

Turkish Journal of Agriculture and Forestry

http://journals.tubitak.gov.tr/agriculture/

Research Article

Turk J Agric For (2014) 38: 700-715 © TÜBİTAK doi:10.3906/tar-1312-17

Transcriptomic analysis of tomato lines reveals putative stress-specific biomarkers

Monther SADDER^{1,2,*}, Abdullah ALSADON¹, Mahmoud WAHB-ALLAH^{2,3}

¹Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia ²Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman, Jordan ³Vegetable Crops Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt

Received: 04.12.2013 • Accepted: 31.03.2014 • Published Online: 15.08.2014 • Printer	12.09.2014
---	------------

Abstract: Different abiotic stresses recruit dedicated signaling and regulatory genes in plants. Genome-wide stress-specific biomarkers were investigated in tomatoes. Three major abiotic stresses were compared: drought, heat, and salinity. For each stress type, 2 different tomato lines were included: susceptible and tolerant. Gene expression was examined by hybridizing to an available tomato microarray. Several stress responsive genes were upregulated in tolerant as well as in susceptible lines for each stress. Comparative analysis of gene expression in response to stress (drought, heat, or salinity) resolved a number of common biomarkers, while other groups of putative biomarkers were associated with each abiotic stress. MYB transcription factors, SAUR family proteins, and NAC domain proteins were among the highly upregulated genes under drought, while both proteinase inhibitors and heat shock proteins were prominent in the heat-tolerant line. For salinity stress, the expression of phosphate starvation-induced proteins was observed. Putative abiotic stress biomarkers can be utilized in breeding programs to improve the selection process and to aid in gene stacking.

Key words: Biomarkers, drought, heat, microarray, salinity, tomato

1. Introduction

Drought, heat, and salinity are major abiotic stress factors affecting plant growth and productivity. A profound understanding of physiology, genetics, and molecular biology is important for breeding tolerant plants (Foolad, 2004). In the last decade, several DNA markers have been developed for tomato and related crops (Areshchenkova and Ganal, 1999; Poysa et al., 2003). Biomarkers, which are mainly applied to human studies, can potentially be deployed for crop plants. Current applications of biomarkers include cancer research and diagnostics, personalized medicine, and drug response (Rolan et al., 2003). Genome-wide biomarkers can facilitate tomato research, particularly for genetic analysis. In addition, they can be used in breeding to improve important traits such as yield, fruit quality, and resistance to biotic stresses and tolerance to abiotic stresses.

In tomatoes, both stress-specific responsive genes (Sun et al., 2010) and general responsive genes (Orellana et al., 2010) were identified. However, there is cross-talk between plant signaling pathways under different abiotic stresses (Knight and Knight, 2001; Albacete et al., 2010). Calciumsignaling genes have been reported to be upregulated in response to both cold and salinity stresses (Mahajan and Expression profiling is an important tool to study plant responses to abiotic stresses, such as transcriptional characterization of tomato roots under iron deficiency stress (Zamboni et al., 2012). In some cases, the transcriptional changes can lead to successful adaptation and tolerance. However, if plants fail to adapt to the stressful environment, they are considered sensitive to that condition. Therefore, expression profiling can define both tolerant and sensitive plant responses (Rai et al., 2010). These profiles can lead to specific regulators to elevate stress tolerance and can be used as tools to study regulatory genes (Hazen et al., 2003).

It is possible to detect differences in steady-state transcript accumulation derived from diverse conditions by comparing cDNAs derived from multiple types, or

Tuteja, 2005). The exposure of drought-stressed plants to heat was shown to induce unique metabolic responses (Krasensky and Jonak, 2012). This cross-talk between various stresses occurs at an upper regulatory level, such as transcription factors. Such factors activate a wider network of genes and could have deleterious effects on total plant performance (Wang et al., 2003). Therefore, it is vital to study the unique molecular mechanisms underlying signaling components for each abiotic stress.

^{*} Correspondence: msadder@ksu.edu.sa

from a single type under different conditions. Such differentially expressed products can be identified and sequenced (Liu and Baird, 2003). However, understanding the components and targets of abiotic stress networks needs a holistic approach (Zhu, 2002; Chinnusamy et al., 2005; Munns and Tester, 2008; Amtmann, 2009). The use of DNA microarrays can provide insights into tissue-, developmental-, and environmental stimuli-specific genes. Microarray profiling was found to be useful for analyzing gene expression patterns under stress conditions (Cushman and Bohnert, 2000; Kawasaki et al., 2001; Ma et al., 2006). The objective of this study was to analyze genome-wide biomarkers related to abiotic stresses (drought, heat, and salinity) in tomatoes utilizing 2 lines (susceptible and tolerant) per stress.

2. Materials and methods

2.1. Plant material and stress treatments

Three abiotic stresses were investigated (drought, heat, and salinity). For each stress, 2 extreme tomato lines were included. Drought stress was applied to drought-tolerant line EC520061 and drought-susceptible line CO-3 (Rai et al., 2010). Heat stress was applied to heat-tolerant line PS-1 and heat-susceptible line H-24 (Rai et al., 2010), while salinity stress was applied to salinity-tolerant line L56 and salinity-susceptible line L46 (Alsadon et al., 2013). Plants were grown under optimal conditions for tomato plants in a greenhouse. Drought stress was applied by withholding water for 7 days, while heat stress was applied by subjecting the plants to 40 °C for 60 min in a growth chamber before sample collection (Rai et al., 2010). Salinity stress (9.6 dS m^{-1}) was applied 5 days after transplanting through a drip irrigation system (Alsadon et al., 2013).

2.2. Labeling and hybridization

Leaf samples were collected at the flowering stage (75 days). Each line under each stress was represented by 3 biological replicates, each representing a different sample. Total RNA was isolated using a dedicated kit (QIAGEN, USA) and antisense RNA was synthesized and labeled with the GeneChip 3' IVT Express Kit (Affymetrix, USA). Labeled samples were hybridized to Affymetrix GeneChip tomato genome arrays, processed, and scanned; CEL files were generated by the Affymetrix Expression Console.

2.3. Data analysis

Data normalization and statistical analysis were performed with ArrayStar 5 software (DNASTAR, USA). Data were normalized using robust multiarray analysis with quantile normalization and were log-transformed. For statistical comparisons of relative expression between pairs of lines, Student's t-test was employed with the FDR < 0.05 (Benjamini–Hochberg) multiple testing correction algorithm. Heat maps were generated by hierarchical clustering using Euclidean distance metrics and gene expression overlaps were presented as Venn diagrams. Enrichment of gene ontology (GO) annotation was determined by P < 0.05 using the hypergeometric probability distribution. The tomato Affymetrix array was annotated using Blast2Go (www.blast2go.com).

2.4. Real-time PCR

A group of probe sets were tested to verify expression using quantitative PCR (qPCR) with 3 replicates. Corresponding genes were retrieved from the tomato genome (http:// solgenomics.net/) and primers were designed to span an intron when possible (Table 1). First-strand cDNA was generated by reverse transcriptase (Promega, USA) and expression was amplified with SYBR Green mix (QIAGEN). Amplification data were collected with an ABI 7500 thermal cycler (ABI, USA). Actin was used a reference gene and fold-change in gene expression was determined from C_T values using the $2^{-\Delta\Delta CT}$ method (Livak and Schmittgen, 2001).

