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1. Introduction
Fire is a natural phenomenon in the Mediterranean 
climate regions (Moreno and Oechel, 1994; Moreira et 
al., 2012) and it is considered one of the most important 
ecological and evolutionary factors shaping Mediterranean 
ecosystems (Rodrigo et al., 2004; Keeley et al., 2012). 
In the Mediterranean Basin, thousands of fires occur 
each year, most of which are attributed to human causes 
(Bilgili and Goldammer, 2000; JRC, 2007; Moreire et 
al., 2012). Most Mediterranean plant species have some 
form of adaptive mechanism to survive fire, and most 
vegetation types in the Mediterranean Basin are resilient 
to some characteristic fire regime (Trabaud, 1994; Keeley 

et al., 2012; Vallejo et al., 2012). Some of these adaptive 
mechanisms are serotinous cones, resprouting, heat-
shock triggered germination, germination triggered by 
combustion chemicals, flammability, thick bark, and self-
pruning of branches (Keeley et al., 2011).

Postfire vegetation dynamics in the Mediterranean 
Basin have been intensively studied (Gotzenberger et 
al., 2003; Kazanis and Arianoutsou, 2004; Arnan et al., 
2007, 2013; Tavşanoğlu and Gürkan, 2014). According 
to the traditionally accepted approach, postfire 
succession in the Mediterranean Basin is primarily an 
autosuccessional process. In this model, the effects of fire 
on plant communities are more to induce a change in the 
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fires in Turkish recorded history. We sampled early postfire conditions at five sites having different conditions in terms of fire severity, 
prefire stand age, and aspect. Sampling was carried out for 5 years after fire. First year floristic composition was clearly different from 
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abundances of component species than a change in species 
composition (Hanes, 1971; Trabaud and Lepart, 1980; 
Gotzenberger et al., 2003; Kazanis and Arianoutsou, 2004). 
On the other hand, recent studies showed that postfire 
responses can differ from the autosuccessional model in 
some cases, depending on fire frequency, intensity, and/or 
severity (Pausas et al., 2003; Lippit et al., 2013; Meng et al., 
2014, 2015; Tessler et al., 2016). It has also been shown that 
prefire plant community type and prefire management can 
have important effects on postfire vegetation dynamics 
(Broncano and Retana, 2004; De Luis et al., 2006; Arnan 
et al., 2007; Torres et al., 2016). Dominant trees and their 
regenerative traits play a major role in defining postfire 
floristic composition (Kavgacı et al., 2010; Tavşanoğlu 
and Gürkan, 2014). Where rapid tree regeneration does 
not take place—especially for serotinous species—major 
changes in environmental conditions can occur, which 
may open the door for major floristic changes as well 
(Arnan et al., 2007).

Despite the adaptive traits of plants in fire-prone 
ecosystems, plants are not adapted to fire per se but rather 
to a fire regime (Sugihara et al., 2006; Keeley et al., 2011). 
There is an interaction between fire regime and vegetation, 
since fire regimes depend on a vegetation fuel source and 
vegetation can tolerate a particular fire regime thanks to 
the adaptive traits of plants (Sugihara et al., 2006). Thus, 
if the fire regime changes, plants with adaptive traits to a 
particular fire regime can be at risk (Keeley et al., 2011).

As a disturbance, forest fires can be a function of both 
natural and anthropogenic conditions, and changes in 
these conditions—such as through climate change—will 
affect the fire regime (Dale et al., 2000, 2001). Climate 
affects fire regimes at both short- and long-term timescales, 
in the first instance because weather closely controls fire 
ignition and propagation; in the second because climate 
determines primary productivity and vegetation, all 
of which determine global fire patterns (Urbieta et al., 
2015). According to climate change scenarios for the 
Mediterranean Basin, drought and heat wave extremes are 
projected to increase (Meehl and Tebaldi, 2004; Dequé, 
2007; Beniston et al., 2007) and those will increasingly 
support the occurrence and propagation of fire (Moriondo 
et al., 2006). Thus, knowledge about postfire vegetation 
dynamics is not only useful for assessing current 
conditions and planning management response, but it is 
also useful to help predict how vegetation might change 
under continued climate warming (Sugihara et al., 2006)

