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1. Introduction 
Lentil, Lens culinaris Medic., is an important cool season 
food legume in the old world. It is a self-pollinated, 
diploid (2n = 2x = 14) with a genome size of 4063 Mbp 
(Arumuganathan and Earl, 1991). The origin of cultivated 
lentil is the Near East Arc and Asia Minor (Zohary and 
Hopf, 2000; Muehlbauer and McPhee, 2005). From this 
region, the crop was distributed in Europe, Asia, Northern 
Africa and Ethiopia, the Indian subcontinent, North and 
South America, southern Africa, and Australia (Ford et al., 
2007). Lentil is an important global crop for the human 
diet and daily food balance (Karakoy et al., 2012) in the 
case of richness with iron (Fe), selenium (Se), copper (Cu), 
Mn and other dietary nutrients in its seeds (Grusak, 2009). 
World annual lentil production was about 4.9 million tons 
in 2014 and per capita consumption has been increasing 
faster than human population growth (FAOSTAT, 2016).

Micronutrients such as Fe, Zn, Ca, Mn, and P are 
essential for metabolic pathways and reactions in the 
human body. Inadequate daily intake of these nutrients 

causes deficiencies resulting in diseases (Garcia-Oliveira 
et al., 2009). Worldwide, micronutrient deficiency is one 
of the most important health problems. Fe deficiency 
is widespread, affecting 3.7 billion people (Welch, 
2002). Annually, 1.5% (0.8 million) of deaths worldwide 
are directly related to Fe deficiency (WHO, 2002). Fe 
deficiency causes Fe deficiency anemia (IDA), which leads 
to workforce loss and complications in childbirth (Blair et 
al., 2011). Approaches to solving micronutrient deficiencies 
through biofortification are under development; the aim 
is to increase the concentration and/or bioavailability 
of mineral elements in the parts of plants consumed by 
humans (White and Broadley, 2009).

Fe is an integral part of iron- and oxygen-binding 
proteins, including hemoglobin (Hb) and myoglobin 
(Mb). Fe is integral to the transport of oxygen from the 
lungs to all body cells and to the storage of oxygen carried 
to muscles. Fe is also an essential component of key cellular 
enzymes for energy production and metabolism (Moritz 
and Hornecker, 2006). Fe enzymes are involved in electron 
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transport and energy metabolism (cytochrome c oxidase, 
cytochromes, aconitase, NADH dehydrogenase, and 
succinatedehydrogenase), immune system function (nitric 
oxide synthase, myeloperoxidase, eosinophil peroxidase, 
and lactoperoxidase), antioxidant function (peroxidases 
and catalase), and neuronal functions (tyrosine 
peroxidase, tyrosine hydroxylase, tryptophan hydroxylase, 
and xanthine oxidase) (Beard, 2001; Arrendo and Nunez, 
2005; Iannotti et al., 2006; Burckhardt-Herold, 2013). 
Fe-containing enzymes and/or proteins are incorporated 
into DNA synthesis (ribonucleotide reductase) and 
are essential for cell growth and proliferation (Cazzola 
et al., 1990; Lieu et al., 2001; Adlerova et al., 2008). The 
recommended dietary allowance (RDA) is 8 mg per day 
for all age groups of men and women but it is 18 mg for 
premenopausal women (Institute of Medicine, 2001).