3. Results

3.1. Tomato under drought stress

When comparing differentially expressed genes under drought stress, prominent genes could be identified in the drought-tolerant line as compared to the susceptible line (Table 2). The upregulated genes in the drought-tolerant line were related to energy, plant hormones, and cation transporters. The number of genes upregulated 2-, 3-, 4-, and 5-fold in the drought-tolerant line compared to the susceptible line were 3010, 1680, 1035, and 734 genes, respectively. On the other hand, 1974, 1172, 784, and 586 genes were upregulated in the drought-susceptible line by 2-, 3-, 4-, and 5-fold, respectively.

When the 3010 upregulated genes (2-fold) were compared between the drought-tolerant line and other tolerant lines (heat and salinity), 147 and 82 genes were found to be shared with the heat-tolerant and salinitytolerant lines, respectively (Figure 1). The unique 2777 genes associated with drought tolerance were GOenriched (Table 3). We found genes related to regulation of biosynthetic processes as well as transferase activities and cation binding, such as magnesium and calcium. Some putative drought-associated genes covered up to 85.7% of all array genes with the similar GO term.

3.2. Tomato under heat stress

Comparing differentially expressed genes under heat stress revealed unique genes in the heat-tolerant line compared to the susceptible line (Table 2). Upregulated genes in the heat-tolerant line were related to protease inhibitors and transcription factors. Numbers of genes upregulated 2-, 3-, 4-, and 5-fold in the heat-tolerant line compared to the susceptible line were 389, 88, 41, and 30, respectively. In

Probe set ID	Gene	Primer	Sequence (5' to 3')	Tm	Product (bp)
Les.3673.1.S1	Beta-1,3-glucanase	02B_F	AATAGAAAGGATGGAAAACCAAGTGAGC	59.3	171
		02B_R	TGATATCAAGGAACACAAAAGAGGCC	58.6	
Les.3779.1.S1	Class ii chitinase	06B_F	GGGAAGTGGATTTTATGGCAGAGG	58.8	162
		06 B_R	GCGGTCATCCAGAACCATATTGC	59.2	
Les.3583.1.A1	Pathogenesis-related protein	08 B_F	AAGCAAATGAACTTTGTTGAAGGTGG	58.7	178
		08 B_R	CACAACCTCCATTATCATTAGCTTCAAA	58	
Les.3460.1.S1	Cell wall invertase	09 B_F	CAAGGTTCTCATGTGTTCCGATGC	59.4	162
		09 B_R	CCAGCACCAAAACTTTCCACTATCG	59.8	
Les.3652.1.S1	Endo-1,3-beta-D-glucosidase	12 B_F	CGACTCTGCTGGTGATACTTATATTGGC	59.5	179
		12S_R	GGCTTGGAGAGTTGGTTGATGAGG	59.8	
Les.3940.2.A1	Na	01S_F	AAGGAATTTGACTCTAACTTGATGTGCG	59.2	196
		01S_R	CCAAGATGTTATCAAAAAGACGAACTCG	59.5	
Les.2173.1.A1	Proteinase inhibitor i	07S_F	CATGGCACGAAAAGAAAGTGATGG	59.4	162
		07S_R	TCATTTATGGATGGATTTTCCTTCCC	59.3	
Les.2964.3.A1	Na	138_F	CCGCCGAACTTCGCTTTACC	58.4	155
		13S_R	CCTTGTTTTCTGCATGGTACTCGG	58.7	
LesAffx.62070.1.S1	Pectate lyase	16S_F	TCACTGGGAAATGTATGCCATTGG	59.5	162
		16S_R	TCACCTTCTGATCTCCAGTTCCAGC	59.6	
Les.3620.1.S1	AG1 transcription factor	268_F	ATCCAAAAAGAATGAGCTGTTGTTTGC	59.8	170
		26S_R	CATGATAGTTTGATGAACTCCCTGGC	58.9	
	Actin7	S.l.actin7_I	AGGATCCATCCTTGCATCACTTAGC	58.7	166
		S.l.actin7_I	R TAATTGCCCTTCTTTCATAGCCCC	58.6	

Table 1. Real-time PCR primers for a group of tomato probes available in the Affymetrix array.

Table 2. Upper 60 upregulated genes in tolerant lines as compared to susceptible lines.

