variation in chlorophyll. Th us, the 
visible light bands were strongly correlated with 
rice yield at the beginning of the growing stage. 
With the growth of rice, especially in the maturing 
stage, pigments have a limited eff ect on the canopy 
spectra with yellow leaf, and NIR is strongly 
correlated with rice yield through refl ecting of the 
rice colony. Rice yield was higher with better rice 
growth, and spectral refl ectance in the NIR region 
was higher. Th us, combinative MODIS spectral 
index in the NIR region can eff ectively monitor 
rice yield, and this concurs with a number of 
earlier investigations (Liu et al. 2004; Tang et al. 
2004). 

N
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Figure 5. Th e 2002 distribution of rice yield (kg ha-1) of Zhejiang Province based on 
MODIS image.
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Results revealed that combinative NIR indices 
(b2, b19) and (b16, b19) of MODIS were strongly 
correlated with rice yield, especially the correlative 
coeffi  cient, which exceeded the signifi cant level in 
the maturing stage. However, combinative visible 
light indices (b1, b13), (b1, b14), (b9, b11), and 
(b8, b11) were strongly correlated with rice yield 
in the early stage and poorly correlated in the late 
stage. 

Th e rice yield of Zhejiang Province, based on 
MODIS, was estimated. Th e spatial distribution of 
the rice yield of Zhejiang Province was mapped based 
on the 2-band combination of (b2, b19) of MODIS. 
Estimated results based on MODIS images were 
validated using 8 measured validation sites, and the 
errors in estimated rice yield ranged from 3.2% to 
20.3%, with a mean value of 10.1%.

Results of the best index of combinations of (b2, 
b19) analysis revealed several interesting properties 
of yield estimates. Yield assessments were primarily 
sensitive to the method employed for computing 
NDVI. Th e most accurate estimates resulted from 
NDVI, supporting the combined use of (b2, b19) 
measurements. Results indicated that the 2-band 
combination of the (b2, b19) index of MODIS was 
most suitable for monitoring rice yield.
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Table 4. Rice yield estimated by MODIS index of combination (b2, b19), with means and standard deviations for each date, as well as 
related errors.

Site A B C D E F G H

Lat. 30.290 30.303 30.311 30.305 30.315 30.290 30.311 30.315

Lon. 119.93 119.93 119.94 119.91 119.92 119.93 119.94 119.92

Estimated rice yield (kg ha-1) Mean RMSEa

 Yield (estimated) 8245.7 7953.6 8949.9 8280.4 8588.5 8438.5 9545.4 8999.4 8625.2 924.7
Yield (measured) 7883.2 7707.2 7888.3 7949.3 7665.8 7954.3 7938.1 7679.1 7833.2
Error (%) 4.6 3.2 13.5 4.2 12.0 6.1 20.3 17.2 10.1

aRMSE: root mean squared error
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