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1. Introduction 
Malacosoma species are very common in Turkey and 
cause extensive economic losses in a number of plants 
(Doğanlar, 1975). One of these species, Malacosoma 
franconicum (Denis & Schiffermüller, 1775) (Lepidoptera: 
Lasiocampidae), is a pest native to Turkey (Stene, 1914). The 
presence of M. franconicum has been reported in Turkey 
until now, and we also detected it in Gümüşhane, Turkey. 
With the great importation of indoor plants to Turkey, it is 
possible that this insect was introduced in this way.  

Malacosoma spp. is particularly injurious to apple, 
cherry, and other fruit trees but can also be destructive 
to other deciduous trees (Leathers and Gupta, 1993). 
Furthermore, its caterpillars induce mare reproductive loss 
syndrome, which causes early fetal losses and late-term 
abortion in horses (Webb et al., 2004). Control of this pest 
is difficult, largely because of its congregation behavior. 
Larvae spend the day inside their protective tents where 
they are largely shielded from exposure to insecticides. 
At night and in rainy weather, they emerge to forage, at 
which time a widely disseminated control agent would be 
necessary.  

Another species, Malacosoma neustria (Linnaeus, 
1758) (Lepidoptera: Lasiocampidae), known as the 
European tent caterpillar, is an important defoliator of 
various fruit trees and ornamental trees, particularly in 
eastern and central Turkey (Özbek and Çalmasur, 2005; 
Özbek and Çoruh, 2010). The caterpillars first feed on 
the buds and then on the leaves of the trees. Within a few 
years, they become so widespread that they leave the trees 
completely bare. Since 1970, outbreaks have been observed 
at about 3- to 7-year intervals in the province of Erzurum 
(Özbek and Çoruh, 2010).

Nucleopolyhedroviruses (NPVs), members of the 
family Baculoviridae, are one of the most promising 
biological and biotechnological control agents of insects to 
date (Demir et al., 2008). They are enveloped viruses that 
have double-stranded, circular DNA genomes ranging in 
size from 80 to 180 kbp (Theilmann et al., 2005). These 
viruses have been used as biopesticides to control the 
population of insect pests in agriculture, forestry, and 
pastures (Moscardi, 1999; Lacey et al., 2001; Szewczyk et 
al., 2006). The susceptibility of M. americanum and M. 
neustria to nucleopolyhedroviruses has been noted on 
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numerous occasions. The susceptibility of M. americanum 
to NPV has been reported by several authors (Nordin, 
1974; Progar et al., 2010). A M. americanum NPV was 
isolated from this insect in Kentucky and it killed less than 
5% of the population sample (Nordin, 1974). Moreover, 
some morphological properties of this NPV were studied 
by Ackermann and Smirnoff (1983), but more detailed 
information about this M. americanum NPV, such as 
restriction endonuclease enzyme profile, genome size, 
phylogenetic analysis, and host spectrum, was lacking. 
Furthermore, distinctive isolates of NPV have been 
studied from populations of M. neustria and have been 
investigated in terms of their virulence against pests 
(Biliotti, 1955; Günther, 1958; Magnoler, 1985; Kikhno 
and Strokovskaya, 1997; Jankevica et al., 1998; Demir et 
al., 2009a, 2009b, 2013).  

In this study, in order to determine the feasibility of 
using a nucleopolyhedrovirus as a biological control 
agent of Malacosoma spp., a new nucleopolyhedrovirus 
isolated from Malacosoma franconicum in Turkey was 
characterized based on its morphological and molecular 
features, as well as partial polyhedrin (polh) and late 
expression factor-8 (lef-8) gene analysis, using electron 
microscopy, restriction endonuclease, and phylogenetic 
analysis. In addition, its virulence on some lepidopteran 
larvae including M. franconicum and M. neustria species 
was determined. 

2. Materials and methods
2.1. Virus and insects
Dead and diseased Malacosoma franconicum larvae 
with nucleopolyhedrosis virus symptoms (geotropism, 
diarrhea, and liquefied body) were collected from various 
host plants in the Eastern Black Sea Region of Turkey. 
These larvae were checked under a light microscope to 
determine whether or not they included occlusion bodies 
(OBs). The ones that had OBs were stored at –20 °C. 