Drought-tolerant over susceptible		Heat-tolerant over susceptible		Salinity-tolerant over susceptible	
Gene	Fold	Gene	Fold	Gene	Fold
Photosystem II subunit n	144.7	Kunitz-type protease inhibitor	43.3	Protein	75.6
Ribosomal protein s3	130.3	Proteinase inhibitor ii	35.1	Beta-1,3-glucanase	31.2
NADH-oxidoreductase	113.6	Cysteine protease inhibitor	13.7	Class ii chitinase	13.5
ATP synthase cf0 subunit iv	108.9	Carboxypeptidase inhibitor	13.1	Pathogenesis-related protein	12.4
NADH-oxidoreductase	91.7	Osmotin-like protein	7.7	Pathogenesis-related protein	11.6
Hypothetical protein	90.5	Carbonic anhydrase	7.5	Cell wall invertase	9.8
Protein	85.1	Beta-d-glucan glucanohydrolase	7.0	Plant cell wall protein sltfr88	8.8
NADH dehydrogenase subunit 4	84.7	Extensin	6.7	Lignin-forming peroxidase	8.5
Histone h3	80.8	Arginase	6.7	Endo-1,3-beta-d-glucosidase	7.5
Asr2, fruit-ripening protein	79.5	Pathogenesis-related protein	6.2	Protein-binding structural	7.1
Gibberellin-induced protein	72.1	Arginase 2	6.2	Glycine-rich protein	6.9
Ribosomal protein s7	71.6	Osmotin-like protein	5.0	Protein kinase chloroplast	6.5
ATP synthase cf0 subunit i	62.9	Subtilisin-like protease	4.7	Cytochrome p450	6.5
Transglucosylase	60.7	Cathepsin d inhibitor protein	4.5	NAC domain protein	6.5
NADH-oxidoreductase	56.4	Cysteine proteinase	4.2	Lipase class 3 family protein	6.3
EF-hand-containing	55.6	Wound-induced protein win2	4.0	Mads-box protein 9	5.6
Protein	55.5	Protein	4.0	Flavonol synthase flavanone 3	5.1
Histone 2	53.7	Ferric-chelate reductase	3.6	Nonspecific lipid transfer protein	5.1
Protein	47.9	Asparagine synthetase	3.3	Pathogenesis-related protein 10	4.9
Prosystemin	45.9	Wcrkc1 (wcrkc thioredoxin 1)	3.2	F-box and wd40 domain	4.6
Copia-like polyprotein	43.3	Proteinase inhibitor i	3.2	Phospholipase pldb1	4.6
NADH dehydrogenase subunit d	42.8	Adipocyte membrane-associated	3.2	Protein	4.3
40s ribosomal protein	42.3	Type-a response regulator	3.1	Calmodulin-binding	4.2
Protein phosphatase 2c abi2	40.6	Short-chain alcohol	3.1	Pre-rRNA-processing protein	4.1
Ribosomal protein l22	40.2	Alpha-l-arabinofuranosidase	3.0	Calmodulin-binding	4.0
Cytochrome b6 f complex	39.7	Subtilisin-like protease	3.0	Arginase	3.8
ATP-dependent protease	37.5	Xylem serine proteinase 1	2.9	Respiratory burst oxidase	3.8
Protein	36.7	Wound stress protein	2.9	Tas14 peptide (aa 1-130)	3.7
Sinapyl alcohol dehydrogenase	34.7	Brassinosteroid-regulated protein	2.8	At1g68530 t26j14_10	3.7
Protein	34.6	Katanin p60 ATPase-containing	2.8	Class ii chitinase	3.6
Alpha beta fold family protein	34.6	Endo-1,4-beta-glucanase	2.8	Endomembrane-associated	3.5
Rna polymerase beta subunit	33.8	Beta-galactosidase	2.8	Cinnamoyl reductase	3.5
Auxin-responsive protein	32.8	Hyoscyamine 6 beta-hydroxylase	2.8	Cucumber peeling, dicyanin	3.5
Ribosomal protein s12	32.6	Subtilisin-like protease	2.7	P-enolpyruvate carboxykinase	3.4
Gdsl-motif lipase hydrolase	31.5	Thioredoxin h	2.7	Protein	3.4
Caffeic acid o-methyltransferase	31.4	AP2 erf transcription factor	2.7	Calcium-dependent protein kinase	3.3
Protein	30.1	Lipoxygenase	2.6	Protein	3.3
Ubiquitin-conjugating enzyme	30.0	6-Deoxocastasterone oxidase	2.6	Calmodulin-like protein 15	3.2
Protein	28.6	F-box family protein	2.6	Euful fruitfull-like mads-box	3.2
Cytochrome b6 f complex	28.5	Phloem protein	2.6	Tyramine n-feruloyltransferase	3.2
C-4 sterol methyl oxidase	27.6	Alpha-expansin 4	2.6	Nitrate transporter	3.2
Protein	25.9	Mucin-like protein	2.6	Phosphatidic acid	3.2
Auxin-responsive protein	25.0	Acyl:coa ligase	2.5	Longevity assurance	3.2
Prosystemin	25.0	Alpha-expansin 13	2.5	Snak2_soltu ame	3.1
Myo-inositol-1-P- synthase	24.8	Cytochrome p450	2.4	Tcp family transcription factor	3.1
Cytochrome f	24.3	Serine carboxypeptidase cp-mii	2.4	Protein	3.1
40s ribosomal protein s9	24.1	Beta-glucuronidase	2.4	Pr protein	3.0
Endotransglucosylase-hydrolase	24.0	Pyruvate decarboxylase	2.4	Phytophthora-inhibited protease 1	3.0
Arabinogalactan protein	23.5	Class i chitinase	2.4	S locus glycoprotein like protein	3.0
Ethylene-responsive helicase	23.0	Hero resistance protein 1	2.4	Cerl protein	3.0
At5g25460 t18g18_200	22.9	Protein	2.3	Unknown [glycine max]	2.9
Strictosidine synthase	22.6	Elt4-like protein	2.3	Cinnamoyl- reductase-like protein	2.9
Ribosomal protein 12	22.3	21 kDa protein	2.3	Cytochrome p450	2.9
NI-yb13 transcription factor	22.1	ATP binding	2.3	Gamma-aminobutyrate isozyme 1	2.9
Ribosomal protein s3	21.9	Purine permease	2.3	Anthranilate n-benzoyltransferase	2.9
Ubiquitin fusion protein	21.7	Senescence-associated protein	2.3	Cysteine protease tdi-65	2.9
Protein	21.2	Protein	2.3	Kpm1-interacting protein 4	2.8
Ca2+-transporting ATPase	20.8	Protein kinase family protein	2.3	AP2 ert transcription factor	2.8
Protein	20.6	Peroxidase 12	2.5	Lysine-ketogiutarate reductase	2.8
vacuolar ATPase subunit h	20.3	Cathepsin b-cysteine proteinase	2.3	Protein	2.8

Table 3. Enriched GO terms of genes at least 2-fold upregulated in the drought-tolerant line compared to the drought-susceptible line.

GO term	GO ID	P-value	Number of genes	Percentage array
Biological process				
Cellular response to auxin stimulus	71365	5.86E-04	16	72.7%
Regulation of macromolecule biosynthetic process	10556	5.99E-04	63	42.9%
Regulation of biosynthetic process	9889	6.32E-04	63	42.9%
Auxin-mediated signaling pathway	9734	6.35E-04	16	72.7%
Regulation of cellular metabolic process	31323	6.61E-04	65	42.8%
Regulation of cellular biosynthetic process	31326	6.70E-04	63	42.9%
Regulation of RNA biosynthetic process	2001141	6.75E-04	62	43.7%
Response to auxin stimulus	9733	6.92E-04	16	72.7%
Regulation of cellular macromolecule biosynthetic process	2000112	7.11E-04	63	42.9%
Nucleic acid metabolic process	90304	7.36E-04	53	44.9%
Regulation of RNA metabolic process	51252	7.50E-04	62	43.7%
Regulation of nucleobase-containing compound metabolic process	19219	7.54E-04	65	44.8%
Regulation of macromolecule metabolic process	60255	7.62E-04	68	41.7%
Regulation of transcription, DNA-dependent	6355	8.44E-04	62	43.7%
Biotin biosynthetic process	9102	8.69E-04	12	85.7%
Biotin metabolic process	6768	1.02E-03	12	85.7%
Regulation of gene expression	10468	1.10E-03	63	42.0%
Cellular amide metabolic process	43603	1.22E-03	12	85.7%
Regulation of metabolic process	19222	1.27E-03	71	40.6%
Regulation of cellular process	50794	1.31E-03	73	40.3%
Regulation of nitrogen compound metabolic process	51171	1.51E-03	65	44.8%
Amide biosynthetic process	43604	1.53E-03	12	85.7%
Regulation of primary metabolic process	80090	1.61E-03	69	42.9%
Water-soluble vitamin biosynthetic process	42364	2.40E-03	12	75.0%
Regulation of biological process	50789	2.43E-03	79	38.7%
Vitamin biosynthetic process	9110	2.49E-03	12	75.0%
Vitamin metabolic process	6766	2.59E-03	12	75.0%
Cellular nitrogen compound metabolic process	34641	2.68E-03	95	37.3%
Water-soluble vitamin metabolic process	6767	2.70E-03	12	75.0%
Biological regulation	65007	3.12E-03	80	38.3%
RNA metabolic process	16070	3.80E-03	44	43.6%
Nucleobase-containing compound metabolic process	6139	3.96E-03	60	40.3%
Cellular component				
Nucleus	5634	7.96E-05	77	44.0%
Cytoplasmic part	44444	1.06E-03	16	12.2%
Molecular function	207	2.025.04	10	70.20/
Magnesium ion binding	287	2.82E-04	18	/8.3%
Radical SAM enzyme activity	/0283	7.08E-04	12	85.7%
4 Iron, 4 sulfur cluster binding	51539	8.26E-04	12	85.7%
8-Amino-/-oxononanoate synthase activity	8/10	9.91E-04	12	85.7%
Biotin synthase activity	4076	1.24E-03	12	85.7%
Adenosylmethonne-8-amino-7-oxononanoate transaminase activity	4015	1.00E-05	12	85.7%
Sumurtransferase activity	16/83	1.81E-03	12	80.0%
Guale ligade estivity	16/82	2.01E-03	12	80.0%
Cyclo-ligase activity	10882	2.20E-03	12	80.0%
Dethiobiotin synthase activity	4141	2.40E-03	12	63.770 E9 30/
	40903	3.20E-03	15	58.570 68.20/
Coloium ion binding	0403 5500	3.47E-03	15	06.270
Sequence specific DNA binding	3309 43565	3.92E-03	1	2.070
DNA binding	3677	4.58E-03	57	40.4%
Methyltransferase activity	8168	1.20E-02	14	40.4 <i>%</i>
Transferase activity transferring nitrogenous groups	16769	1.20E-02	14	56 7%
Transferase activity, transferring one carbon groups	16741	1.04E-02	17	50.770
Polygalacturonase activity	4650	$2.14F_{-0.2}$	7	87 5%
RNA hinding	3723	2.14L-02 2.57F_02	, 1	3 3%
Metal cluster hinding	51540	2.37E-02	14	58.3%
Iron-sulfur cluster hinding	51536	2.04E-02 2.98F-02	14	58.3%
Hydrolase activity	16787	3.75F_02	41	19.1%
2 Iron, 2 sulfur cluster binding	51537	4.28E-02	12	60.0%

the heat-susceptible line, 549, 178, 81, and 44 genes were upregulated 2-, 3-, 4-, and 5-fold, respectively.