Pinus brutia Ten. (Turkish red pine, Calabrian pine) 
inhabits an area of nearly 5 million hectares in Turkey 
(Orman Genel Müdürlüğü, 2014). P. brutia is an obligate 
seeder, which is thought to be an adaptation to recurrent 
and severe fires (Neyişçi, 1993; Keeley et al., 2011). P. 
brutia supports an aerial seed bank held in serotinous 

cones (Thanos and Marcou, 1991; Turna and Bilgili, 2006). 
The species is relatively sensitive to fire and although 
larger trees can survive low intensity burning, the typical 
result of crown fire is 80%–100% mortality (Fernandes et 
al., 2008), which results in even-aged stands on most of 
the landscape. P. brutia is also a shade intolerant species 
and its seedlings cannot survive under shady conditions 
(Boydak, 2004). Because of this, clearcutting based on 
natural regeneration is the main regeneration technique 
for P. brutia forests in Turkey and regeneration of 
mature forests is generally realized by fires under natural 
conditions (Boydak et al., 2006). Postfire recovery of the 
vegetation in P. brutia forests is directly connected with 
the reestablishment of the trees, which typically quickly 
dominate the burned landscape within 5–10 years of fire 
(Spanos et al., 2000). 

Although postfire recovery of serotinous forests has 
long been viewed as autosuccessional, recent studies have 
identified factors that can influence the rate and density 
of postfire regeneration (Broncano and Retana, 2004). 
The age of the prefire stand is one of these factors since 
species like P. brutia can require 20–30 years to mature 
and accumulate sufficient seed in their crown (Ürgenç, 
1977; Spanos et al., 2000). The intensity of fire, which 
affects the crown seed bank, is another factor influencing 
postfire regeneration (Broncano, 2000; Pausas et al., 
2003; Vacchiano et al., 2014; Meng et al., 2015). Physical 
site conditions like aspect (slope orientation) are also 
influential on postfire vegetation dynamics (Broncano 
and Retana, 2004; Rodrigo et al., 2004). Additionally, soil 
properties, water availability, and postfire climate are some 
of the other factors that can affect the postfire vegetation 
dynamics (Jain et al., 2012; Meng et al., 2015).

Postfire vegetation response is one of the primary 
indicators of fire’s ecological impacts as well as what 
restoration practices might be undertaken to mitigate such 
impacts (Moreira and Vallejo, 2009; Vallejo et al., 2012). 
Given the importance of predictability in the postfire 
response of widespread conifers, the principle objective of 
the study was to better understand postfire dynamics of P. 
brutia forest in a landscape with variability in fire severity, 
prefire stand age, and aspect. Thus we hypothesized that 
fire severity/fire type, prefire stand age, or aspect may 
be important drivers of the postfire changes of P. brutia 
forests.

2. Materials and methods
2.1. Study area
The study was carried out within the perimeter of the 
Serik-Tasağıl Fire (Antalya, Turkey), which burned in 
2008 and was one of the largest forest fires to date in the 
Republic of Turkey, with 15,795 hectares of forest burned 
(Figure 1). The fire started on 31 July 2008 and burned for 
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5 days. The Antalya region is one of the most fire prone 
areas in Turkey (Kavgacı et al., 2011). Climate in the study 
area is Mediterranean, with a hot, dry summer and wet, 
cool winter. Mean annual precipitation is approximately 
1089 mm and mean annual temperature is 18 °C (Kavgacı 
et al., 2010). Mean minimum and mean maximum 
temperatures for January and July are 6.9 °C and 33.5 °C, 

respectively. The study area is underlain by limestone and 
soils generally consist of mullrendzinan, pararendzinan, 
and xeroslos soils (Ayaşlıgil, 1987).  

The vegetation of the study area is mainly dominated 
by P. brutia and maquis species like Olea europea, Quercus 
coccifera, Styrax officinalis, Pistacia terebinthus, Arbutus 
andrachne, Myrtus communis, Cistus creticus, and C. 

salvifolius. Locations where P. brutia does not grow are 
dominated by maquis or garrigue. 
2.2. Sampling technique
A diachronic approach was used in the study. After the 
Serik-Tasağıl fire, five different sites in the same hydrologic 
basin were chosen to better understand postfire dynamics. 
Each of these sites had different characteristics in terms of 
prefire stand age, fire severity, and aspect (Table 1). Other 
factors like soil properties, water availability, and postfire 
climate following fires were not included in the study 
because they have less variation in the study area.

Each factor in the study was represented by two levels 
(Table 1). Fire severity included surface and crown fires. 

Figure 1. Location of the study area.

Table 1. Field characteristics of the study sites in terms of fire severity, prefire stand age, and aspect. The abbreviation of the study sites 
represents the first letter of each factor. Coordinates represents one of the samplings in the study sites.