The Fe concentration in edible seeds has been 
studied in staple food crops such as rice (Oryza sativa L.) 
(Gregorio et al., 2000), common bean (Phaseolus vulgaris 
L.) (Islam et al., 2002), maize (Zea mays L.) (Oikeh et al., 
2003), wheat (Triticum aestivum L.) (Garvin et al., 2006), 
chickpea (Cicer arietinum L.) (Zia-Ul-Haq et al., 2007), 
and soybean [Soja max (L.) Merill.] (Ramamurthy et al., 
2014). Lentil seed contains Fe between 73 and 90 mg per 
kg (Thavarajah et al., 2011). The concentration of Fe in 
lentil seed is higher than in wheat grain (Ates et al., 2016). 
Studies of quantitative trait loci (QTLs) that control Fe 
concentration in seeds have been conducted for thale cress 
[Arabidopsis thaliana (L.) Heynh.] (Vreugdenhil et al., 
2004; Waters and Grusak, 2008), rapeseed (Brassica rapa 
L.) (Wu et al., 2008), canola (Brassica napus L.) (Ding et 
al., 2010), rice (Oryza sativa L.) (Stangoulis et al., 2007; 
Lu et al., 2008; Garcia-Oliveira et al., 2009; Norton et al., 
2010; Anuradha et al., 2012), Lotus japonicus L. (Klein and 
Grusak, 2009), barrelclover (Medicago truncatula Gaertn.) 
(Sankaran et al., 2009), common bean (Phaseolus vulgaris 
L.) (Cichy et al., 2009; Blair et al., 2009, 2010, 2011), wheat 
(Triticum sp.) (Peleg et al., 2009; Tiwari et al., 2009; Xu et 
al., 2012; Pu et al., 2014; Srinivasa et al., 2014), maize (Zea 
mays L.) (Simic et al., 2012; Jin et al., 2013), and soybean 
(Ramamurthy et al., 2014). These studies identified QTLs 
linked to the genes controlling Fe accumulation in seed.

Single nucleotide polymorphism (SNP) markers are 
the most abundant genetic markers spread over the whole 
genome (Agarwal et al., 2008). Recently, a new approach 
known as genotyping- by-sequencing (GBS) has been 
used for SNP discovery and genotyping (Kujur et al., 
2015). In this technology, a mapping population is created 
using selected two parents. Using NGS technologies, 
the parents and their lines are sequenced to identify 
SNPs. Sequences obtained from sequencing are used to 
establish allelic diversity per individual. Based on parental 
data, genotypes are assigned. After that, recombination 

maps are created for each RIL (Deschamps et al., 2012). 
GBS is used for population studies, characterization, 
breeding, and trait mapping in diverse organisms and is 
based on high-throughput, next-generation sequencing 
of genomic fragments derived by digesting the genome 
of each individual in a population with restriction 
enzymes (Elshire et al., 2011; Kumar et al., 2012). This 
type of high-throughput genotyping technology allows 
for the development of high-density applications in QTL 
characterization (Deschamps et al., 2012). For example, 
QTLs controlling genes for drought tolerance in chickpea 
were identified using GBS (Jaganathan et al., 2015). Due 
to cost efficiencies, GBS is a preferred approach when 
constructing linkage maps of mapping populations with 
high-density SNP markers (He et al., 2014). Many such 
SNP-based maps and/or QTL maps have been constructed 
in plant species such as lentil (Sharpe et al., 2013; Gujaria-
Verma et al., 2014; Ates et al., 2016), maize (Chen et al., 
2014; Li et al., 2015), maize and barley (Elshire et al., 
2011), wheat and barley (Poland et al., 2012), chickpea 
(Jaganathan et al., 2015), cotton (Gossypium hirsutum 
L.) (Gore et al., 2014), potato (Solanum tuberosum L.) 
(Uitdewilligen et al., 2013), raspberry (Rubus idaeus L.) 
(Ward et al., 2013), wheat (Saintenac et al., 2013), apple 
(Malus spp.) (Gardner et al., 2014), barley (Mascher et al., 
2013; Liu et al., 2014), canola (Raman et al., 2014), cassava 
(Manihot esculenta Crantz) (Rabbi et al., 2014), oat (Avena 
sativa L.) (Huang et al., 2014), and soybean (Sonah et al., 
2013; Bastien et al., 2014). Before the current study, there 
was no study on QTL mapping of genes controlling Fe 
concentration in seeds of the cultivated lentil. Thus, the 
objectives of this study were to: (i) detect phenotypic 
variation in Fe concentration in a recombinant inbred line 
(RIL) population, (ii) construct a high-density linkage 
map using GBS technology, and (iii) localize the QTL(s) 
controlling genes for Fe concentration in lentil seed.