When the 389 upregulated genes (2-fold) were compared between the heat-tolerant line and other tolerant lines, 147 and 30 genes were found to be shared with the drought-tolerant and salinity-tolerant lines, respectively (Figure 1). The distinctive 208 genes associated with heat tolerance were GO-enriched (Table 4). We found genes related to negative regulation of catalytic activity, steroid biosynthetic processes, and the regulation of hormone levels as well as genes related to enzymatic activities like peptidase regulator activity, catalytic activity, and hydrolase activity. Some heat-associated genes demonstrated up to 100% coverage of all array genes with a similar GO term.

3.3. Tomato under salinity stress

Under salinity stress, comparing differentially expressed genes showed that prominent genes that could be identified in the salinity-tolerant line as compared to the susceptible line (Table 2). The upregulated genes in the salinity-tolerant line were related to transcription factors and calmodulins. The numbers of genes upregulated 2-, 3-, 4-, and 5-fold in the salinity-tolerant line compared with the susceptible line were 356, 92, 42, and 27, respectively. On the other hand, 365, 82, 34, and 17 genes were upregulated in the salinity-susceptible line by 2-, 3-, 4-, and 5-fold, respectively.

When the 356 upregulated genes (2-fold) were compared between the salinity-tolerant line and other tolerant lines, 82 and 30 genes were found to be shared with the drought- and heat-tolerant lines, respectively (Figure 1). The unique 240 genes associated with drought tolerance were likewise GO-enriched (Table 5). We found genes related to response to stimulus, response to stress, and defense responses as well as catalytic activity and beta-D-glucosidase activity. Certain salinity-associated genes showed up to 60% coverage of all array genes with a similar GO term.

The qPCR performed for selected tomato probes revealed similar trends in fold increase for probes upregulated in the salinity-tolerant line (Figure 2a) and in the salinity-susceptible line (Figure 2b). However, some probes showed different fold-levels, e.g., probe Les.3940.2.A1 showed 20- and 5-fold increases in array and qPCR, respectively, while probe LesAffyx.62070.1.S1 showed 5- and 15-fold increases in array and qPCR, respectively (Figure 2b).

3.4. Putative stress-specific biomarkers

To identify important and unique abiotic responsive genes, another comparative analysis was performed utilizing the expression data of all stresses in tomatoes. Two heat maps were generated to determine important responsive gene clusters for each stress.

Table 4. Enriched GO terms of genes at least 2-fold upregulated in the heat-tolerant line compared to the heat-susceptible line.

GO Term	GO ID	P-value	Number of genes	Percentage array
Biological process				
Negative regulation of catalytic activity	43086	2.75E-02	3	37.5%
Negative regulation of molecular function	44092	3.00E-02	3	37.5%
Steroid biosynthetic process	6694	3.23E-02	2	100.0%
Steroid metabolic process	8202	3.59E-02	2	100.0%
Regulation of hormone levels	10817	4.03E-02	2	100.0%
Brassinosteroid biosynthetic process	16132	4.61E-02	2	100.0%
Molecular function				
Molecular_function	3674	1.04E-01	35	3.1%
Enzyme regulator activity	30234	1.32E-02	5	17.9%
Peptidase regulator activity	61134	3.45E-03	5	29.4%
Peptidase inhibitor activity	30414	2.07E-03	5	29.4%
Endopeptidase inhibitor activity	4866	2.59E-03	5	29.4%
Endopeptidase regulator activity	61135	5.17E-03	5	29.4%
Enzyme inhibitor activity	4857	6.86E-03	5	20.8%
Catalytic activity	3824	1.83E-01	24	3.3%
Hydrolase activity	16787	3.86E-03	16	7.4%
Hydrolase activity, acting on glycosyl bonds	16798	2.27E-03	9	11.7%
Hydrolase activity, hydrolyzing O-glycosyl compounds	4553	1.95E-03	9	11.7%
Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds	16810	3.58E-02	3	33.3%
Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds	16813	2.60E-03	3	75.0%

Figure 1. Venn diagram of genes upregulated at least 2-fold for tolerant lines compared to susceptible lines, each under its corresponding abiotic stress (drought, heat, and salinity).

Figure 2. Comparison between Affymetrix (Affy) microarray and qPCR data, showing fold increase in upregulated genes in L56 (a) and in L46 (b).

The data showed more upregulated drought stressresponsive genes in the drought-tolerant line (under drought stress) than either the heat-tolerant line (Figure 3a) or the salinity-tolerant line (Figure 3b). On the other hand, another comparative heat map showed upregulated heat stress-responsive genes in both heattolerant and susceptible lines (under heat stress) as compared to the drought-tolerant line (Figure 4a) and the salinity-tolerant line (Figure 4b). A third pair of heat maps showed upregulated salinity stress-responsive genes in both salinity-tolerant and salinity-susceptible lines (under salinity stress) as compared to the droughttolerant line (Figure 5a) and the heat-tolerant line (Figure 5b).

GO Term	GO ID	P-value	Number of genes	Percentage array
Biological process				
Biological_process	8150	1.62E-04	49	4.7%
Response to stimulus	50896	1.24E-03	15	8.9%
Response to biotic stimulus	9607	5.43E-05	7	36.8%
Response to stress	6950	7.42E-05	14	12.5%
Defense response	6952	6.28E-06	10	27.0%
Metabolic process	8152	7.18E-03	36	4.5%
Primary metabolic process	44238	1.38E-02	28	4.8%
Carbohydrate metabolic process	5975	4.46E-02	11	7.6%
Cellular component				
Cellular_component	5575	3.13E-02	26	4.4%
Extracellular region part	44421	1.63E-02	3	60.0%
Extracellular region	5576	1.87E-02	8	10.1%
Molecular function				
Molecular_function	3674	3.19E-02	45	4.0%
Catalytic activity	3824	2.84E-02	34	4.7%
Glucan endo-1,3-beta-D-glucosidase activity	42973	3.80E-02	3	50.0%

Table 5. Enriched GO terms of genes at least 2-fold upregulated in the salinity-tolerant line compared to the salinity-susceptible line.

Figure 3. Heat map of the first 30 upregulated genes based on fold change of the drought-tolerant line over the heat-tolerant line (a) or over the salinity-tolerant line (b).