Abbreviation Prefire stand age Fire severity Aspect Mean elevation Bedrock Longitude Latitude

MCN Mature stand Crown fire North 110 m Limestone 335371 4093198

YCS Young stand Crown fire South 49 m Limestone 336171 4092428

YCN Young stand Crown fire North 14 m Limestone 335705 4091969

MSS Mature stand Surface fire South 158 m Limestone 336288 4094641

MSN Mature stand Surface fire North 52 m Limestone 336121 4093011
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Surface fire = ground surface of the stand was completely 
burned, stems were charred, crowns were scorched by 
flames but not burned, and trees were dead; crown fire = 
all stems, crowns, and surface layers were consumed by fire 
and trees were dead. Prefire stand age was categorized as 
young and mature. Young stands were 13 years old while 
mature stands were nearly 60 years old. Since the crown 
base of young P. brutia stands is very close to the ground, 
they are generally subject to crown fires. Due to that, the 
young stand with surface fire could not be included as a 
variable in the study. The two aspect classes were north-
facing (“north”) and south-facing (“south”). 

All burned and unburned trees in the study areas and 
other surrounding stands were clear cut by the Turkish 
Regional Forest Service in the autumn after fire, which was 
after seed dispersal of P. brutia had occurred. Study sites 
were chosen immediately after fire and before harvesting 
to allow assignment of the different fire severity and 
prefire stand types. The exact age of the stands was defined 
by counting the annual rings of harvested trees. After 
harvesting, ten 0.01 ha permanent plots were established at 
each site (a total of 50 plots). During the first 5 years after 
fire, vegetation sampling was carried out to understand 
the effects of fire severity, prefire stand age, and aspect on 
vegetation dynamics of P. brutia forests. The first sampling 
was carried out in April 2009 (about 9 months after fire) 
and continued during the same time in the following years. 

During sampling, vegetation was firstly divided into 
two layers depending on the height of plants: up to 0.5 
m for the herb layer and higher than 0.5 for the shrub 
layer—see Westhoff and van der Maarel (1973). This was 
especially important to understand vegetation structural 
change and the dominance of woody species in the postfire 
vegetation. We recorded the presence and cover of all 
vascular plants in these two layers. For cover estimation, 
the Braun-Blanquet (1964) scale was used, and cover was 
visually estimated. For further analyses, the two layers 
were merged as a default option in the JUICE program 
(Tichý, 2002). Collected plants were identified with the 
Flora of Turkey (Davis 1965–1985; Davis et al., 1988). 

In addition to the vegetation sampling, P. brutia 
seedling emergence and survival were sampled. We 
established four 1 × 1 m subplots at the corners of 
each permanent plot. Seedlings in these subplots were 
periodically counted and we averaged the results to get the 
mean number of seedlings for each 10 × 10 m plot. We 
counted seedlings in November of each year of the study. 
In our statistical analysis, the emergence and survival of P. 
brutia were submitted as the mean number of seedlings of 
each successional stage for each different site.
2.3. Data analysis
Vegetation cover data were stored in the TURBOVEG 
database management program (Hennekens and 

Schaminée, 2001) after completing the identification of all 
plants. Floristic differentiation along time for each different 
site was explored with Nonmetric Multidimensional 
Scaling (NMDS) in the R software (R Core Development 
Team, 2014) by using the package VEGAN. Calculations 
of species richness (number of species) and species 
diversity (Shannon diversity index), as well as the diversity 
of taxonomic families, life forms and postfire regeneration 
strategies (seeders and resprouters), were carried out in 
the JUICE program (Tichý, 2002).

The effects of fire severity, prefire stand age, and 
aspect on species richness, species diversity, family 
distribution, life form, and postfire regeneration strategies 
(obligate resprouter and obligater seeders) were analyzed. 
To understand the effects of these variables, repeated 
measures ANOVA was used since the postfire vegetation 
was measured multiple times in each combination of 
different conditions (fire severity, prefire stand age, and 
aspect). We compared pairs of sites that differed with 
respect to fire severity (MSN vs. MCN), prefire stand age 
(MCN vs. YCN), and aspect (MSS vs. MSN, and YCS vs. 
YCN) (see Table 1 for the abbreviations). Prior to analysis, 
data were checked for normality and log- or square root-
transformed to approach normality when necessary. 
Analyses were carried out in the R program (R Core 
Development Team, 2014). 