Infection experiments were conducted using 
third instar larvae of insects from different species of 
Lepidoptera: M. franconicum (Fam.: Lasiocampidae), 
M. neustria (lackey moth, Fam.: Lasiocampidae), M. 
castrensis (ground lackey, Fam.: Lasiocampidae), Plodia 
interpunctella (Indian meal moth, Fam.: Pyralidae), 
Thaumetopoea pityocampa (pine processionary, Fam.: 
Thaumetopoeidae), and Galleria mellonella (honeycomb 
moth, Fam.: Pyralidae). G. mellonella and P. interpunctella 
were raised from eggs in the laboratory and fed an artificial 
diet until the larval stage. The other species were collected 
from the fields as larvae in the appropriate seasons.  
2.2. Determination, isolation and propagation of the virus
Dead larvae with symptoms of baculovirus infection 
were dissected in Ringer’s solution, and wet smears were 

examined under a phase-contrast microscope (Nikon 
Eclipse E600) for virus observation at 400× magnification. 
The fat body, the tracheal body, and the midgut of each 
insect were thoroughly examined to observe viral 
infections in the insect bodies and were photographed 
using a digital camera (Nikon Coolpix 5000). The larvae 
that had died due to virus were stored at –20 °C.     

After defrosting, the larvae were ground in sterile 
water and filtered through cheesecloth to remove the larval 
debris. The OBs were purified according to the procedure 
described by Muñoz et al. (1997). Amplification of the 
virus was performed in healthy M. franconicum larvae 
in the laboratory. The larvae were placed in infection 
dishes, fed with 106 OBs applied on the leaf surface, and 
maintained at 25 °C to develop infection. The OBs were 
purified from larvae by homogenization and density 
gradient centrifugation using microcentrifuge tubes as 
described by Ishii et al. (2003). The concentration of OBs 
was determined using a Thoma hemocytometer under a 
phase-contrast microscope and the OBs were stored at 
–20 °C.
2.3. Electron microscopy
A suspension of purified polyhedra was placed on a round 
coverslip and allowed to air dry. The coverslip was glued 
onto a 1.27-cm aluminum stub and sputter-coated with 
gold for 3 min and examined in a JSM 6400 scanning 
electron microscope. 

For transmission electron microscopy, the pellets of 
purified OBs were fixed in a modified Karnovsky fixative 
(2% glutaraldehyde, 2% paraformaldehyde in a 0.05 M pH 
7.2 cacodylate buffer + 0.001 M CaCl2) for 2 h, postfixed in 
1% OsO4 in the same buffer for 1 h, and embedded in resin.  
The resulting blocks were sectioned in a Leica Ultracut 
UCT ultramicrotome, stained with 3% aqueous uranyl 
acetate Reynold’s lead citrate and examined on a Zeis EM 
900 transmission electron microscope at 80 kV. The sizes 
of the viral OBs and the sizes of the nucleocapsids were 
measured directly from the amplified photographs using a 
precision ruler and dividing the value by the magnification 
of the photograph. 
2.4. DNA extraction and restriction enzyme analysis
Purified polyhedra were dissolved in 0.1 M sodium 
carbonate (final pH ~11) by incubating for 30 min at 
37 °C. Large debris was removed by centrifuging for 5 
min at 1000 rpm and the supernatant was centrifuged 
for 30 min at 14,000 rpm in order to pellet the occluded 
virions. The DNA was isolated according to Reed et al. 
(2003) and dialyzed for 24 h at 4 °C against a 0.1X TE 
buffer (10 mM Tris/HCl, 1 mM EDTA, pH 7.5). The 
quantity and quality of the isolated DNA were determined 
spectrophotometrically and by electrophoresis in 0.7% 
agarose gel. For the restriction enzyme analyses, 5 µg of 
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DNA was digested with KpnI, PstI, and BamHI restriction 
enzymes (Promega) at 37 °C for 3.5 h. The digested 
fragments were separated in 0.7% agarose gel in a TAE 
buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) at 15 
mA for 18 h. HindIII-digested λ DNA was used as the 
molecular size marker. The gel was stained with ethidium 
bromide and photographed on a UV transilluminator.  
2.5. PCR amplification and sequence analysis of 
conserved polh and lef-8 genes
PCR was used to amplify polh and lef-8 genes from viral 
DNA. The degenerate primer set (F: 5’- GTA AAA CGA 
CGG CCA GTT YIK IGG ICC IGG IAA RAA - 3’ and 
R: 5’- AAC AGC TAT GAC CAT GTC IGG IGC RAA 
YTC YTT - 3’) for the polh gene previously described 
by de Moraes and Maruniak (1997) was used for the 
amplification.  The primer pair (F: 5’- GTA AAA CGA 
CGG CCA GTT YTT YCA YGG NGA RAT GAC -3’ and 
R: 5’- AAC AGC TAT GAC CAT GGN AYR TAN GGR 
TCY TCN GC -3’) described by Herniou et al. (2004) was 
used for amplification of the lef-8 gene.