There were 3010 upregulated genes (2-fold) in the drought-tolerant line compared to the susceptible line. This group overlapped with the other 2 groups generated by comparing the drought-tolerant line to the other 2 tolerant lines (heat and salinity). The Venn diagram revealed 1214 common genes associated with drought

tolerance (Figure 6a). Additionally, 2 other similar comparisons were performed for heat and salinity stresses. The Venn diagrams revealed 95 common genes associated with heat tolerance (Figure 6b) and 82 common genes associated with salinity tolerance (Figure 6c).

Figure 4. Heat map of the first 30 upregulated genes based on fold change of the heat-tolerant line over the drought-tolerant line (a) or over the salinity-tolerant line (b).

Figure 5. Heat map of the first 30 upregulated genes based on fold change of the salinity-tolerant line over the drought-tolerant line (a) or over the heat-tolerant line (b).

4. Discussion

Distinguished upregulated genes were revealed in the drought-tolerant line under drought stress compared to the heat-tolerant line under heat stress (Figure 3a). This included important stress-responsive genes such as MYB transcription factors (Seo et al., 2009; Zhang L et

al., 2012). It also included SAUR family proteins, which are known for rapid induction by transient changes in environmental factors (Kant et al., 2009; Kodaira et al., 2011) and NAC domain proteins (Table 6). NAC domain (NAM, ATAF1, ATAF2, and CUC2) proteins are plantspecific transcription factors, which have crucial roles in

Figure 6. Venn diagrams of genes upregulated at least 2-fold for each tolerant line: (a) drought-tolerant line, (b) heat-tolerant line, (c) salinity-tolerant line. Each is compared to the 3 other lines. DT: Drought-tolerant, DS: drought-susceptible, HT: heat-tolerant, HS: heat-susceptible, ST: salinity-tolerant, SS: salinity-susceptible.

plant development, abiotic stress responses, defense, and leaf senescence (Chen et al., 2011). Moreover, some genes were upregulated under control conditions (no stress) in the drought-tolerant line (data not shown). Even though they were expressed at lower levels than under drought treatment, this expression represents an example of priming in the absence of any stress stimuli. The situation was more prominent when comparing the droughttolerant line under drought stress to the salinity-tolerant line under salinity stress (Figure 3b). Upregulated genes in this comparison included SAUR family proteins and SNF4, which is an important stress signaling molecule in *Arabidopsis* (Halford et al., 2003) (Table 6).

Heat implies the deployment of an unusual set of plant genes to cope with the stress. Upregulated genes in the heat-tolerant line as compared to the drought-tolerant line under drought stress revealed both proteinase inhibitors and heat shock proteins (Table 7). Nonetheless, some genes were also upregulated in other lines (Figure 4a). Probe set LesAffx.286.2.S1 covering the MIP TIP subfamily, which is similar to aquaporin, was overexpressed in all lines under all conditions except in the drought-tolerant line. The MIP genes are known to respond to salinity stress (Zhu et al., 2005). The second set involved comparison of the heattolerant line under heat stress over the salinity-tolerant line under salinity stress (Figure 4b). This comparison is similar to the drought stress set, where comparing the heattolerant line under heat stress to the salinity-tolerant line under salinity stress revealed a prominent gene expression profile. Both proteinase inhibitors and heat shock proteins were among the upregulated genes (Table 7), which is similar to the earlier comparison (heat versus drought).

In the case of salinity stress, heat maps revealed a clustering of special stress-specific biomarkers (Figure 5). Upregulated genes in the salinity-tolerant line under salinity treatment as compared to the drought-tolerant line under drought condition revealed 2 major clusters (Figure

5a). The first was upregulated merely under salinity stress. This included Psi14A and Psi14B, which are phosphate starvation-induced proteins (Table 8). The second group was upregulated moderately in all other lines except the drought-tolerant. This included both the cathepsin D inhibitor protein and the trypsin proteinase inhibitor precursor. Expression of defense-related genes such as cathepsin D inhibitor and other wound-signaling genes (Herbers et al., 1994) were found to increase in response to 5 days of continual exposure of tomato plants to high salinity stress at 200 mM NaCl (Dombrowski, 2003). Abiotic stress can cause upregulation of several proteolytic enzymes in plants, which cleave defective and denatured proteins. In addition, these enzymes are crucial for the processing and activation of newly synthesized proteins (Mosolov and Valueva, 2011). The serine proteinase inhibitor (22 KDa) was found to accumulate after salinity stress in Brassica napus (L.) leaves (Reviron et al., 1992). Furthermore, the special trypsin proteinase inhibitor of a salinity-tolerant hybrid (wheat × Agropyron) was found to enhance salinity tolerance in transgenic Arabidopsis (Shan et al., 2008).

Our microarray transcriptome profiling revealed more salinity responsive genes with high expression in the tolerant tomato line than in the susceptible one, which agrees with the findings of Sun et al. (2010). In plants, salinity-tolerant lines were found to be primed for some highly influential responsive genes, which are constitutively overexpressed even under unstressed conditions (Taji et al., 2004). The salinity-tolerant line showed 3 probe sets similarly upregulated in PI365967 (Sun et al., 2010), namely cell wall peroxidase, TSI-1 protein, and flavonol synthase. The first 2 genes are grouped under defense, while the third is grouped under oxidoreductase. The probe set Les.3673.1.S1 (beta-1,3-glucanase) showed a 31.2-fold increase in the salinity-tolerant line. Several investigations reported beta-1,3-glucanase–related proteins to be **Table 6.** The most upregulated probes in the drought-tolerant line over the salinity-tolerant line and over the heat-tolerant line, along with their annotation and fold increase.