2. Materials and methods
2.1. Plant materials and field trials
Lentil RIL population LR11 was supplied from the 
Department of Plant Sciences/Crop Development Centre 
(CDC), University of Saskatchewan (UofS), Saskatoon, 
Canada. The LR11 population of 118 RILs was derived 
from the cross “ILL 8006” × “CDC Milestone”. “ILL 8006” 
is also known as Barimasur-4, a lentil cultivar released in 
Bangladesh (Sarker et al., 1999). “CDC Milestone” was 
developed at the CDC (Vandenberg et al., 2001). The 
parents were contrasting for Fe concentration in their 
seeds based on an initial field evaluation near Saskatoon, 
Canada. The population was advanced by single seed 
descent until the F7 generation. All 118 LR11 RILs and 
their parents (“ILL 8006” and “CDC Milestone”) were 
sown at three field locations including Ege University in 
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İzmir (27°09ʹE, 38°25ʹN and 0 m sea level), Çukurova 
University in Adana (35°18ʹE, 37°01ʹN and 0 m sea level), 
and Harran University in Şanlıurfa (38°46ʹE, 37°08ʹN and 
477 m sea level) in Turkey (during the 2012 and 2013 
growing seasons. The field experiments were designed 
according to randomized complete block design (RCBD) 
with three replications. The plot size was 1.2 × 2.0 m and 
fertilizer was not applied in either year. In all locations, 
seeds for each RIL were increased in the first year; the 
increased RIL seeds were sown in 2012 and the seeds from 
2012 were sown in 2013.

Soil samples obtained from the three experimental 
fields were analyzed for structural and chemical properties 
including pH (Black, 1965), total soluble salts (Richards, 
1954), organic matter (Black, 1965), CaCO3 (Schlicting 
and Blume, 1966), and macro- and micronutrients 
(Bingham, 1949; Pratt, 1965; Linsday, 1978). Texture 
analysis was conducted according to Bouyoucos (1955). 
All soil analyses were performed at the Department of 
Plant and Soil Science at Ege University in Turkey.
2.2. Fe concentration analysis in seeds
Fe concentrations in the seeds were determined using the 
method of Kacar (1972). First, all harvested lentil seeds of 
each individual RIL and their parents were washed with 
tap water and then with distilled water. After washing, 
the samples were dried at 65 °C and then ground using 
an analytical mill. One gram of ground seed sample was 
placed in a 150-mL Erlenmeyer flask. Acid was added (12 
mL of nitric:perchloric acid of 4:1 ratio per 1 g of ground 
sample) and then wet decomposition was performed. 
The total Fe concentration of the prepared extract was 
measured by atomic absorption spectrophotometry (AAS) 
(Kacar, 1972; Kacar and Inal, 2008). Seed Fe concentration 
was detected as mg/kg. Standard Fe solutions of different 
concentrations (1, 2, 4, 6, 8, and 10 ppm) were prepared 
and measured in the AAS to prepare a calibration curve 
(linear; r2 = 0.999). Each analysis was repeated three times.
2.3. DNA extraction
Young leaves from 4–6-week-old seedlings of the RILs and 
parents from İzmir in 2012 were harvested and placed in 
aluminum foil, labelled with RIL number, and then placed 
in liquid nitrogen before transfer to a –86 °C freezer. 
Each leaf sample was ground using a tissue lyser. Total 
genomic DNA of the RILs and parents was isolated using a 
QIAGEN isolation kit (Catalog No. 69181) according to the 
manufacturer’s instructions. Purity of DNA was checked 
on 1% agarose gel by visual inspection. The purified DNA 
was quantified with a Qubit 2.0 Fluorometer.
2.4. Genotyping by sequencing analysis
Genotyping by sequencing analysis was carried out 
at DArT PLT (Diversity Arrays Technology Pty. Ltd., 
Canberra, Australia) following the protocol of Raman 