Each 25 μL of PCR reaction mixture contained 30–50 
ng of viral DNA; 400 nM of each primer; 0.2 mM each 
of dATP, dCTP, dGTP, and dTTP; 0.5 U of Taq DNA 
polymerase (Promega); 1.5 mM MgCl2; and 2.5 µL of 10X 
reaction buffer (Promega). Reactions were carried out in a 
Bio-Rad thermocycler using the following parameters. One 
5-min cycle at 95 °C (initial denaturation step) was firstly 
followed by 10 cycles of 60 s at 94 °C, 45 s at 45 °C, and 60 
s at 72 °C, and then followed by 25 cycles of 45 s at 94 °C, 
30 s at 50 °C, and 60 s 72 °C. Finally, the amplification was 
completed with a final extension step of 5 min at 72 °C. 
The PCR products were cloned into pGEM-T easy vector 
(Promega). The nucleotide sequences of the PCR products 
were determined by automated sequencing (Macrogen).
2.6. Phylogenetic analysis
To show the position of the NPV isolate of this study 
relative to the other NPVs in GenBank, we performed a 
phylogenetic analysis using the partial polh and lef-8 DNA 
sequences. Nucleotide sequences were aligned in Clustal 
X. Maximum parsimony analysis was performed using 
Mega 5. The robustness of the phylogenetic tree was tested 
by bootstrap analysis of 500 replications. The polh and 
lef-8 sequences used for this analysis were retrieved from 
GenBank (Table).  
2.7. Pathogenicity experiment
The biological activity of the new NPV isolate against 
third instar larvae of 6 different hosts (M. franconicum, 
M. neustria, M. castrensis, P. interpunctella, T. pityocampa, 
and G. mellonella) was determined. An OB suspension 
was prepared as 1 × 106 ODs/mL. Experiments were 
performed with 15 larvae per pest and were replicated 3 
times for each pest. Larvae that had been starved for 6 h 
prior to the virus application were fed with natural foliage 

contaminated with an OB suspension and incubated 
at 24 °C with 16 h light/8 h dark (Lucarotti and Morin, 
1997). After 24 h, all larvae were fed on fresh foliage and 
held in the same conditions for 10 days. As a control, 
the same number of larvae were prepared separately for 
each pest and were fed on foliage treated with water. The 
experiments were repeated 3 times. Mortality was assessed 
daily for 10 days; dead larvae were removed and checked 
for NPV infection under a phase-contrast microscope. All 
mortalities were evaluated using Abbott’s formula (Abbott, 
1925). To determine differences among densities, the data 
were subjected to analysis of variance and subsequently 
to Duncan’s multiple comparison tests. All analyses were 
performed using SPSS 21.0. 