Drought-tolerant line over heat tolerant line			Drought-tolerant line over salinity tolerant line			
Probe set ID	Gene title	Fold	Probe set ID	Gene title	Fold	
LesAffx.18735.1.A1	Ribosomal protein s3	85.2	Les.3983.1.S1	Flower-specific gamma-thionin- like protein/acidic protein precursor	380.8	
Les.3593.1.S1	TAS14 peptide (AA 1-130)	79.8	LesAffx.37707.1.A1	PREDICTED: hypothetical protein [Vitis vinifera]	87.7	
LesAffx.44224.1.S1	NADH-plastoquinone oxidoreductase subunit 1	78.1	Les.12.1.S1	SNF4 protein	60.0	
LesAffx.3499.1.S1	ATP-dependent protease subunit	65.7	Les.4317.1.S1	Asparagine synthetase	50.2	
Les.4930.1.A1	Asr2, fruit-ripening protein	62.8	LesAffx.38821.1.S1	Cytochrome p450	42.4	
LesAffx.37707.1.A1	PREDICTED: hypothetical protein [Vitis vinifera]	52.5	Les.2975.2.S1	Aconitate hydratase, metallothionein II-like protein	40.3	
LesAffx.44474.1.A1	NADH dehydrogenase subunit 4	49.5	LesAffx.64980.1.S1	Saur family protein	38.9	
LesAffx.66461.1.S1	Copia-like polyprotein	48.1	Les.5028.1.S1	Alpha beta fold family protein	28.6	
LesAffx.70834.1.S1	ATP synthase cf0 subunit iv	46.6	Les.2934.3.A1	Sinapyl alcohol dehydrogenase	27	
LesAffx.38821.1.S1	Cytochrome p450	44.0	Les.5150.1.S1	Amp-binding protein	25.7	
LesAffx.18338.1.S1	Photosystem ii subunit n	40.6	LesAffx.68556.1.S1	26s proteasome non-ATPase	24.8	
Les.986.1.S1	ATP synthase cf0 subunit i	39.9	LesAffx.34986.1.S1	Caffeic acid o-methyltransferase	23.9	
Les.462.1.S1	Udp-glucose:protein transglucosylase, hypothetical LOC543664	38.8	Les.5781.1.A1	Histone 2	23.1	
LesAffx.66270.1.S1	Cbl-interacting serine threonine-protein	36.5	LesAffx.32198.1.S1	Jasmonate o-	22.6	
LesAffx.44224.1.A1	NADH -plastoquinone oxidoreductase subunit 1	35.8	Les.2084.1.S1	NAC domain protein	21.9	
LesAffx.11323.1.S1	Cytochrome b6 f complex subunit iv	33.5	LesAffx.59375.1.A1	Slt1 protein	21.8	
Les.5017.1.S1	Myb transcription factor	31.7	Les.462.1.S1	Udp-glucose:protein transglucosylase,hypothetical LOC543664	21.7	
LesAffx.64980.1.S1	Saur family protein	31.2	LesAffx.46519.1.S1	Seven-transmembrane-domain protein 1	21.6	
LesAffx.33796.2.S1	Ribosomal protein s7	30.8	Les.3365.3.S1	Protein, dehydroascorbate reductase	21.2	
Les.5028.1.S1	Alpha beta fold family protein	28.5	Les.3365.2.S1	Dehydroascorbate reductase	20.9	
Les.4149.3.S1	EF-hand containing	27.8	LesAffx.57775.2.A1	Protein phosphatase 2c	20.8	
Les.122.1.S1	Class ii chitinase	27.6	Les.1665.1.S1	Lactoylglutathione lyase	19.2	
LesAffx.44202.1.S1	RNA polymerase beta subunit	27.3	LesAffx.66461.1.S1	Copia-like polyprotein	19.1	
LesAffx.44474.1.S1	NADH dehydrogenase subunit d	26.0	Les.4930.1.A1	Asr2, fruit-ripening protein	18.9	
LesAffx.2632.2.S1	Homeobox protein	24.9	LesAffx.67395.1.S1	Gibberellin receptor	16.8	
Les.4356.2.S1	Pyruvate orthophosphate dikinase, cytosolic ascorbate peroxidase 2	24.5	Les.502.1.S1	Citrate synthase	16.6	
Les.2084.1.S1	NAC domain protein	23.1	LesAffx.40008.1.S1	3 Exoribonuclease family domain 1-containing protein	16.6	
Les.5024.1.S1	Fruitfull-like mads-box	21.8	LesAffx.70769.1.S1	Aspartate aminotransferase	16.3	
Les.4461.1.S1	Euful fruitfull-like mads-box, TDR4 transcription factor	21.5	LesAffx.2632.2.S1	Homeobox protein	15.6	
LesAffx.3499.2.S1	Ribosomal protein s12	21.4	LesAffx.49191.1.A1	Uvb-resistance protein	15.6	

Heat-tolerant line over drought tolerant line			Heat-tolerant line over salinity tolerant line			
Probe set ID	Gene title	Fold	Probe set ID	Gene title	Fold	
Les.3035.1.A1	Cathepsin D inhibitor protein	194.2	Les.269.1.S1	Heat shock protein	224.2	
LesAffx.23349.1.S1	Germin-like protein	134.8	Les.5150.1.s1	Amp-binding protein	129.3	
Les.3739.1.S1	Small heat shock protein	94.5	Les.3677.1.s1	Chloroplast small heat shock protein	127.7	
Les.3090.1.S1	Histone h3	90.5	Les.3983.1.s1	Flower-specific gamma-thionin-like protein/acidic protein precursor	111.4	
Les.269.1.S1	Heat shock protein	90.2	Les.3739.1.s1	Small heat shock protein	95.5	
Les.3011.1.S1	Light dependent NADH:protochlorophyllide oxidoreductase 2	84.7	Lesaffx.3918.1.S1	Ascorbate peroxidase	83.4	
Les.3991.1.S1	Beta-xylosidase alpha-l-arabinosidase, LEXYL2 protein	76.9	Lesaffx.5691.1.S1	Pathogenesis-related protein 1	53.0	
Les.3726.1.S1	Ripening regulated protein DDTFR8	76.0	Les.3581.1.S1	Class II small heat shock protein Le-HSP17.6	51.8	
Les.4150.1.S1	Mitochondrial heat shock 22 kd, mitochondrial small heat shock protein	75.3	Les.2173.1.a1	Proteinase inhibitor i	51.2	
Les.4868.1.S1	Ribulose bisphosphate carboxylase activase	73.0	Lesaffx.69215.1.s1	Leucine rich repeat protein	46.1	
Les.3677.1.S1	Chloroplast small heat shock protein	70.5	Les.4317.1.s1	Asparagine synthetase	45.5	
Les.5850.1.S1	Protochlorophyllide reductase precursor	70.3	Les.513.1.s1	Subtilisin-like protease	36.5	
Les.3700.1.S1	Nonsymbiotic hemoglobin class 1	68.3	Les.4820.1.s1	Cysteine protease inhibitor, multicystatin	34.8	
Les.5075.1.S1	Ccaat-binding transcription factor subunit	65.2	Lesaffx.63231.1.s1	Aspartic proteinase nepenthesin-1	34.4	
LesAffx.286.2.S1	Mip tip subfamily, similar to aquaporin	59.2	Les.5442.1.s1	Protein	32.6	
Les.4426.1.A1	Metallothionein-like protein	58.4	Les.2733.1.S1	Wound/stress protein	32.1	
Les.4442.1.S1	Histone h2	55.3	Lesaffx.44139.1.s1	Lipid transfer protein	28.3	
Les.3581.1.S1	Class II small heat shock protein Le-HSP17.6	55.0	Les.3726.1.S1	Ripening regulated protein DDTFR8	27.5	
Les.3740.1.S1	Kunitz-type protease inhibitor precursor, inhibitor of yeast proteinase A; cathepsin D inhibitor protein	53.7	Les.4705.1.S1	Phosphosulfolactate synthase-related protein	26.6	
Les.3578.1.S1	Cytosolic class II small heat shock protein HCT2	50.3	Lesaffx.10596.1.S1	Heat shock protein 18	25.3	
Les.4857.2.S1	Mutt domain	50.2	Les.3578.1.s1	Cytosolic class ii small heat shock protein hct2	24.9	
Les.2476.1.S1	Wound induced protein	49.0	Les.2626.1.s1	Wound stress protein	24.2	
Les.3209.1.S1	Histone h4	47.5	Les.2001.1.s1	Hypothetical protein loc778362	24.1	
Les.22.1.S1	12-oxophytodienoate reductase	46.5	Les.4150.1.s1	Mitochondrial heat shock 22 kd, mitochondrial small heat shock protein	23.4	
Les.4287.1.S1	Pectin methlyesterase inhibitor protein 1	44.2	Les.4307.1.s1	Osmotin-like protein	22.3	
Les.3687.1.S1	N-hydroxycinnamoyl-coa:tyramine N-hydroxycinnamoyl transferase THT7-1	43.2	Lesaffx.69957.1.S1	Small heat-shock	21.9	
Les.3234.1.A1	Ferrodoxin precursor	42.0	Les.228.1.s1	Hypothetical loc543672	21.7	
Les.513.1.S1	Subtilisin-like protease	41.7	Les.5850.1.s1	Protochlorophyllide reductase precursor	21.7	
Les.1900.1.S1	Sn-2 [Capsicum annuum]	39.4	Lesaffx.1276.2.S1	Pectate lyase	20.1	
LesAffx.5691.1.S1	Pathogenesis-related protein 1	38.5	Les.4457.1.s1	Epidermal germacrene c synthase, sesquiterpene synthase 1	19.4	

Table 7. The most upregulated probes in the heat-tolerant line over the drought-tolerant line and over the salinity-tolerant line, along with their annotation and fold increase.