et al. (2014). DArTseq takes advantage of a DArT 
complexity reduction method and combines it with 
next generation sequencing platforms, providing a less 
complex representation of sequencing (Altshuler et al., 
2000; Kilian et al., 2012; Courtois et al., 2013; Cruz et al., 
2013; Ward et al., 2013). Similarly to DArT methods based 
on array hybridization, the technology was optimized for 
each organism and application by selecting for the most 
appropriate complexity reduction method (both the size of 
the representation and the fraction of a genome selected for 
assays). Four methods of complexity reduction were tested 
in olives (data not presented) and the PstI-MseI method 
was selected. DNA samples were processed in digestion/
ligation reactions principally as described by Kilian et al. 
(2012), but instead of one single PstI-compatible adaptor, 
two different adaptors were chosen to create two different 
restriction enzyme (RE) overhangs. In parallel to Elshire 
et al.’s (2011) previously reported sequence, the first 
adapter was designed as a PstI- compatible adapter, and 
it consisted of a sequencing primer sequence, Illumina 
flowcell attachment sequence, and a barcode region that 
varies in length. The second adaptor was chosen with an 
MseI-compatible overhang sequence as well as a flowcell 
attachment region. “Mixed fragments” containing PstI-
MseI sites were exclusively amplified by PCR as follows: 94 

°C for 1 min; 30 cycles of 94 °C for 20 s, 58 °C for 30 s, and 
72 °C for 45 s; and then 72 °C for 7 min.

Next, amplification products containing equal amounts 
of DNA in the 96-well microtiter plate were mixed together 
and applied to c-Bot (Illumina) bridge PCR, followed by a 
sequencing (single read) step that was carried out with 77 
cycles using Illumina Hiseq2500. Each generated sequence 
was processed by using DArT analytical pipelines as 
advised. The primary pipeline was used on the fastq files 
to eliminate the poor quality results. In this way, “barcode 
split” steps became more reliable with the addition of more 
strict criteria. In marker calling, for each barcode/sample, 
around 2,000,000 (±7%) sequences were used. As the last 
step, “fastqcall files” were created using identical sequences 
and were applied to the secondary pipeline for DArT PL’s 
proprietary SNP and SilicoDArT (presence/absence of 
restriction fragments in representation) calling algorithms 
(DArTsoft14). 
2.5. Linkage mapping and QTL analysis
The linkage map was constructed from genotype data 
using JoinMap 4.0 software (Van Ooijen, 2006) with 
a minimum LOD (logarithm of the odds) of 3.0–10.0 
and a recombination fraction of 30 cM. Recombination 
frequencies were converted into map distances using 
the Kosambi mapping function (Kosambi, 1943). The 
positions of QTLs for seed Fe concentration were 
determined following simple interval mapping (SIM) 
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(Lander and Botstein, 1989) using MapQTL6 (Van Ooijen, 
2009). The genome-wide LOD score threshold for QTL 
detection was determined using the permutation test 
(1000 repetitions) at a P value of 0.01 and 0.05 for normally 
distributed data (Churchill and Doerge, 1994). The LOD 
score threshold was set to three to declare the presence of 
a QTL. The amount of variation explained by each locus 
or combination of loci was calculated by multiplying the 
coefficient of phenotypic determination (r2 value) by 100.
2.6. Variance analysis
Analysis of variance (ANOVA) was used to determine 
variation for Fe concentration of the RILs population 
grown for 2 years at three locations using TOTEMSTAT 
software (Acikgoz et al., 2004). Probability was accepted at 
P ≤ 0.01 and P ≤ 0.05 levels.

3. Results
3.1. Soil properties
Soil analyses showed that the three locations had very 
loamy, nonsaline, and slightly alkaline soils (Table 1). 
Organic matter content of the soil samples was low. 
Available Fe was at sufficient levels in all three locations.