3. Results
3.1. Floristic structure, species richness, and diversity
A total of 262 plant species belonging to 49 different 
families were collected in the 5 years after fire from our 
plots. NMDS analysis showed that the species composition 
of the first year after fire is highly differentiated from 
the following years. During the ensuing years, there 
was a gradual temporal change in floristics at each site. 
YCN showed a somewhat clearer floristic differentiation 
between years than the other sites. In all of the sites, 
floristic composition in year 5 “retreated” and was less 
different from year 3 than year 4 was (Figure 2). 

Species richness (number of species) was higher in 
the crown fire sites than in the surface fire sites (Figure 3; 
Table 2). Richness also showed a general decline for the 
sites that experienced crown fire (MCN, YCS, and YCN) 
whereas it was more stable for surface fire sites MSS and 
MSN (Figure 3; Table 2), such that the difference in species 
richness between two fire severities diminished over time. 

Prefire stand age also had a significant effect on species 
richness (Table 3). The young stand (YCN) contained 
more species than the mature stands (MCN) during the 5 
years after fire (Figure 3; Table 2). Richness declined over 
time at both sites.

Aspect showed a significant effect on species richness 
for both mature and young stands (Table 3). The mature 
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and young stands with northern aspects (MSN and YCN) 
were more species-rich than the mature and young stands 
with southern aspects (MSS and YCS), respectively (Figure 
3; Table 2). 

The mature stand with crown fire (MCN) showed 
significantly higher diversity than the mature surface 
fire site (MSN) (Table 3). Similarly, species diversity was 

significantly different between the sites with different 
prefire stand ages (MCN and YCN) (Figure 3; Table 2). 

Species richness of Fabaceae increased until the third 
year after fire and later decreased in MSS. At the rest of 
the sites species richness of Fabaceae generally tended to 
decrease until the fourth year after fire and then increased 
in the fifth year (Figure 3; Table 2). Asteraceae decreased 
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Figure 2. Floristic differentiation of the vegetation over time after fire (Nonmetric Multidimensional Scaling). The symbols within each 
polygon are the 10 plots found at each site/stand condition in a given year after fire. MCN: Mature stand, Crown fire, North aspect; YCS: 
Young stand, Crown fire, South aspect; YCN: Young stand, Crown fire, North aspect; MSS: Mature stand, Surface fire, South aspect; 
MSN: Mature stand, Surface fire, North aspect.
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in richness at all sites except for MSS (Figure 3; Table 3). 
For Asteraceae, prefire stand age and aspect in young 
stands showed an interaction with time (Table 3). Poaceae 
decreased with time after fire in the young stands (Figure 
3; Table 2) and this decrease was significant (Table 3). Only 
the prefire stand age–time correlation was significant for 
Poaceae (MCN–YCN) (Table 3). 
3.2. Life form richness
Forty of the collected plant species in the study were 
woody, while 54 were perennial herbs and 168 were 
annual herbs. Woody plants showed similar successional 
trends among sites (Table 3). Perennial herbs showed a 
more or less stable trend during succession (Figure 4; 
Table 2). The sites with different fire severity (MCN and 
MSN), prefire stand age (MCN and YCN), and young 
stands with different aspect (YCS and YCN) showed 
different temporal trends after fire in terms of the richness 
of annual plants (Table 3). Number of annual plants 
in young stands and the mature stand with crown fire 

decreased until the fourth year after fire and increased in 
the fifth year (Figure 4; Table 2).

The shrub layer, which is completely composed of 
woody species, appeared in the second and third years after 
fire in the young stands and mature stands, respectively, 
and quickly dominated the vegetation (see the appendix 
in detail for woody species and their shrub layer frequency 
and coverage). In the young stands, shrub cover developed 
more rapidly on the north-facing slope than on the south-
facing slope, and averaged 80% by the fifth year after fire, 
versus about 60% on the south-facing slope. 
3.3. Postfire regeneration
The number of obligate resprouters showed a more or less 
stable trend during early succession after fire for all sites 
(Figure 5; Table 2). The higher number of resprouters at 
the young stand with northern aspect (YCN) was very 
clear. The number of resprouters showed differences 
according to fire severity, prefire stand age, and aspect of 
young stands (Table 3).
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Figure 3. Temporal changes in species richness, diversity, and the richness of species of Asteraceae, Fabaceae, and Poaceae after fire. 
MCN: Mature stand, Crown fire, North aspect; YCS: Young stand, Crown fire, South aspect; YCN: Young stand, Crown fire, North 
aspect; MSS: Mature stand, Surface fire, South aspect; MSN: Mature stand, Surface fire, North aspect.
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Table 2. Species richness of the study sites during the 5 years after fire (mean with standard deviation from 10 replicates) and richness 
of various species groups (families, life form, regeneration category). Shaded numbers represent the highest value in a single row. s.d., 
standard deviation. MCN: Mature stand, Crown fire, North aspect; YCS: Young stand, Crown fire, South aspect; YCN: Young stand, 
Crown fire, North aspect; MSS: Mature stand, Surface fire, South aspect; MSN: Mature stand, Surface fire, North aspect. 