Salinity-tolerant line over drought tolerant line			Salinity-tolerant line over heat tolerant line		
Probe set ID	Gene title	Fold	Probe set ID	Gene title	Fold
Les.3408.1.S1	PR protein	520.0	Les.4024.1.S1	Psi14a protein	429.9
Les.3035.1.A1	Cathepsin D inhibitor protein	272.2	Les.3408.1.S1	PR protein	259.0
Les.4487.1.S1	Retrotransposon protein	257.5	Les.4487.1.s1	Retrotransposon protein	244.3
LesAffx.71662.1.S1	Senescence-associated protein	158.1	Les.2672.1.s1	Psi14b protein	204.7
Les.2672.1.S1	Psi14B protein	126.9	Les.2672.1.S1	Phosphatase, psi14a protein; psi14b protein	185.3
LesAffx.70764.1.S1	Ribulosebisphosphate carboxylase oxygenase large subunit	106.8	Lesaffx.3499.1.s1	ATP-dependent protease subunit	158.6
Les.3756.1.S1	Trypsin proteinase inhibitor precursor	104.2	Les.4693.1.s1	Pathogenesis-related protein p4	114.8
LesAffx.29730.2.S1	ATPase f1 alpha subunit	95.1	Lesaffx.33796.2.S1	Ribosomal protein s7	108.4
Les.4426.1.A1	Metallothionein-like protein	92.2	Lesaffx.3499.2.A1	Ribosomal protein s12	101.9
Les.22.1.S1	12-Oxophytodienoate reductase	90.2	Lesaffx.71662.1.s1	Senescence-associated protein	92.6
Les.4024.1.S1	Psi14a protein	82.4	Les.3673.1.s1	Beta-1,3-glucanase	89.4
Les.3635.1.S1	Xylem serine proteinase 1, subtilisin-like protease	81.8	Lesaffx.44474.1.a1	NADH dehydrogenase subunit 4	88.2
LesAffx.23349.1.S1	Germin-like protein	76.5	Lesaffx.70764.1.s1	Ribulosebisphosphate carboxylase oxygenase large subunit	80.7
Les.4693.1.S1	Pathogenesis-related protein P4	74.0	Lesaffx.59441.1.S1	Ids4-like protein	78.8
Les.2672.1.S1	Phosphatase, psi14a protein; psi14b protein	68.6	Lesaffx.51226.1.a1	Cytochrome f	78.3
Les.2672.2.S1	Psi14b protein	60.6	Les.2672.2.s1	Psi14b protein	77.5
Les.4868.1.S1	Ribulose bisphosphate carboxylase activase	58.5	Lesaffx.44224.1.a1	NADH -plastoquinone oxidoreductase subunit 1	76.7
Les.5567.1.S1	Protein	52.3	Les.2474.1.s1	Cell elongation protein	76.1
Les.3011.1.S1	Light dependent NADH:protochlorophyllide oxidoreductase 2	52.0	Lesaffx.18735.1.S1	Ribosomal protein s3	68.1
Les.3673.1.S1	Beta-1,3-glucanase	51.4	Lesaffx.70834.1.s1	ATP synthase cf0 subunit iv	67.4
LesAffx.59441.1.S1	Ids4-like protein	49.4	Les.3635.1.s1	Xylem serine proteinase 1, subtilisin- like protease	65.1
Les.3687.1.S1	N-hydroxycinnamoyl-coa:tyramine N-hydroxycinnamoyl transferase THT7-1	49.3	Lesaffx.8748.1.A1	TPSI1 protein	63.9
LesAffx.71664.1.S1	ORF137 [Pinus koraiensis]	41.8	Les.3683.1.S1	Osmotin-like protein, PR-5x	61.2
Les.4791.1.S1	Ptac16 (plastid transcriptionally active 16) binding catalytic	41.1	Les.3981.1.s1	Glucosyltransferase-like protein	61.2
LesAffx.837.1.S1	WRKY transcription	40.5	Lesaffx.71664.1.s1	Orf137 [Pinus koraiensis]	57.9
Les.3234.1.A1	Ferrodoxin precursor	40.2	Les.4298.1.s1	Photosystem i assembly protein ycf3	57.1
Les.5914.1.S1	IDS4-like protein	37.5	Les.218.3.S1	Pectin methylesterase	52.6
Les.4392.1.A1	M030rath ame: full=uncharacterized mitochondrial protein g00030 ame: full=orf107a	36.7	Les.4399.2.s1	Ribosomal protein l2	47.7
Les.218.3.S1	Pectin methylesterase	33.8	Lesaffx.29730.2.s1	Atpase f1 alpha subunit	47.3
LesAffx.64823.1.S1	Zinc finger (c3hc4-type ring finger) family protein	31.8	Les.2219.1.a1	Conserved hypothetical protein [<i>Ricinus communis</i>]	47.0

Table 8. The most upregulated probes in the salinity-tolerant line over the drought-tolerant line and over the heat-tolerant line, along with their annotation and fold increase.

important in response to salinity stress in sorghum (Swami et al., 2011), in grapes (Daldoul et al., 2008), and even in bacteria (Tamoi et al., 2007). On the other hand, the NAC domain proteins (Les.2569.1.S1) were upregulated in the salinity-tolerant line compared to susceptible line by 6.5-fold. Our findings are in agreement with those of Ouyang et al. (2007), who also found that expression of NAC domain proteins was linked with salinity stress based on suppression subtractive hybridization and microarray analysis. Another important stress biomarker is the APETALA2/ethylene-responsive element-binding protein (AP2/EREBP) transcription factor, which is an important responsive gene for both biotic and abiotic stresses, and it has cis-acting elements (Park et al., 2001; Zhang et al., 2005). The AP2 transcription factor (LesAffx.70768.1.S1) was likewise upregulated in the salinity-tolerant line compared to the susceptible line by 5.3-fold.

It is worth noting that exposure to salinity stress for the plant material described herein differs from that recorded by Sun et al. (2010). In our case, tissues were sampled from plants that were grown in a greenhouse for several weeks of continuous salinity stress (9.6 dS m⁻¹, ca. 100 mM NaCl). This situation mimics an actual commercial production scheme for tomatoes. In contrast, the plant materials described by Sun et al. (2010) were artificially shocked for a short period (5 h) with 200 mM NaCl. This is a very high salt concentration, which is unusual for growing tomatoes, even for salinity-tolerant cultivars or hybrids. Therefore, screening under greenhouse production conditions would probably lead to a selection of robust lines carrying putative responsive genes and can lead to a reliable breeding program. Upregulated genes in susceptible lines could be byproducts of stress damage; however, others may be involved in tolerance against the stress. Although these lines were considered "susceptible" based on agronomical and biochemical analyses, they still have some putative stress-tolerance biomarkers. Such biomarkers can be utilized in breeding to integrate them into tolerant lines.