3.2. Fe concentration in seeds
In 2012, seed Fe concentration of the RILs ranged from 
37.2 to 238.5 mg/kg at İzmir, from 37.5 to 144.0 mg/kg at 
Adana, and from 35.5 to 149.0 mg/kg at Şanlıurfa. Mean 
seed Fe concentrations at İzmir, Adana, and Şanlıurfa in 
2012 were 66.4, 62.5, and 64.5 mg/kg, respectively. In 2013, 
Fe concentration of the RILs ranged from 37.1 to 146.8 
mg/kg at İzmir, from 39.2 to 151.9 mg/kg at Adana, and 
from 36.9 to 223.8 mg/kg at Şanlıurfa. Again, mean seed 
Fe concentrations in 2013 at İzmir, Adana, and Şanlıurfa 
were similar to the data in 2012, i.e. 62.9, 66.3, and 66.3 
mg/kg, respectively (Table 2). Seed Fe concentrations of 
the parents, “CDC Milestone” and “ILL 8006”, were 40.5 
and 114.3 mg/kg, respectively, when averaged over the 
two years and three locations. Two lines of RILs (LR11-17 
and LR11-133) had much higher seed Fe concentrations 
(223.8–238.5 mg/kg, respectively) than that of the high-
Fe parent “ILL 8006” (Figure 1). To confirm these data 
showing high Fe concentrations in specific RILs, the same 
amounts of seeds of these individuals grown at İzmir 
were reanalyzed (data not shown). Heritability for Fe 
concentrations was determined as 0.95 and 0.96 for 2012 
and 2013, respectively (Table 2).

Table 1. Chemical and structural properties of experimental field soils.

Soil properties İzmir Adana Şanlıurfa

pH 4.8 4.7 4.7

Total salt (%) 0.040 0.031 0.043

CaCO3 (%) 29.4 48.0 34.5

Organic matter (%) 1.8 1.2 1.9

Fine sand (%) 50.2 44.2 44.2

Silt (%) 28.0 26.0 32.0

Clay (%) 21.7 29.7 23.7

Texture  Loamy Loamy clay Loamy

Total N (%) 0.062 0.056 0.050

Available P (mg/kg) 3.2 2.6 1.8

Available K (mg/kg) 417 116 485

Available Ca (mg/kg) 6.272 6.762 7.252

Available Mg (mg/kg) 554 170 430

Available Na (mg/kg) 220 307 20

Available Fe (mg/kg) 4.3 5.0 6.5

Available Zn (mg/kg) 0.7 0.4 1.0

Available Cu (mg/kg) 1.1 0.1 0.6

Available Mn (mg/kg) 5.3 4.6 8.0
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Analysis of variance indicated that genotypes grown at 
different locations were not significantly different for seed 
Fe concentration (Table 3). The variance analyses showed 
that Genotype (G), Year × Location (Y × L), Location × 
Genotype (L × G), and Year × Location × Genotype (Y × L 
× G) interactions were significant whereas Year × Genotype 
(Y × G) was not. The histogram obtained from the means 
of seed Fe concentrations at İzmir, Adana, and Şanlıurfa in 
2012 and 2013 showed nearly normal distribution (Figure 
1). Transgressive segregants of RIL for Fe concentration 
were observed in the histogram (Figure 1).
3.3. Genetic map construction
The linkage map of the RIL was constructed with a total 
of 4177 SNPs (Table 4). These mapped into seven LGs 
covering 497.1 cM, with an average distance between 
markers of 0.12 cM. The length of LGs varied from 29.0 cM 
(LG3) to 161.5 cM (LG4). The average number of markers 

per linkage group was 596. LG4 had the highest number of 
markers (1224) with an average distance between markers 
of 0.13. LG3 had the lowest number of markers (258 
SNPs), with an average distance between markers of 0.11. 
The average distance between markers for each LG group 
varied from 0.08 cM (LG1, 5, and 6) to 0.17 cM (LG2). 
3.4. QTL analysis
A total of 21 QTL regions were detected for seed Fe 
concentration using SIM (Table 5). All QTL regions 
were identified in 2012 and 2013 except for FeQTL1.1 
and FeQTL4.1. The QTL regions explaining 5.9%–14.0% 
of the phenotypic variation were located on six linkage 
groups (LGs) (LG1, 2, 4, 5, 6, and 7) and had LOD scores 
ranging from 3.00 to 4.45. LG4 had the most QTL regions 
(6 regions) identified (FeQTL4.1, FeQTL4.2, FeQTL4.3, 
FeQTL4.4, FeQTL4.5, FeQTL4.6). LOD scores and 
percentage explaining values (% expl.) of the QTL regions 

Table 2. Minimum, maximum, and mean for Fe concentration in lentil seeds (mg/kg) of parents and RILs at İzmir, 
Adana, and Şanlıurfa in 2012 and 2013.