  Years after fire 1 2 3 4 5
Study site   Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd
MCN Number of species 50.60 6.29 50.40 7.49 41.10 9.12 40.50 8.87 40.20 9.66
MCN Shannon index 3.75 0.17 3.40 0.26 3.19 0.36 3.11 0.49 3.06 0.44
MCN Number of Asteraceae species 7.70 1.49 10.20 1.93 7.20 2.04 7.30 1.70 6.40 2.07
MCN Number of Fabaceae species 14.00 2.16 13.80 1.81 12.70 2.95 9.10 2.47 12.40 2.50
MCN Number of Poaceae species 3.00 1.56 4.70 1.95 4.30 1.34 4.20 1.23 4.30 1.16
MCN Number of resprouter species 17.60 4.95 17.50 2.76 14.50 3.66 17.50 4.45 15.90 3.87
MCN Number of seeder species 30.70 5.19 30.30 5.93 24.40 6.69 20.50 4.84 21.80 5.79
MCN Number of annual species 29.10 6.19 28.70 5.98 23.80 7.13 19.80 5.63 21.50 6.87
MCN Number of perennial species 14.40 3.31 14.10 1.66 12.20 2.39 15.70 2.91 13.70 2.63
MCN Number of woody species 4.80 2.44 4.70 1.64 4.50 2.01 4.50 2.22 4.60 1.90
YCS Number of species 56.20 6.36 44.40 4.09 38.80 4.52 36.90 4.15 38.40 5.13
YCS Shannon index 3.86 0.16 3.30 0.35 3.09 0.42 3.09 0.21 3.05 0.24
YCS Number of Asteraceae species 8.40 1.90 7.50 2.46 7.40 2.22 6.50 1.65 5.80 1.62
YCS Number of Fabaceae species 8.80 2.57 6.80 1.99 6.40 1.90 3.40 1.58 7.10 1.37
YCS Number of Poaceae species 6.40 1.43 6.00 1.89 4.80 1.75 4.30 1.77 3.80 1.23
YCS Number of resprouter species 21.80 2.15 21.20 2.78 19.40 2.72 21.30 3.20 21.00 2.98
YCS Number of seeder species 32.60 5.78 21.30 2.54 17.60 3.72 14.60 2.32 16.30 3.83
YCS Number of annual species 31.00 5.62 20.60 2.67 17.30 3.50 13.20 2.35 15.60 3.78
YCS Number of perennial species 18.20 1.32 16.90 1.66 15.60 2.55 18.00 2.36 16.60 2.01
YCS Number of woody species 5.20 1.75 5.20 1.62 5.30 1.16 5.40 1.65 6.10 2.02
YCN Number of species 57.50 8.18 53.30 10.34 49.00 8.14 40.50 5.78 43.00 7.13
YCN Shannon index 3.69 0.32 3.49 0.31 3.45 0.33 3.09 0.19 3.23 0.30
YCN Number of Asteraceae species 9.30 1.49 9.50 1.90 7.00 1.83 6.20 1.48 3.80 1.40
YCN Number of Fabaceae species 10.10 2.85 9.80 2.39 9.00 1.56 5.00 0.47 9.00 1.25
YCN Number of Poaceae species 6.40 1.90 5.90 2.08 5.60 2.72 4.30 1.77 4.30 2.31
YCN Number of resprouter species 24.30 4.45 24.20 3.52 24.70 4.90 26.30 4.45 24.40 3.84
YCN Number of seeder species 31.00 5.56 26.40 7.46 21.70 4.40 12.70 2.54 16.70 4.16
YCN Number of annual species 29.90 5.72 24.90 7.87 21.40 4.77 10.80 2.86 15.30 4.83
YCN Number of perennial species 15.70 3.27 17.10 1.85 16.40 2.95 18.30 2.45 15.80 2.25
YCN Number of woody species 9.80 2.25 9.30 1.64 10.00 1.76 10.50 2.01 11.20 1.99