3. Results
3.1. Microscopy
During light microscopic studies of the dead larvae 
with typical baculovirus infection symptoms, it was 
determined that some larvae had been infected with a 
nucleopolyhedrovirus. In particular, it was shown that 
there were a lot of polyhedra in some cells around the 
tracheal tissue (Figure 1). The electron micrograph studies 
also revealed typical baculovirus OBs. The scanning 
electron micrograph showed that the OBs were irregular 
in shape and ranged in size from 1.0 to 2.1 µm in diameter 
with a mean diameter of 1.46 µm (Figure 2A). The 
transmission electron micrograph revealed that OBs were 
occupied by several virions with multiple nucleocapsids 
packaged within a single viral envelope (Figure 2B). The 
length of a rod-shaped nucleocapsid was approximately 
194.5 nm with a width of approximately 40 nm.  
3.2. Restriction endonuclease analysis of virus DNA 
Restriction enzyme analysis of the new NPV genome 
purified from viral inclusion bodies yielded 9 KpnI, 8 
PstI, and 7 BamHI visible fragments on agarose gel. All 
restriction endonuclease reactions resulted in different 
fragment profiles from the literature. The sizes of all 
restriction endonuclease fragments were observed clearly 
on 0.7% agarose gels (Figure 3).
3.3. Phylogenetic analysis of the polh and lef-8 genes
The purpose of the phylogenetic analysis was to show the 
taxonomic position of the new NPV relative to the other 
NPVs according to partial sequences of the polh and lef-
8 genes. Sequences obtained for polh were nearly 500 
nucleotides and those for lef-8 were nearly 700 nucleotides. 
These sequences were compared with the other polh and 
lef-8 sequences in the literature using the BLAST program. 
The phylogenetic analysis of the new NPV indicated its 
closeness to the ManeNPV from group II (Figure 4).   
3.4. Pathogenicity and host range of virus
The infectivity of the new NPV on 6 different insect pests 
was determined using bioassays. For each pest, 15 larvae 
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were infected and the test was performed 3 times (totally 
135 larvae in 3 replicates). The mortality levels varied for 
all pests within 10 days. While the 0.6 × 105 OBs/larva dose 
had 100% insecticidal activity on M. franconicum and M. 
neustria, the same dose caused 65%, 60%, 35%, and 25% 
mortality for M. castrensis, P. interpunctella, T. pityocampa, 
and G. mellonella larvae, respectively (F = 1390.122; df = 
5.17; P < 0.05) (Figure 5). No mortality was observed in 
any of the control groups in host-range testing.  

4. Discussion
To date, genetically engineered baculoviruses have 
introduced a promising research line to overcome the 

slow action of baculoviruses as biocontrol agents. On the 
other hand, searching for new natural baculovirus isolates 
with better insecticidal characteristics is still a developing 
subject of work (so that they can be safer and there can 
be no risk from releasing a genetically engineered product 
into nature).

A nucleopolyhedrovirus was isolated from diseased 
Malacosoma franconicum larvae collected from fields in 
Turkey. Because baculoviruses are named according to the 
insect host species from which they were first isolated, the 
new NPV isolate was first thought to be a M. franconicum 
NPV Turkish isolate. However, phylogenetic analysis of 
its polh and lef-8 genes conserved among lepidopteran 

Table. Sequences of baculoviruses used for phylogenetic analysis.

Virus Abbreviation
GenBank accession no.

polh lef-8

Autographa californica MNPV AcMNPV L22858 L22858
Hyphantria cunea NPV HycuNPV AF300872 AY706560
Bombyx mori NPV BmNPV U75359 L33180
Anagrapha falcifera MNPV AnfaNPV U64896 JN674780
Antheraea pernyi MNPV AnpeNPV AB062454 DQ486030
Anticarsia gemmatalis MNPV AgMNPV Y17753 NC_008520
Epiphyas postvittana MNPV EppoNPV AF061578 Ay043265
Choristoneura fumiferana MNPV CfMNPV U40833 AF081810
Leucoma salicis MNPV LesaNPV AY729808
Orgyia pseudotsugata MNPV OpMNPV M14885 NC001875
Orgyia pseudotsugata SNPV OpSNPV M32433
Spodoptera littoralis MNPV SpliNPV D01017 Y10669
Heliocoverpa armigera SNPV HaSNPV AF271059
Spodoptera exigua MNPV SeMNPV AF169823 AF169823
Xestia c-nigrum GV XcGV AF169823 AF162221
Malacosoma sp. NPV MaspNPV AY519240 AY519241
Mamestra brassicae NPV MabrNPV JQ798165
Malacosoma neustria NPV isolate 1 ManeNPV-1 AJ277555 AY706569
Malacosoma neustria NPV isolate 2 ManeNPV-2 AY127899 AY519244
Malacosoma neustria NPV isolate 3 ManeNPV-3 AY519243
Malacosoma neustria NPV isolate 4 ManeNPV-4 AY706708
Malacosoma neustria NPV isolate 5 ManeNPV-5 X55658
Malacosoma americanum NPV isolate 1 MaamNPV-1 AY589504 AY706565
Malacosoma americanum NPV isolate 2 MaamNPV-2 AY706704
Malacosoma californicum NPV MacaNPV AY519237 AY519238
Malacosoma disstria NPV MadiNPV U61732
Malacosoma neustria NPV Turkish isolate 2 ManeNPV-T2 Demir et al., 2013
Malacosoma neustria NPV Turkish isolate 3 ManeNPV-T3 This study This study
Mamestra configurata NPV isolate 1 MacoNPV-1 U59461
Mamestra configurata NPV isolate 2 MacoNPV-2 AY126275
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baculoviruses showed that it is closely related to M. neustria 
NPV-T2 characterized by Demir et al. (2013) from Turkey, 
and that it was a ManeNPV infection in a field population 
of M. franconicum. Since it is the third isolate of M. neustria 
in Turkey, it was named ManeNPV-T3.