Location İzmir Adana Şanlıurfa
Overall mean

Years 2012 2013 2012 2013 2012 2013

CDC Milestone 39.0 42.9 38.0 44.1 41.0 38.2 40.5

ILL 8006 112.5 123.8 100.5 126.1 116.5 106.5 114.3

Minimum 37.2 37.1 37.5 39.2 35.5 36.9 37.2

Maximum 238.5 146.8 144.0 151.9 149.0 223.8 175.7

Mean 66.4 62.9 62.5 66.3 64.5 66.3 64.8

Heritability
2012 2013

0.95 0.96

Table 3. Analysis of variance for seed Fe concentration in the RIL population.

Source of variation Degree of freedom Mean squares F

Year 1 49.0 0.13 ns

Location 2 343.2 0.95 ns

Genotype 117 13,274.6 36.92**

Year × Location 2 1865.6 5.19**

Year × Genotype 117 352.3 0.98 ns

Location × Genotype 234 480.3 1.33*

Year × Location × Genotype 234 724.4 2.01**

Error 1404 359.5

ns: not significant, *: significant at P < 0.05 level, **: significant at P < 0.01 level
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were 3.01–4.45 and 6.0–14.0, respectively. LG6 had two 
QTL regions. LOD scores and % expl. values of the QTL 
regions on LG6 (FeQTL6.1 and FeQTL6.2) varied from 
3.14 to 4.12 and from 6.7 to 12.2, respectively. FeQTL5.2 
had the most SNP markers (239). LOD scores and % expl. 
values of the QTL region were 3.03–4.07 and 6.1–12.0, 
respectively. FeQTL4.3 had two SNP markers. LOD scores 
and % expl. values of the QTL regions ranged from 3.07 
to 3.38 and from 6.4 to 8.1, respectively. Additive effects 
of QTL regions of Fe are presented in Table 5. All QTL 
regions are presented in Figure 2.

4. Discussion
4.1. Fe concentration in lentil seeds
The two lines of RILs (LR11-17 and LR11-133) with much 
higher Fe concentrations (>200 mg/kg) than that the high-
Fe parent “ILL 8006” (114.3 mg/kg) indicate transgressive 
segregation, which is desirable for a population due to 
different QTL alleles in both parents (Wu et al., 2008). For 

instance, transgressive segregation was detected in a RIL 
population of Lotus japonicus (Klein and Grusak, 2009). 
Their parent seeds had Fe concentrations of 67 and 87 mg/
kg, respectively, while their RIL seed Fe concentration 
varied between 27 and 191 mg/kg in 2006 and 81 and 
135 mg/kg in 2007 (Klein and Grusak, 2009). Moreover, 
transgressive segregation of Fe concentration in a wheat 
RIL population has been shown (Tiwari et al., 2009). Mean 
seed Fe concentrations were 23.8 and 40.1 mg/kg for the 
two parents, respectively, and for the RILs varied from 17.8 
to 69.7 mg/kg.

Fe concentrations of the RIL population ranged from 
37.2 to 175.7 mg/kg when averaged over the two years and 
three locations. The range of Fe concentration is much 
greater than those of earlier studies by Thavarajah et al. 
(2011) (73–90 mg/kg) and Alghamdi et al. (2014) (65.7–
85.7 mg/kg). Fe concentration was reported between 
49.4 and 69.9 mg/kg in cultivars and 49.0 and 81.4 mg/
kg in lentil landraces (Karakoy et al., 2012). Seed Fe 

Figure 1. Frequency distribution of seed Fe concentration in the “ILL 8006” × 
”CDC Milestone” lentil RIL population measured at three locations in two years 
(2012 and 2013). 

Table 4. Number and characteristics of SNP markers mapped into seven linkage groups in RIL population.

Linkage group SNP SNP (%) Length (cM) Average distance between markers (cM)

LG1 516 12.4 38.9 0.08

LG2 724 17.3 126.5 0.17

LG3 258 6.2 29.0 0.11

LG4 1224 29.3 161.5 0.13

LG5 593 14.2 48.9 0.08

LG6 523 12.5 42.5 0.08

LG7 339 8.1 49.8 0.15

TOTAL 4177 497.1 0.12
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Table 5. Significant QTL regions for seed Fe concentration in RIL grown at İzmir, Adana and Şanlıurfa in 2012 and 2013.