MSS Number of species 25.80 5.57 32.70 4.57 33.20 3.12 29.80 4.44 27.70 4.64
MSS Shannon index 3.16 0.18 3.19 0.32 3.02 0.18 2.74 0.39 2.59 0.25
MSS Number of Asteraceae species 6.40 1.90 8.70 1.83 8.90 1.91 7.50 1.90 5.70 1.49
MSS Number of Fabaceae species 3.20 1.81 4.20 1.87 5.10 2.13 3.50 1.43 3.80 1.55
MSS Number of Poaceae species 2.30 0.82 3.30 0.82 3.30 0.95 3.00 1.05 3.00 0.82
MSS Number of resprouter species 14.10 2.92 15.40 3.03 15.90 2.88 17.10 1.73 15.30 2.31
MSS Number of seeder species 11.30 2.67 16.50 3.41 16.20 2.74 11.50 3.84 11.30 3.20
MSS Number of annual species 9.80 2.82 14.40 3.37 14.70 2.79 11.20 4.10 10.70 3.23
MSS Number of perennial species 10.80 2.57 10.50 2.17 12.00 2.40 12.50 1.51 10.90 2.33
MSS Number of woody species 4.50 1.18 5.40 1.17 5.10 1.66 5.20 1.23 5.70 1.42
MSN Number of species 35.50 5.84 37.00 3.77 35.50 4.81 31.30 5.19 35.70 5.12
MSN Shannon index 3.24 0.25 3.01 0.22 2.84 0.27 2.73 0.29 2.76 0.29
MSN Number of Asteraceae species 7.80 2.30 8.20 1.23 7.70 2.11 7.00 1.89 6.90 2.08
MSN Number of Fabaceae species 8.50 1.65 9.60 1.58 8.60 2.17 5.20 1.62 8.50 1.90
MSN Number of Poaceae species 2.70 0.67 2.30 0.95 2.20 1.48 2.00 0.82 2.70 0.67
MSN Number of resprouter species 16.30 3.13 16.00 2.67 15.20 2.25 16.30 3.37 15.40 2.41
MSN Number of seeder species 18.00 4.00 19.90 2.64 19.30 4.47 13.70 3.59 18.30 4.00
MSN Number of annual species 15.70 4.00 17.70 2.54 17.70 4.16 12.50 3.44 17.70 4.30
MSN Number of perennial species 13.00 2.62 11.30 2.26 11.40 1.17 13.20 3.05 12.60 2.17
MSN Number of woody species 4.60 1.78 5.40 1.35 5.10 1.10 5.00 1.33 5.20 1.03
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Obligate seeders generally decreased in richness 
during the 5 years after fire in the young stands and in the 
mature stands with surface fire (Figure 5; Table 2). The 
mature stands with different fire severity and young stands 
with different aspect had different trends in terms of the 
number of obligate seeders (Table 3).
3.4. Seedling emergence and survival of P. brutia
Seedling emergence did not occur in the young forest stands 
(YCN and YCS). On the other hand, high regeneration of 
P. brutia was observed in the mature stands, with notable 
differences across sites (Figure 6). MSN (surface fire, 
north aspect) showed much higher seedling densities 
than the other sites, and the mature crown fire site (MCN) 
consistently showed the lowest seedling densities. During 