Figure 1 shows a great number of polyhedral inclusion 
bodies (PIBs) as a bright crystal mass in an infected cell 
nucleus around the tracheal tissue of larvae that had died 
due to viral infection. The OBs of the NPVs are most easily 
seen under a light microscope due to their larger size 
and their light refractory polyhedral structure. Scanning 

electron microscope results showed that ManeNPV-T3 
has PIB sizes between 1.0 and 2.1 µm in diameter 
(Figure 2A). While these dimensions are greater than 
the PIB sizes of ManeNPV-T2 (Demir et al., 2013), the 
dimensions of OBs were within the usual size range of 
polyhedra. In a previous study, Ackermann and Smirnoff 
(1983) investigated the morphological characteristics 
of 23 baculoviruses that also include M. americanum, 
and reported that the mean dimensions of MaamNPV 
polyhedra varied between 1.1 and 1.7 µm, with an average 
of 1.44 µm. All of these findings demonstrated that the 
size of the polyhedra in the new isolate is compatible 
with baculoviruses. Transmission electron microscopic 
observations confirmed that ManeNPV-T3 was a multiple-
nucleocapsid nucleopolyhedrovirus, as common as earlier 
investigated viruses isolated from several Malacosoma 
species such as M. neustria, M. disstria, and M. apicola 
(Keddie and Erlandson 1995; Demir et al., 2013). Figure 
2B shows that nucleocapsids, multiple virions, virogenic 
stroma, and developing polyhedra were visible in the 
hypertrophied nuclei of an infected cell. In a cross-section 
of some polyhedra, it was evident that multiple virions 
contain more than one nucleocapsid per virion, and the 
virions contained enveloped, rod-shaped nucleocapsids. 
Nucleocapsid sizes were identified to be 194.5 nm in 
length and 40 nm in width. These sizes are smaller than 
those of ManeNPV, which have nucleocapsid lengths and 
widths of 250 and 50 nm, respectively. The results obtained 
in this study and described by Demir et al. (2013) seemed 
to be closely correlated.

PIB masses 

Tracheal tissue  

Figure 1. The light micrograph of a nucleopolyhedrovirus from 
M. franconicum. The PIBs are seen as a bright crystal mass in the 
infected cell nucleus around the tracheal tissue (15 × 40). 
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Figure 2. Electron micrographs of purified polyhedral occlusion bodies. A: Scanning 
electron micrograph showing purified polyhedra. B: Transmission electron micrograph of 
a section of a purified polyhedron inclusion body, with details of a polyhedron showing 
multiple nucleocapsids surrounded by a single membrane. The polyhedron envelope (PE), 
the polyhedrin matrix (P), the virion envelope (E), and the rod-like nucleocapsid (NC) are 
indicated.
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Restriction endonuclease (RE) analysis is an important 
technique for comparing different geographical isolates 
of the same virus (Murillo et al., 2001). In the present 
study, ManeNPV-T3 DNA was digested with KpnI, PstI, 
and BamHI enzymes. In a previous study, the restriction 
endonuclease analysis of a ManeNPV-T2 isolate was also 
performed with BamHI, KpnI, PstI, and EcoRI enzymes. 
PstI restriction analysis of both viral DNA shared the same 
bands and profiles. However, the KpnI and BamHI profiles 
of ManeNPV-T3 had more bands than the ManeNPV-T2 
isolate with the same enzymes (Demir et al., 2013). 
Evaluation of these restriction profile differences showed 
that ManeNPV-T3 is different from the other ManeNPV 
isolates and is a new Turkish isolate of ManeNPV.   