Name of
QTL LG Position

(cM)

Number of
SNPs on the
QTL region

% Explanation LOD Additive
effects Year/Location

FeQTL1.1 1 2.36 5 6.3 3.06 – 2012/Adana

FeQTL1.2 1 14.16 15 6.7–9.9 3.14–3.70 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL1.3 1 21.15 25 6.1–7.1 3.02–3.20 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir and Şanlıurfa

FeQTL2.1 2 0 18 7.6–10.4 3.28–3.79 + 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL2.2 2 43.52–53.05 81 6.1–13.5 3.02–4.36 + 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL2.3 2 72.39 20 6.0–7.7 3.00–3.31 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL4.1 4 15.61 10 6.0 3.01 – 2013/Adana

FeQTL4.2 4 28.21 40 11.9–14.0 4.07–4.45 + 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL4.3 4 98.26 2 6.4–8.1 3.07–3.38 – 2012/İzmir and Adana; 2013/İzmir, Adana, 
and Şanlıurfa

FeQTL4.4 4 106.44 5 6.4 3.07–3.09 – 2012/ Adana; 2013/İzmir

FeQTL4.5 4 129.69 18 6.1–7.5 3.03–3.27 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL4.6 4 139.72 70 7.5–9.7 3.28–3.66 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL5.1 5 13.06 9 6–7.3 3.01–3.23 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL5.2 5 23.26–26.75 239 6.1–12 3.03–4.07 + 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL5.3 5 38.97 11 5.9–9.4 3.00–3.62 + 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL5.4 5 47.64 6 6.0–6.2 3.00–3.03 – 2012/ Şanlıurfa; 2013/İzmir and Şanlıurfa

FeQTL6.1 6 9.55–11.35 34 6.7–9.9 3.14–3.70 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL6.2 6 15.51 4 10.4–12.2 3.78–4.12 + 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL7.1 7 0 12 8.2–10.7 3.40–3.84 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL7.2 7 3.60 9 7.1–8.9 3.19–3.52 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa

FeQTL7.3 7 13.43 101 6.3–9.1 3.05–3.56 – 2012/İzmir, Adana, and Şanlıurfa; 2013/
İzmir, Adana, and Şanlıurfa
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Figure 2. Linkage map of RIL based on SNPs. Left bar of linkage map is cM distance and right bar of linkage map is marker names. Red 
bars and vertical letters indicate QTL regions related with Fe concentration in seed. Numbers in brackets indicate continue of certain 
linkage map such as 2[1].
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concentrations varied from 6 to 24 mg/kg in rice (Gregorio 
et al., 2000); 35 to 92 mg/kg (Islam et al., 2002) and 48 to 
74 mg/kg (Ariza-Nieto, 2007) in common bean; 17 to 24 
mg/kg in maize (Oikeh et al., 2003); 23 to 105 mg/kg in 
pea (Grusak and Cakmak, 2005); 24 to 43 mg/kg (Garvin 
et al., 2006), 20 to 45 mg/kg (Oury et al., 2006), and 25 
to 56 mg/kg (Morgounov et al., 2007) in wheat; and 24 
to 41 mg/kg in chickpea (Zia-Ul-Haq et al., 2007). In the 
current study, the two lines (LR11-17 and LR11-133) had 
Fe concentrations much higher than those of other staple 
crops in previous works.

This is the first report on Fe concentration in seeds 
of RILs of lentil, and also the first report on transgressive 
segregation for Fe concentration in lentil seeds. If seed 
Fe concentration above 150 mg/kg could be maintained 
through genetic selection, this would represent a major 
advance in biofortification of lentil.
4.2. Lentil linkage map
Next-generation sequencing has been used to discover tens 
of thousands SNPs and construct genetic linkage maps 
and conduct genome-wide association studies (Metzker, 
2010). As the methodology discovers large numbers of 
markers in a short time and is cost effective, researchers 
prefer using GBS technology for genome mapping studies, 
such as those conducted in barley and wheat by Poland et 
al. (2012) and raspberry (Rubus idaeus L.) by Ward et al. 
(2013). 

