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1. Introduction
The tomato (Lycopersicon esculentum Mill.) is widely 
grown and consumed all over the world and thus has been 
an important staple food in the human diet. World tomato 
production is 159.023 × 106 t obtained from 4.734 × 106 ha 
of production area (http://faostat.fao.org). Due to its high 
economic value, as well as the large number of diseases, 
insects, and mites that infest tomatoes during growing 
season, significant quantities of pesticides are often 
necessary for the protection of this crop. This may lead to 
residues on (or in) the fruit and vegetable at harvest. 

Mancozeb is an important member of ethylene bis-
dithiocarbamate (EBDC) fungicides and is used to 
protect many fruits, vegetables, nuts, and field crops 
against a wide spectrum of tomato diseases, including 
downy mildew of tomatoes (http://extoxnet.orst.edu/
pips/mancozeb.htm). The official statistics on the use of 
plant-protection products in the European Union indicate 
that mancozeb is second on the list of top 10 fungicide 
active ingredients (mancozeb: 15,946 t, 14.8% of total 
fungicides) (Nadin, 2007). Chemically, mancozeb is a zinc 
ion coordination product with a manganese ethylene-
1,2-bis-dithiocarbamate polymer. The water solubility of 
the mancozeb is 6.2 mg L–1 at 20 °C, log octanol-water 
partition coefficient is 1.33, vapor pressure is 0.013 mPa at 

25 °C, action mode is nonsystemic, and LD50 in mammals 
is >5000 mg kg–1 (http://sitem.herts.ac.uk/aeru/footprint/
en/). The toxicity of mancozeb and other metal EBDCs 
has been attributed to mainly ethylene thiourea (ETU), 
the major metabolite of mancozeb (Srivastava et al., 
2012). ETU is known to have carcinogenic, teratogenic, 
and goitrogenic effects in rodents (WHO, 1988). Food 
processing is the major pathway by which exposure 
to ETU occurs. In particular, thermal treatments are 
associated with the higher conversion factors of EBDCs to 
ETU (Knio et al., 2000; Kontou et al., 2004; Kaushik et al., 
2009; Certel et al., 2012). Tomato is frequently subjected 
to thermal treatments such as evaporation, blanching, 
sterilizing, and canning in order to be consumed as juice, 
paste, ketchup, or canned products. In addition, home 
cooking of tomatoes is a common practice. Therefore, 
mancozeb residues must be removed from tomatoes using 
proper pesticide residue reducing techniques.

Various techniques have been employed to reduce 
pesticide concentrations in food commodities (Cengiz 
et al., 2006, 2007; Basfar et al., 2012; Liang et al., 2012; 
Yang et al., 2012; López-Fernández et al., 2013). Washing 
procedures such as dipping into water and rubbing that 
have been traditionally employed to remove debris and 
dirt have been shown to reduce pesticide residues. Several 
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researchers found that levels of mancozeb residues were 
reduced by washing procedures (Zhang et al., 1991; 
Hwang et al., 2001, 2003; Bonnechère et al., 2012; López-
Fernández et al., 2013). However, this procedure may be less 
effective in removing more persistent pesticide residues. 
Therefore, some chemical agents may need to be added 
to the washing water to improve the effectiveness of this 
procedure. The most commonly recommended chemical 
agents for residue removal purposes are chlorine, ozone, 
acetic acid, sodium chloride, potassium permanganate, 
chlorine dioxide, and hydrogen peroxide. The use of these 
chemical agents has been shown to be effective in the 
reduction of pesticide residues in food samples (Pugliese 
et al., 2004; Radwan et al., 2005; Wu et al., 2007; Zhang et 
al., 2007; Satpathy et al., 2011; Karaca et al., 2012; Liang et 
al., 2012).

Among various chemical agents, chlorine, hydrogen 
peroxide, and ozone were selected for this study because 
they are known to be relatively less toxic and would be good 
alternatives to complex pesticide reducing techniques. The 
objective of this study was to determine the effects of these 
known chemicals on the reduction of mancozeb residues 
on tomato samples. 