Sequence analysis of ManeNPV-T3 polh and lef-8 
genes was performed. Alignment of the polh sequence 
in the nucleotide BLAST program from NCBI showed 

that the isolate of this study is very similar to M. neustria 
NPV-T2. They have 95% similarity according to their 
partial polh gene sequences. Phylogenetic analysis was 
performed using partial polh and lef-8 gene sequences. The 
resulting trees linked ManeNPV-T3 together with other 
M. neustria NPVs from GenBank according to neighbor 
joining analysis.  In the polh tree, ManeNPV-T3 clustered 
first with ManeNPV-2.  These 2 NPVs later clustered with 
ManeNPV-T2.  In the lef-8 tree, ManeNPV-T3 again 
localized together with ManeNPV-T2, which supports the 
polh phylogeny.  In these trees, while 2 M. americanum 
NPVs were localized together, M. californicum NPV and 
Malacosoma spp. NPVs were clustered together. However, 
M. disstria NPV was clustered in a position quite far from 
the other Malacosoma NPVs. Moreover, the tree also 
reveals that the Malacosoma NPVs are closer to the Group 
II NPVs than the Group I NPVs.      
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The biological activity of ManeNPV-T3 was tested on 
M. franconicum, M. neustria, M. castrensis, P. interpunctella, 
T. pityocampa, and G. mellonella larvae. For all insects, 15 
larvae (replicated 3 times) were infected with 1 × 106 OBs/
mL doses. The isolate had different insecticidal activity 
and pathogenesis on different lepidopteran hosts. The 
mortality rate varied from 25% to 100% among the insects 
used in bioassays. Yearian and Young (1976) applied M. 
americanum NPV to fourth instar larvae and found 61.4% 
mortality at 106 PIBs/mL viral concentrations within 14 
days. By contrast, Progar et al. (2010) found fourth instar 
larvae of M. americanum to be highly resistant to the virus 
at similar concentrations. In our study, the 106 OBs/mL dose 
of ManeNPV-T3 was enough to provide 100% mortality in 
M. franconicum and M. neustria within 10 days. Although 
the new virus was isolated from M. franconicum and is a 
M. neustria NPV, it also has significant insecticidal activity 
on both M. franconicum and M. neustria larvae. The 
insecticidal activity of ManeNPV-T2 on M. neustria was 
determined to be 100% with 106 PIBs/mL concentration 
within 10 days, despite being isolated from M. neustria 
larvae (Demir et al., 2013). This shows that the new 
isolate is as effective as ManeNPV-T2 on M. neustria. The 
biological activity of our study is much greater than that 

of the study conducted by Jankevica and Zarins (1999), 
and indicates the virulence of a M. neustria NPV Latvian 
isolate within 16 days. A comparison of results showed M. 
franconicum and M. neustria larvae to be highly susceptible 
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Figure 4. Neighbor joining trees based on partial polyhedrin (A) and late expression factor-8 (B) sequences. The numbers 
indicate the bootstrap scores.
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Figure 5. The mortality percentages of 0.6 × 105 OBs/larva on 
each third instar pest larva within 10 days of infection. Values 
were corrected according to Abbott’s formula (Abbott, 1925).  
Ma: Malacosoma franconicum, Mn: Malacosoma neustria, 
Mc: Malacosoma castrensis, Pi: Plodia interpunctella, Tp: 
Thaumetopoea pityocampa, Gm: Galleria mellonella, and C: 
control.
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to ManeNPV-T3. These data are the strongest evidence to 
support the idea that Malacosoma spp. can be difficult to 
control because of their congregational behavior inside 
a tent that protects them against their predators and 
insecticides.

Although the NPV sample was obtained from 
Malacosoma franconicum, the results from BLAST and the 
phylogenetic analysis found it to be closer to Malacosoma 
neustria NPVs. Because of that similarity, we thought 
that it is ManeNPV and the M. franconicum larvae take 
the virus in naturally through contaminated foods during 
feeding. While the virus belonged to M. neustria, it affected 
M. franconicum larvae, and produced progeny virus in that 
host with a properly productive baculovirus infection cycle. 
In addition, findings from the virulence study indicate that 
ManeNPV-T3 appears to be a promising biocontrol agent 
for use against Malacosoma spp. including M. franconicum 

and M. neustria, and further studies should include its 
field efficacy and the investigation of the predisposition of 
that isolate for mass production.
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