
121

http://journals.tubitak.gov.tr/agriculture/

Turkish Journal of Agriculture and Forestry Turk J Agric For
(2013) 37: 121-125
© TÜBİTAK
doi:10.3906/tar-1111-22

Free vibration of both-ends clamped wooden beams: is it potentially applicable 
as an in situ assessment method?

Mehran ROOHNIA1,*, Abdolsaber YAGHMAEIPOUR1, Yoshitaka KUBOJIMA2, Ajang TAJDINI1

1 Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan

*	Correspondence: mehran.roohnia@kiau.ac.ir

1. Introduction
Most wooden structural components in forms of beams 
and columns are situated in both-ends clamped conditions. 
In timber constructions, the load-bearing components 
may lose their efficiencies due to gradual deterioration 
or natural, biological, and mechanical damages. 
Frequent monitoring of the quality changes in load-
bearing members, therefore, is essential. When a defect 
is visually detected, weak members are easily recognized 
and replaced. If the defect is hidden, however, it would 
be difficult to locate the damaged structural members. 
Strength is accurately measured by removing the wooden 
members in a building structure. A time-consuming 
possible mission, this method would be difficult to adopt. 
Hence, a testing method to appropriately measure the 
strength of a clamped timber in its building structure 
seems necessary. Naturally, tests should be conducted 
without rupturing the specimen (Kubojima et al. 2006). 

X-ray digital scanning is perhaps the most accurate 
technique to identify damaged members (Pietikäinen 1996; 
Grundberg and Grönlund 1997; Wang et al. 1997; Burian 
2006; Skog and Oja 2009; Oja et al. 2010). Difficulties in 
transporting and maintaining such equipment make it a 
more expensive method of quality control. The presence of 
an inexpensive rival method hardly justifies some current 
applications of the X-ray method. In the last 2 decades, 

developing new and inexpensive methodologies, therefore, 
has been pursued by several researchers (Roohnia et al. 
2011b), including those in the current study. 

Young’s modulus is a strength property that can be 
obtained without damaging the specimen (Kubojima et al. 
2006). Widely used for its simplicity, the flexural vibration 
test is a popular method of measuring Young’s modulus 
(Kubojima et al. 2006; Roohnia et al. 2011b). Research 
shows that defects alter the strength of structural timber. 
For example, a knot induces a resonance frequency shift 
of vibration (Nakayama 1974; Sobue and Nakano 2001; 
Brancheriau et al. 2006). Similarly, several proposals state 
that a local defect might alter the flexural curve of a beam 
in a static bending test (Nagai et al. 2007) or the flexural 
curve associated with a transfer function in flexural 
vibration (Yang et al. 2002; Choi et al. 2007). Considerable 
errors in shear deflection and rotary inertia in both-ends 
clamped flexural vibration make the modulus of elasticity 
hard to obtain in flexurally excited beams with similar 
ending conditions. While the effects of shear deflection 
and rotary inertia on dynamic modulus evaluations have 
been eliminated for free-free and cantilever beams in 
flexural vibrations (Harris and Piersol 2002; Turk et al. 
2008), investigations on the both-ends clamped condition 
are in progress by the present research team. It was also 
indicated that altering gripping forces would change 
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the resonance frequency in both-ends clamped beams 
to a considerable extent (Kubojima et al. 2012). Before 
proposing any new evaluation procedures, it would be 
necessary to study some initial requirements in dynamic 
responses of a sound both-ends clamped beam in flexural 
vibration. In both-ends clamped conditions, are the radial 
and the tangential dynamic responses comparable? Is 
there any influence made by axial loads (in a reasonable 
range) on the dynamic flexural responses of the columns 
and both-ends clamped beams? If there are any influences, 
are the radial or the tangential vibrations more influenced? 

To eliminate the effects of shear deflection and rotary 
inertia on the evaluated modulus of elasticity, this study 
is concerned with initial inquiries and aims to develop an 
appropriate methodology. Hence, the slenderness ratio 
might not be the sole independent affecting factor. 