2. Materials and methods
2.1. Materials
Carbon disulfide (CS2) analytical standard was obtained 
with a purity certificate from Dr. Ehrenstorfer GmbH 
(Germany). All of the other chemicals were obtained 
from Merck (Germany). The isooctane was GC grade. 
Hydrochloric acid (HCl, 37%) and stannous(II) chloride 
dihydrate were GR grade. Ozone was produced by an ozone 
generator (Longevity EXT-120; Canada). Dissolved ozone 
concentration was controlled using the indigo colorimetric 
method (Clesceri et al., 1998). The water was produced by 
an ultrapure (18.2 MΩ cm at 25 °C) purification system 
(Millipore, USA). The commercial mancozeb (Manzate 
200) was procured from DuPont (USA). 
2.2. Field trials and sampling
Tomato samples were grown in a commercial greenhouse 
(36°55′54.68″N, 30°43′19.48″E). The absence of mancozeb 
residues on the samples was confirmed by residue analysis 
prior to application of commercial mancozeb solution. An 
aqueous suspension containing commercial mancozeb 
(wettable powder form) was prepared by mixing 200 g 
in 100 L of deionized water according to its product label 
rates. The prepared suspension was uniformly applied to 
tomato plants using a sprayer. 
Mature tomato samples (39 ± 1 g) were collected after a 
predetermined time interval from the pesticide application. 
The collected samples were transferred to the laboratory 
and analyzed immediately. The samples with the residue 
level of approximately 3 mg kg–1, the maximum residue 

limit (MRL) value for the mancozeb residue in tomatoes, 
were selected for dipping solution experiments. 
2.3. Dipping solution experiments
All dipping solution experiments were operated in 10-L 
containers with 5 L of dipping solution to allow for 
complete submersion of the tomatoes. About 1000 g of 
tomatoes was placed in the container. The experiments 
were performed under ambient temperature (ca. 20 °C). 
The dipping solutions’ temperature and pH level were 20 ± 
2 °C and 7 ± 0.2 (distilled water), respectively. There were 
7 experiments in the study: a) water dipping, b) chlorine 
dipping at 10 and 100 mg L–1, c) hydrogen peroxide 
dipping at 10 and 100 mg L–1, and d) ozone dipping at 1 
and 3 mg L–1. Control samples were also analyzed prior to 
each experiment. Selected samples were dipped into the 
solutions for 5, 10, 15, and 20 min. After each experiment, 
residues on the samples were analyzed and percent 
reductions were calculated as compared to the control 
group. 
2.4. Mancozeb residue analyses
Residual mancozeb on the samples was determined 
using by the method of Cesnik and Gregorcic with some 
modifications (Cesnik and Gregorcic, 2006). Briefly, 
50 ± 0.1 g tomato samples were homogenized with a 
Warring blender for 3 min at high speed and the obtained 
homogenate was transferred to sample bottles. Forty 
milliliters of isooctane and 100 mL of stannous(II) chloride 
dihydrate solution [4 g of stannous(II) chloride dihydrate 
in 100 mL of concentrated HCl] were added to the bottle. 
The bottle was immediately sealed tightly and placed in 
a shaking water bath at 80 °C for 60 min. Subsequently, 
the bottle was removed from the water bath and rapidly 
cooled to room temperature. After cooling, separation 
of 2 phases (isooctane and tomato homogenate layers) 
was observed in the bottle. The upper layer, consisting 
of isooctane, was transferred into a screw-cap sealed vial 
for the gas chromatography-mass spectrometry (GC-MS) 
analysis.

A Varian 220-MS GC Ion Trap GC-MS spectrometer 
equipped with a fused capillary column as VF-5MS (30 m 
× 0.25 mm × 0.25 µm) was used for the determination of 
residue in the samples. The oven temperature progression 
was as follows: a 50 °C initial temperature was held for 
2.2 min and then was increased to 270 °C by a rate of 
35 °C min–1, and was finally was held for 3 min at this 
temperature. The injection block, detector, and ion source 
temperatures were 280, 150, and 230 °C, respectively. 
Carrier gas (helium) flow through the column was 1 
mL min–1. Injection volume was 2 µL and detection was 
determined in selective ion monitoring mode. Target ion 
was 76 m/z.

The validation of the analytical method was performed 
following analytical curves, linearity, limit of detection 
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(LOD), limit of quantification (LOQ), and recovery. 
Linearity was determined by constructing calibration 
curves with standard solutions. Three injections were 
performed at each of the 6 concentration levels. The LOD 
was estimated as 3 times the standard deviation, while the 
LOQ was estimated as 10 times the standard deviation, 
which was derived from analyses of 10 independent 
samples at the lowest calibrated level. For the recovery 
studies, the mancozeb standard solution was added to 
chopped blank tomato sample in the blender jar before 
homogenization. 
2.5. Statistical studies
All results were statistically analyzed by analysis of 
variance (P < 0.01). Significant means were subjected to 
analysis by the Duncan multiple range test (P < 0.05). All 
statistical analyses were performed using the Statistical 
Analysis System. 

3. Results
3.1. Residue analytical methodology
The method used demonstrated acceptable performance 
for the analysis of mancozeb residues in the tested tomato 
samples. A good linear relationship with high correlation 
coefficient values was obtained under the chromatographic 
conditions. The linearity of the assay was checked by 
calculating the regression line using the least squares 
method and expressed by the coefficient of determination, 
r2 > 0.999. A 6-point calibration curve was obtained in the 
range from 0.063 to 6.316 mg L–1 by plotting the recorded 
peak area versus the corresponding analyte concentrations. 
The regression equation for the calibration curve was y = 
4391.550x + 298.440.