the first year after fire 0.925 (se ±0.15), 1.7 (se ±0.32), and 
13.625 (se ±2.87) seedlings per square meter were sampled 
at MCN, MSS, and MSN respectively. During the following 
years seedling densities quickly decreased and at the end of 
the fifth year after fire the numbers of seedlings for MCN, 
MSS, and MSN were measured at 0.225 (se ±0.06), 0.725 
(se ±0.0.21), and 2.74 (se ±0.72), respectively.

4. Discussion
Emergence of the obligate seeding P. brutia was not noted 
in our young stands and woody species quickly dominated 
the vegetation. It seems that this caused the conversion of 
young P. brutia forests to shrublands or forests dominated 
by resprouting tree species. This probable conversion is 
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Figure 4. Temporal changes of mean number of three plant life forms after fire (annuals, perennials, and woody plants). MCN: Mature 
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from the fact that most P. brutia individuals in the stand 
had not yet reached reproductive age due to the earlier fire 
occurrence (Tessler et al., 2014). Recruitment of P. brutia 
into these stands over the long term may be possible from 
neighboring seed sources when they mature. Thus, our 
results are similar to the results reported by Spanos et al. 
(2000), and they support the idea that postfire recovery 
of P. brutia forests does not always follow direct recovery 
(i.e. it is not always autosuccessional). This is important 
at scales much broader than our study area, as increased 
fire frequencies in some parts of the Mediterranean Basin 
are making it more likely that younger stands will burn 
(Pausas et al., 2004; De Luis et al., 2006; Arnan et al., 
2007). As such young stands burn, sites may be converted 
to persistent shrublands or resptouter dominated forests 
(especially if frequent burning continues), or they may 
require investment in planting. Such a conversion due to 
frequent fire has also been documented in P. halepensis 
forests converted to Arbutus unedo woodlands, which is a 
resprouter species in NE Spain (Arnan et al., 2013). Short 
interval fire occurrence can also cause vegetation type 
conversion in shrublands, especially those dominated by 
obligate seeders, for example in California (Lippitt et al., 
2013; Meng et al., 2014).

The presence or absence of seedlings in the postfire 
environment is of obvious importance to forest 
recuperation, but where seedlings are present their density 
is a further factor driving postfire succession. Our mature 
stands showed widely differing seedling responses to fire, 
with more than a 10-fold difference in seedling densities 
between sites, apparently driven mostly by differences 
in fire severity. Seedling density is important because it 
influences intraspecific competition and ultimately plays a 
major role in defining the spatial patterning of individual 
plants through the life span of the stand (Antonovics 
and Levin, 1980; Comita et al., 2010). Seedling densities 
of trees are especially influential on vegetation dynamics 
since they are the dominant life form (Gray and He, 
2009). The strong differences in postfire seedling densities 

in our mature stands of P. brutia indicate that levels of 
intraspecific competition will likely differ over time across 
our study landscape, which will have impacts on the actual 
progression of vegetation succession. 

Mature stands showed different successional trends in 
terms of species richness of annuals and obligate seeders 
that were also best explained by differences in fire severity 
(crown fire vs. surface fire). Prefire stand age was an 
important factor in explaining differences between stands 
with respect to richness of annuals, and species from 
Asteraceae and Poaceae. Aspect also appeared as a driving 
factor for young stands in terms of the richness of annuals, 
obligate seeders, and number of Asteraceae species. Overall, 
the variation in successional patterns related to fire severity, 
stand age, and aspect indicates that “autosuccession” does 
not follow similar patterns even in mature stands. This may 
indicate that postfire succession may be better explained by 
other approaches like a vital attributes model (Noble and 
Slatyer, 1980) or other disturbance theories (Sugihara and 
van Wagtendonk, 2006).

In P. brutia and similar serotinous forest types (as 
well as in most Mediterranean shrublands) first year 
floristic composition is mainly determined by the prefire 
vegetation (Hanes, 1971). This is due to the dominance 
of fire-adapted sprouting and fire-cued seeding (Vallejo 
et al., 2012). After year one, colonizing species reach the 
site and floristic differentiation begins (Arianoutsou and 
Ne’eman, 2000; Kazanis and Arianoutsou, 2004). If the 
fire occurs early in the year, some colonizers may also 
be present in the first year, which can have important 
implications for longer-term succession. In our sites, we 
noted a clear “retrogression” in floristic differentiation in 
the fifth year after fire. This is connected to the increasing 
dominance of woody plants (reflected in the decrease in 
our measures of both richness and diversity), and perhaps 
decreases in site productivity. As is seen in most other 
studies of Mediterranean postfire succession (Kazanis and 
Arianoutsou, 2004; Kavgacı et al., 2010), annual species 
richness was high in the early postfire years but gradually 
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observed in the young stands YCN and YCS). Error bars omitted to enhance clarity.
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decreased, while the woody species were more or less 
stable or gradually increased.

Earlier studies have shown that species richness in P. 
brutia and P. halepensis forests tends to be highest in the 
first year after fire and over time it declines, and then 
increases gradually again as the forest matures (Schiller 
et al., 1997; Arianoutsou and Ne’eman, 2000; Tavşanoğlu 
and Gürkan, 2009; Kavgacı et al., 2010). Some of our sites 
also showed a first year postfire peak in richness, but 
others peaked in years two or three. Clearly, fire leads to 
an increase in species richness (and diversity) in P. brutia 
forests, and subsequent years see a reduction in both 
measures, but variability in various factors can modulate 
the exact nature of the temporal trend. Still, our results 
broadly support the generalization of Kutiel (1997), who 
stated that postfire vegetation in the Mediterranean Basin 
tends to reach the highest richness between the years 2 and 
4 after fire.