References

- Albacete A, Ghanem ME, Dodd IC, Pérez-Alfocea F (2010). Principal component analysis of hormone profiling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato. Plant Signal Behav 5: 45–48.
- Alsadon AA, Sadder MT, Wahb-Allah MA (2013). Responsive gene screening and exploration of genotypes responses to salinity tolerance in tomato. Aust J Crop Sci 7: 1383–1395.
- Amtmann A (2009). Learning from evolution: *Thellungiella* generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2: 3–12.

It is important to understand the agronomical and physiological changes associated with both the susceptibility and tolerance for any plant stress. These phenotypic responses are governed by spectacular biochemical and molecular changes. This study and similar reports (Amtmann, 2009; Rai et al., 2010; Sun et al., 2010) emphasize the importance of holistic approaches to study the hidden regulators that may vary along lines. On the other hand, environmental interactions with any investigated line can lead to deviated outcomes. Therefore, it is important to investigate responsive genes with overlapping expressions along different stresses. Some plant responses are very similar across abiotic stresses, while others are unique for each one (Grover et al., 1999; Hazen et al., 2003; Nakashima and Yamaguchi-Shinozaki, 2009). In fact, some unique stress-specific responsive genes were successfully illustrated in a major network governing plant abiotic stresses (Zhang H et al., 2012).

In conclusion, tomato differential expression profile is an invaluable 'omics' tool, by which groups of putative stress-specific biomarkers can be disclosed. Such precious candidate genes can be integrated into available breeding lines. However, it is important to be cautious when selecting putative biomarkers from susceptible lines, because some of these stress-upregulated genes could be related to cell damage/degradation or signaling rather than to stress alleviation.

Acknowledgments

The research team greatly appreciates the National Plan for Science and Technology for financial support of this project (Number 10-BIO970-02). Thanks are also due to the head of the Plant Production Department, College of Food and Agricultural Sciences, and the director of the plant biotechnology laboratory for providing office and laboratory space for researchers. The authors wish to thank the College of Food and Agricultural Sciences Research Center and the Deanship of Scientific Research, King Saud University, Saudi Arabia, for supporting this work.

- Areshchenkova T, Ganal M (1999). Long tomato microsatellite are predominantly associated with centromeric regions. Genome 42: 536–544.
- Chen Y, Qiu K, Kuai B, Ding Y (2011). Identification of an NAPlike transcription factor BeNAC1 regulating leaf senescence in bamboo (*Bambusa emeiensis* 'Viridiflavus'). Physiol Plantarum 142: 361–371.
- Chinnusamy V, Jagendorf A, Zhu JK (2005). Understanding and improving salt tolerance in plants. Crop Sci 45: 437–448.
- Cushman JC, Bohnert HJ (2000). Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3: 117–124.

- Daldoul S, Höfer MU, Linhard C, Jallouli N, Mliki A, Reustle GM, Ghorbel A (2008). Expression analysis of salt stress responsive genes in grapevines. In: Abdelly C, Öztürk M, Ashraf M, Grignon C, editors. Biosaline Agriculture and High Salinity Tolerance. Basel, Switzerland: Birkhäuser Verlag, pp. 297–303.
- Dombrowski JE (2003). Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132: 2098–2107.
- Foolad R (2004). Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Org 76: 101–119.
- Grover A, Chandan S, Sanan N, Grover A (1999). Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci 143: 101–111.
- Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, Zhang Y (2003). Metabolic signaling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54: 467–475.
- Hazen SP, Wu Y, Kreps JA (2003). Gene expression profiling of plant responses to abiotic stress. Funct Integr Genomics 3: 105–111.
- Herbers K, Prat S, Willmitzer L (1994). Cloning and characterization of a cathepsin D inhibitor gene from *Solanum tuberosum* L. Plant Mol Biol 26: 73–83.
- Kant S, Bi YM, Zhu T, Rothstein ST (2009). SAUR39, a small auxinup RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151: 691–701.
- Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K (2001). Expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889–905.
- Knight H, Knight MR (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6: 262–267.
- Kodaira KS, Qin F, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2011). Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol 157: 742–756.
- Krasensky J, Jonak C (2012). Drought, salt, and temperature stressinduced metabolic rearrangements and regulatory networks. J Exp Bot 63: 1593–1608.
- Liu X, Baird WV (2003). Differential expression of genes regulated in response to drought or salinity stress in sunflower. Crop Sci 43: 678–87.
- Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods 25: 402–408.
- Ma S, Gong Q, Bohnert HJ (2006). Dissecting salt stress pathways. J Exp Bot 57: 1097–1107.
- Mahajan S, Tuteja N (2005). Cold, salinity and drought stresses: an overview. Arch Biochem Biophy 444: 139–158.
- Mosolov VV, Valueva TA (2011). Inhibitors of proteolytic enzymes under abiotic stresses in plants. Appl Biochem Microbiol 47: 453–459.
- Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651–681.

- Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149: 88–95.
- Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-Lara S, Casaretto JA (2010). The transcription factor SIAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33: 2191–2208.
- Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007). Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58: 507–520.
- Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001). Overexpression of the tobacco *Tsi1* gene encoding an EREBP/ AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13: 1035–1046.
- Poysa V, He C, Yu K (2003). Development and characterization of simple repeat (SSR) markers and their use in determining relationships among *Lycopersicon esculentum* cultivars. Theor Appl Genet 106: 363–373.
- Rai A, Mishra U, Singh M, Kumar R, Dubey RS, Singh NK, Jain N, Pandey HP (2010). Expression Data in Response to Abiotic Stresses in Tomato at Flowering Stage. Gene Expression Omnibus, Series: GSE22304. Ithaca, NY, USA: Cornell University.
- Reviron MP, Vartanian N, Sallantin M, Huet JC, Pernollet JC, de Vienne D (1992). Characterization of a novel protein induced by progressive or rapid drought and salinity in *Brassica napus* leaves. Plant Physiol 100: 1486–1493.
- Rolan P, Atkinson AJ, Lesko LJ (2003). Use of biomarkers from drug discovery through clinical practice: Report of the Ninth European Federation of Pharmaceutical Sciences Conference on Optimizing Drug Development. Clin Pharmacol Ther 73: 284–291.
- Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009). The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151: 275–289.
- Shan L, Li C, Chen F, Zhao S, Xia G (2008). A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ 31: 1128–1137.
- Sun W, Xu X, Zhu H, Liu A, Liu L, Li J, Hua X (2010). Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol 51: 997– 1006.
- Swami AK, Alam SI, Sengupta N, Sarin R (2011). Differential proteomic analysis of salt stress response in *Sorghum bicolor* leaves. Environ Exp Bot 71: 321–32.
- Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004). Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697–1709.

- Tamoi M, Kurotaki H, Fukamizo T (2007). Beta-1,4-glucanase-like protein from the cyanobacterium *Synechocystis* PCC6803 is a beta-1,3-1,4-glucanase and functions in salt stress tolerance. Biochem J 405: 139–146.
- Wang W, Vinocur B, Altman A (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1–14.
- Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S (2012) Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 13: 101.
- Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai, S (2012). Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11: 49–67.

- Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012). A wheat R2R3-MYB gene, *TaMYB30-B*, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63: 5873–5885.
- Zhang X, Zhang Z, Chen J, Chen Q, Wang XC, Huang R (2005). Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta 222: 494–450.
- Zhu C, Schraut D, Hartung W, Schäffner AR (2005). Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56: 2971–2981.
- Zhu JK (2002). Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53: 247–273.