The method was also validated for LOD, LOQ, and 
recovery studies before the determination of mancozeb 
levels on the tomato samples. These methodological 
parameters were optimized by using blank tomato 
samples. Thus, the LOD, LOQ, and recovery (for 3 mg 
kg–1 mancozeb) were estimated to be 0.013 mg kg–1, 0.043 
mg kg–1, and 98.451% (RSD = 1.483, n = 6) respectively. 
The obtained results from the analytical studies agree 
with experimental data existing in the literature (López-
Fernández et al., 2012).
3.2. Effect of dipping solutions on mancozeb residues
The MRL for mancozeb (as dithiocarbamate) in tomatoes 
is established as 3 mg kg–1 by the European Union (http://
ec.europa.eu/sanco_pesticides/public/). Therefore, this 
level was targeted in our study. The commercial mancozeb 
solution (200 g 100 L–1) was homogenously sprayed to 
tomato plants. Mature tomato samples of similar size (39 ± 
1 g) were harvested at different time intervals and analyzed 
in the laboratory for mancozeb residues. Approximately 3 
mg kg–1 mancozeb was found in the samples, which were 
collected 24 h after mancozeb treatment. These samples 

were collected from the greenhouse and treated with 
various forms of dipping solutions. The percent reductions 
of mancozeb residues were then calculated by comparing 
it with the mancozeb residue levels of the control samples. 

According to results of variance analysis, significant 
reductions for mancozeb residue levels were obtained 
through both types and concentrations of dipping 
solutions, which were aimed at decreasing pesticide 
residue (P < 0.05). Contact time was also effective on the 
reduction of mancozeb residue (P < 0.05). Water dipping 
alone was the least effective experiment, while chlorine 
dipping was the most effective on the reduction of the 
residue. The initial mancozeb residue level was decreased 
by 22% in 5 min by the water dipping experiment. No 
statistical difference was found among the treatment times 
of 10, 15, and 20 min in these experiments (P > 0.05). 
Obtained results indicate that mancozeb is relatively stable 
in water for at least 20 min. 

Washing is the most common and straightforward 
form of processing. It is generally the first step in various 
types of household and commercial food preparation 
techniques. The residues of contact pesticides that appear 
on the surface of the plant, loose surface residues, and 
major portions of polar compounds can be removed with 
washing processes (Kaushik et al., 2009). In addition, some 
reducing agents such as chlorine, ozone, and hydrogen 
peroxide solutions can be used for better reduction of 
pesticide residues. It was found in this study that chlorine, 
hydrogen peroxide, and ozone dipping were more effective 
treatments compared to water dipping. Figure 1 shows 
percentages of detected average mancozeb residues after 
chlorine dipping experiments.

It can be seen in Figure 1 that mancozeb residues were 
gradually decreased, depending on the contact time, at both 
concentrations of chlorine. The initial mancozeb residue 
level was decreased by 52% at 10 mg L–1 chlorine within 

Figure 1. Effect of chlorine solutions treatment on mancozeb 
residues on tomato samples.
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20 min. On the other hand, a concentration of 100 mg L–1 
chlorine resulted in substantial reductions of mancozeb 
residues. This concentration was the most effective in 
removing residues of mancozeb, with an average of 71% of 
the residues being eliminated from the samples. 

Hydrogen peroxide was the second most effective agent 
for the reduction of mancozeb residue. The residue levels 
were decreased by 65% in 20 min by 100 mg L–1. Figure 2 
shows the effects of the hydrogen peroxide solutions on 
the reduction of mancozeb residues on tomato samples. 
Forty-eight percent and 65% reduction rates were achieved 
within 20 min using hydrogen peroxide treatment at 10 
and 100 mg L–1, respectively.

Dipping into ozonated water resulted in 43% and 60% 
reductions of the residue levels at 1 and 3 mg L–1 ozone 
concentrations, respectively, within 20 min (Figure 3). 
Although there was a significant difference between the 
treated concentrations of ozone, no statistical difference 
was obtained among 5, 10, 15, and 20 min for each 
concentration (P > 0.05). 

4. Discussion
The results showed that the use of chlorine, hydrogen 
peroxide, and ozone solutions has potential effective 
postharvest value in the reduction of mancozeb residue on 
tomatoes. 