2. Materials and methods
Specimens were obtained from Silvestre pine green 
lumber with the nominal dimensions of 20 (radial) × 
20 (tangential) × 360 (longitudinal) mm. Among the 
obtained bars, in accordance with ISO international 
standard No. 3129, only the visually clear ones were 
selected and stored in a climatic chamber at 65% relative 
humidity and 22 °C until the shrinkage dimension changes 
were stabilized. After applying free vibration in a free-
free bar test and observing the correlation coefficients of 
Timoshenko’s flexural vibration equations (Timoshenko’s 
bending theory [1921] has been fitted initially to isotropic 
materials next to the clearest specimens. It benefits from a 
linear trend fitted to 3 or more points calculated from 3 or 
more consecutive modal frequencies. If a sample loses its 
homogeneity, the correlation coefficient of the fitted trend 
would decrease to values lower than 0.99.) with the relative 
differences in the radial and tangential flexural responses 
in terms of the evaluated longitudinal modulus of elasticity, 
the researchers selected 19 specimens as a set of suitable 
samples for further examination in this study. Roohnia et 
al. (2011a) certified that chances would exist only for small 
differences between the 2 evaluation series of longitudinal 
modulus of elasticity through tangential transverse (LT) 
and radial transverse (LR) vibrations in clear and sound 
beams1. Therefore, the introduced differences might be the 
defect indicators. The greater the observed difference in 
longitudinal modulus of elasticity evaluations of a proper 
bar, the larger the defect. The dimensions and mass of 
stabilized specimens were measured with a digital caliper 
with the accuracy of 0.01 mm and a digital balance with 
the accuracy of 0.01 g, respectively, while the frequencies 

of the first mode of free flexural vibrations were evaluated 
in both-ends free versus both-ends clamped conditions 
using the fast Fourier transform spectrum obtained by 
MATLAB® 7.1 software.  

In the literature, the free flexural vibration of free-
free beams was illustrated as a method for damping and 
evaluating modulus of elasticity measurements (Roohnia 
et al. 2010). The method was extended to include the both-
ends clamped specimens in Figure 1. Sound recording and 
percussion were both done at the middle of the clamped 
beams. The capability of axial compress application was 
provided, too (one of the gripping mechanisms being 
free to displace parallel to the beam axis allowed the 
axial compress to be performed). A proper gripping force 
for both clamped ends was kept soft and constant using 
2 similar jaws covered by hard leather, controlled by a 
proper torque wrench (Figure 2). However, the leather 
might reduce the full clamping of the ends. The gripping 
width was 1 cm as the translating beam span (free length) 
remained at 34 cm. 

After evaluating the modulus of elasticity and 
estimating the shear moduli in Timoshenko bending 
equations for the both-ends free condition (Roohnia et al. 
2010), the rest of the required mathematical calculations, 
to be used later for Eqs. (5) through (8), were followed in 
the Euler–Bernoulli elementary theory for both the free 
and clamped end vibrations, as below:

E
a m

4 l fd

n 1
4

2 2
1
2

:
=t
ra k ; E

				    (1)

Al
I

2=a 					     (2)

where Ed is the longitudinal dynamic modulus of elasticity 
(Pa); r is the stabilized density (kg m–3); l is the vibrating 
free span (m); f1 is the fundamental frequency (Hz); a is 
a scalar constant related to the radius of gyration and the 
free length of the beam, calculated in Eq. (2); and m1 is 
a scalar constant related to the end-support condition of 
the beam, which is equal to 4.73 for the free-free beam 

1 Assuming the equality of the longitudinal modulus obtained from LR and LT vibrations for an absolutely clear and sound beam, the observed differences 
in percentages due to defects was defined as ΔE%:
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where EL,LT and EL,LR represent the longitudinal modulus of elasticity obtained in LT and LR vibration tests, respectively.

Figure 1. Free flexural vibration in a both-ends clamped beam 
bearing the axial compression, F. 
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(Bodig and Jayne 1989). Following the calculations for 
the described both-ends softly clamped beams, the value 
of m1 must coincide with a proper value between 3.142 
and 4.730, from the simply supported (without gripping 
forces) to the actual both-ends fully clamped gripping 
condition, respectively (Bodig and Jayne 1989; Harris and 
Piersol 2002; Kubojima et al. 2006).

Theoretically, in an absolutely homogenized, isotropic, 
both-ends clamped beam, the fundamental modal 
frequency in terms of modulus of elasticity is calculated 
as below:
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Since flexural vibration is usually influenced by shear 
and rotary inertia, Timoshenko added these terms to 
the Euler–Bernoulli elementary theory of bending to 
develop the following differential equation of bending 
(Timoshenko 1921):
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where G is shear modulus and s = 1.18 is the shear 
deflection coefficient (Nakao et al. 1984). When Eq. (4) 
is solved under the both-ends clamped condition, the 
resonance frequency f1 can be rewritten as follows:
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The value of P1 is obtained by the following 
transcendental equations (Kubojima et al. 2006).
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In the present study, under the above-mentioned 
gripping mechanisms and the elastic moduli in the 
Timoshenko theory, the rebuilt value of p1 instead of 
m1 in Eq. (1) was introduced for a temporary account 
of the independent factors influencing the decrease in 
the both-ends clamped dynamic modulus of elasticity 
values, compared to the free-free methods. Eliminating 
the decreasing effects of the slenderness coefficient on the 
dynamic responses of the beams was not the researchers’ 
concern here.