In our study, the mature stand with crown fire (MCN) 
exhibited higher species richness than the mature stand 
with surface fire (MSN) during the early stage of postfire 
succession. Probably a number of different factors help 
to explain this pattern. First of all, the high severity stand 
(MCN) had fewer P. brutia seedlings and so competition 
for resources was much reduced for other species. Second, 
higher severity fire correlates with higher fire intensities 
(Keeley, 2009), which would have removed much more of 
the litter on the soil surface, leading to easier emergence for 
seedlings of other species, more access to light, and better 
access to mineral soil for seeds of other species arriving on 
site. Finally, it could be that the more complete combustion 
of litter and organics in the severely burned stand led to 
more nutrient availability in the upper soil layers (Kutiel 
and Naveh, 1987), although some of the nutrients might 
have volatilized. However, it can be expected that the 
remaining surface fuels after fire can be higher in the 
surface fire area, which would prevent the germination of 
the species by covering the soil and this could be effective 
on the lower species richness of this stand.

Despite the differences, species richness and diversity 
showed similar successional trends in two different aspects 
of both young and mature stands, which differs from the 
findings reported by Kutiel (1997), but aspect was an 
important driver of both richness and diversity. Southern 
aspects in the Mediterranean Basin experience much 
higher water stress than north aspects (Nadal-Romero et 
al., 2014), and this is likely the principal factor leading to 
higher species richness on north aspect sites than south 
aspects in our study.

Fabaceae has a specific role in postfire vegetation 
dynamics in the eastern Mediterranean Basin because 
it supplies organic material to the site and enriches it 
with nutrients (Doussi and Thanos, 1994; Arianoutsou 

and Thanos, 1996; Arianoutsou and Ne’eman, 2000). In 
our work, the number of Fabaceae species was generally 
higher in the first year after fire and decreased thereafter 
until the fourth year, when there was an increase again; the 
sole exception was the mature stand with surface fire and 
southern aspect, where Fabaceae dominance was highest 
in the third postfire year. Kavgacı et al. (2010) generalized 
that Fabaceae tended to reach their highest species richness 
in P. brutia forests in the eastern Mediterranean at about 3 
years after fire. Many studies have documented this pattern 
in early postfire succession in the eastern Mediterranean 
(Kazanis and Arianoutsou, 1996; Arianoutsou, 1998; 
Arianoutsou and Ne’eman, 2000; Türkmen and Duzenli, 
2005). Overall our results support this generalization. The 
presence of high numbers of Fabaceae species (and their 
biomass as well) during early postfire years is due to the 
breaking of seed dormancy by fire (Moreira et al., 2010).

Although seedling emergence and survival were noted 
in all of the mature stands, seedling densities showed 
large differences between sites. In comparison with other 
mature stands, the mature stand with crown fire supported 
the lowest number of seedlings, which may be related to 
the high fire intensity, which could severely damage the 
crown seed bank of P. brutia at this stand. On the other 
hand, P. brutia stands with north aspect supported the 
highest number of seedlings, which probably also relates 
to the more favorable moisture balance on these slopes 
(Nadal-Romero et al., 2014). Seedling densities showed a 
decline during the 5 years at all sites after fire (most likely 
due to inter- and intraspecific competition) as observed in 
previous studies (Thanos et al., 1989; Thanos and Marcou, 
1991; Spanos et al., 2000). Similar results for P. halepensis 
forests were obtained by Pausas et al. (2003). 

From the standpoint of postfire restoration and forest 
management, prefire stand age and fire severity can 
have major effects on the postfire succession of P. brutia 
forests. Stands that burn at a young age (with trees <20–30 
years old) are likely to convert to shrublands or forests 
dominated by resprouting tree species and will probably 
require artificial seeding or planting if a P. brutia forest 
is desired at the site. Seedling densities in mature stands 
are generally enough to naturally restore productive 
forests even where crown fire occurs: general reforestation 
guidelines in Turkey call for planting densities of about 
1600 seedlings per hectare, and even our MCN stand 
would have met these standards. The more open stand that 
results from crown fire supports higher species richness. 
Therefore, variations in fire severity are important to 
landscape heterogeneity and species diversity. Our work 
demonstrates that prefire conditions, topography, and fire 
severity should all be taken into account when managers 
develop restoration strategies and projects in burned Pinus 
brutia forests.
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