It was reported that wide ranges of reduction of 
pesticide residues were obtained by washing treatments. 
Liang et al. found that the fenitrothion, dichlorvos, 
dimethoate, trichlorfon, and chlorpyrifos residues in/on 
cucumber samples were reduced by 13%, 14%, 15%, 22%, 
and 53%, respectively, by dipping them into tap water for 
5 min (2012). Pugliese et al. reported that methidathion, 
parathion methyl, chlorpyrifos, and pirimicarb residues 
in/on nectarine samples were decreased by 7%, 15%, 26%, 

and 34%, respectively, by dipping them into water for 3 min 
(2004). Cengiz et al. reported that initial diazinon residue 
level in/on cucumbers was decreased by 22% by rubbing 
them under running water for 15 s (2006). Satpaty et al. 
reported that formathion, methyl parathion, fenitrothion, 
parathion, chlorpyrifos, and malathion residues in tomato 
samples were reduced by 27%, 32%, 34%, 37%, 39%, and 
41%, respectively, by allowing them to be submerged in 
water for 15 min (2011). It was found that the percentage 
reduction of mancozeb residues was 29% by dipping in 
water in this study. These discrepancies among the results 
of pesticide residue reductions can be attributed to 5 main 
factors: 1) specifications of the pesticide such as water 
solubility and octanol-water coefficient, 2) specifications 
of the food samples such as surface characteristics, 3) 
conditions during the pesticide application such as 
temperature and humidity, 4) specifications of the reducing 
agents such as dissolving properties, and 5) conditions 
during the reducing agent application such as temperature 
and pH.

The obtained results from the chlorine experiment 
were consistent with those of Hwang et al., who found the 
mancozeb reduction rate to be 56% in apple samples by 
using 50 mg L–1 calcium chloride (2003). 

The percent reduction was 64.66 ± 1.71% at 100 mg 
L–1 hydrogen peroxide within 20 min. Hwang et al. (2001) 
reported that the reduction rate of mancozeb on apples 
was 82% at 50 mg L–1 hydrogen peroxide within 15 min. 
These differences may be explained by the differences of 
the surface characteristics between tomatoes and apples. 
Apple cuticle consists of 44.7% waxes, whereas tomato 
cuticle contains 6.5% waxes (Chen et al., 2008). The apple 
cuticle membrane thus contains much higher levels of 
waxes than that of tomato. Therefore, a weaker interaction 
might be occurring between mancozeb molecules and 
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Figure 2. Effect of hydrogen peroxide solutions treatment on 
mancozeb residues on tomato samples.

Figure 3. Effect of ozone solutions treatment on mancozeb 
residues on tomato samples.
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apple cuticle when compared to tomato cuticle. As a result, 
it can be said that the solution of hydrogen peroxide may 
be more effective in apples than in tomatoes.

The findings of ozone experiments were consistent 
with those of Wu et al., who found that 53% of diazinon, 
55% of parathion, 47% of methyl parathion, and 61% 
of cypermethrin were removed from brassicaceous 
vegetables using 2.0 mg L–1 dissolved ozone concentration 
for 30 min. The authors also reported that the degradation 
was mostly completed in the first 5 min (Wu et al., 2007). 
Similar results were obtained in this study. We found that 
the level of mancozeb was reduced by 60% by dipping into 
ozonated at water 3 mg L–1 ozone concentration and the 
major reduction of the residue level was observed within 
5 min. It could be possible, therefore, that dissolved ozone 
is unstable. A great proportion of dissolved ozone would 
escape to the ambient or reduce to oxygen molecules in a 
few minutes. Therefore, reduction levels of the mancozeb 
residue remained constant in the ozone treatment.

In 1997, an expert panel of the US Food and Drug 
Administration reviewed the safety and potential for food-
processing use of ozone and declared ozone to be generally 
recognized as safe for food contact applications. Since 
that time, interest in developing ozone applications in the 
food industry has increased. However, it can be argued 
that toxic intermediates will also be generated under 
natural environment in exposure to oxygen. Ozone and 

other oxidants can speed up the mineralization process 
for complete degradation of the toxic intermediates and 
ultimately lead to the formation of CO2. Therefore, the 
levels of possible by-products and toxic intermediates 
should be considered at high levels of oxidizing agent 
treatment. In conclusion, mancozeb has been one of the 
most commonly used fungicides in commercial use for 
several decades. Residues of mancozeb have been regularly 
detected in fruit and vegetables. It has been shown that a 
significant percentage of ETU may be produced during 
thermal treatment of food products contaminated with 
mancozeb. ETU is known to have carcinogenic, teratogenic, 
and goitrogenic effects in rodents. On the other hand, the 
tomato is a widely consumed food product that is often 
subjected to thermal treatment. Therefore, there is an 
increasing need to develop techniques to reduce mancozeb 
residue levels in tomatoes. We found that water was the 
least effective experiment, whereas the 100 mg L–1 chlorine 
solution for 20 min was the most effective treatment in 
removing mancozeb residues. Further research needs to 
be done on more effective techniques for the removing of 
this kind of pesticide and its degradation products. 
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