The axial compress force (F) was performed by a 
manual wrench clamp to be scaled using an analog power 
meter in 3 steps of 50, 100 and 150N. Every single step was 
compared to the free-free and both-ends clamped without 
any axial forces conditions.

3. Results
As described earlier, an estimation of the P1 value in 
gripping of both-ends clamped beams was separately 
recalculated for each individual beam (approximately 
3.83) in Eq. (6). Hence, at least for the slenderness of these 
particular specimens, the effects of shear deflection and 
rotary motion were virtually compensated. Considering 
comparable results to those of Timoshenko’s bending 
equations in a free-free flexural vibration test, an 
evaluation approach to longitudinal modulus of elasticity 
in both-ends clamped beams was initialized here. 

Figures 3 and 4 show the correlation coefficients of 
evaluated longitudinal modulus of elasticity from both-
ends clamped beams (shown here as Fx-Fx) in comparison 
with the both-ends free condition. The significance of the 
fitted correlation coefficients was statistically verified. 
Evaluated values in both-ends clamped beams in LT 
vibration decreased with the axial compression, whereas 
those of LR vibration remained constant without any 
noticeable shift. To assure the probable longitudinal 
Young’s moduli shifts, the both-ends clamped beams put 
through the steps of axial compressions were compared to 
the preliminary unloaded conditions in terms of evaluated 
longitudinal moduli of elasticity in LR and LT flexural 
vibrations, as indicated in Figures 5 and 6, respectively. 
These correlation coefficients were also statistically 
verified.

Similarly, evaluated values in both-ends clamped 
beams in LT vibration showed an obvious decrease in line 
with the axial compression, whereas those in LR vibration 
remained constant again without any significant shift. 
As the evaluations were done using similar calculations, 
the comparison among the different steps of loading 
compression and relative shifts of longitudinal Young’s 
moduli were predicted to be valid.

Figure 2. Gripping jaws covered by hard leather (thickness = 3 
mm).
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4. Discussion
The present study investigated the possibility of evaluating 
the longitudinal Young’s modulus through free flexural 
vibrations in both-ends clamped beams and concluded 
that both-ends clamped beams had the potential for 
in situ longitudinal Young’s modulus evaluation. The 
strong correlations between both-ends clamped and free-
free beams in terms of evaluated moduli promised this 
possibility. 

The effects of shear deflection and rotary inertia, 
initially excluded in the suggested procedure, need to be 

developed in future studies. Meanwhile, the clamping 
forces and conditions that might reduce the scalar 
constant related to the end conditions of the beam have 
also remained as a concern for further studies. 

Regarding Figure 3 (LR flexural vibration), there was 
no significant change in the longitudinal modulus of 
elasticity, but as the LT flexural vibration was taken into 
account in Figure 4, after axial loads greater than 100N, the 
modulus decreased by up to 10% when compared to the 
referenced both-ends free values. It was also concluded 
that the LT flexural vibration was more sensitive to axial 
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Figure 3. Longitudinal Young’s modulus evaluated in both-ends 
clamped beams put through axial compression vs. the free-free 
condition (LR flexural vibration).

Figure 4. Longitudinal Young’s modulus evaluated in both-ends 
clamped beams put through axial compression vs. the free-free 
condition (LT flexural vibration).

Figure 6. Longitudinal Young’s modulus evaluated in both-ends 
clamped beams put through axial compression vs. no-loaded 
condition (LT flexural vibration).
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Figure 5. Longitudinal Young’s modulus evaluated in both-ends 
clamped beams put through axial compression vs. no-loaded 
condition (LR flexural vibration).
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compression. Hence, the LR flexural vibration seemed 
promising for the beam and column evaluations under 
axial loads. If an entire LR plane would be out of reach, 
the modulus evaluations were predicted to be smaller in 
scope. If the elastic modulus is evaluated in slightly smaller 
values, it might not be a hazardous caution. 
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