A total of 4177 SNPs were mapped on seven LGs. The 
total length of the linkage map was 497.1 cM in the current 
study. In previous lentil mapping studies, lengths of the 
linkage maps varied from 751 cM to 4060.6 cM (Eujayl et 
al., 1998; Rubeena et al., 2003; Duran et al., 2004; Hamwieh 
et al., 2005; Tanyolac et al., 2010; Gupta et al., 2012; De 
la Puente et al., 2013; Sharpe et al., 2013; Gujaria-Verma, 
2014; Ates et al., 2016). The length of the map reported here 
was shorter than in these previous studies, but the value 
was close to the findings (751 cM) published by Hamwieh 
et al. (2005). The average distance between the markers in 
our study was 0.12 cM. Compared to the average distance 
between markers in previous studies, the average distance 
was shorter than those of findings of 2.3–19.3 cM by other 
authors (Eujayl et al., 1998; Rubeena et al., 2003; Duran et 
al., 2004; Hamwieh et al., 2005; Tanyolac et al., 2010; Gupta 
et al., 2012; De la Puente et al., 2013; Sharpe et al., 2013; 
Gujaria-Verma, 2014; Ates et al., 2016). Use of SNP-based 
technologies has led to increased marker frequency per 
linkage group (Deschamps et al., 2012). Most linkage maps 
of lentil have been constructed using RAPD, SSR, ISSR, 
and AFLP markers. The linkage maps of lentil constructed 
by Sharpe et al. (2013) and Ates et al. (2016) had 537 and 
1780 SNP markers, respectively, which is less than the 
4177 SNPs in the current study. The number of mapping 

markers in this study, 4177, is higher than the results from 
other linkage maps [e.g., 114 (Rubeena et al., 2003) to 283 
(Hamwieh et al., 2005)].
4.3. QTLs for seed Fe concentration
This study is the first report on QTLs linked to genes 
controlling Fe concentration in lentil seeds. A total of 
21 QTL regions (each 3 QTL regions in LG1, LG2, and 
LG7; 6 QTL regions in LG4; 4 QTL regions in LG5; and 
2 QTL regions in LG6) distributed across six LGs were 
associated with Fe concentration in lentil seed. Previous 
QTL mapping studies of cereal crops identified fewer 
QTL(s) for seed Fe concentration. In legumes like lentil, 
14 and 5 QTLs for Fe concentration in seed were detected 
in common bean (Blair et al., 2009) and in Lotus japonicus 
(Klein and Grusak, 2009). As for cereals, 1 QTL for Fe 
concentration in grain of maize was detected on LG5 (Jin 
et al., 2013), while 3 QTLs for Fe concentration in grain 
of rice were identified on LG2, 8, and 12 (Stangoulis et al., 
2007). Similarly, a total of 3 QTLs (2 additional QTLs and 
1 epistatic QTL) for Fe concentration were determined 
in wheat (Xu et al., 2012) whereas Srinivasa et al. (2014) 
detected 5 QTLs for Fe concentration in wheat grain 
on LG1A, 2A, and 3B. In the current study, more QTLs 
were mapped on the lentil genome compared to previous 
QTL mapping studies due to the construction of a high-
density map using SNPs produced by GBS technology. 
This technology (GBS) is used to increase the density of 
markers for precise detection of QTLs (Bandillo et al., 
2013; Chen et al., 2014; Raman et al., 2014). High marker 
density can enhance the resolution of genetic linkage maps 
(Yu et al., 2011). The high-density linkage maps obtained 
in this way could improve the possibility that one of the 
markers is localized in chromosomal fragments with 
nonrecombination events and the accuracy of the QTL 
localization (Liu et al., 2013; Stange et al., 2013).

A total of 21 QTLs for Fe concentration explained 
variance of 5.9%–14.0% with LOD scores ranging from 
3.00 to 4.45 (Table 5). The phenotypic variation was 
statistically significant. The phenotypic variation for Fe 
concentration in the current study was close to variations 
reported in cabbage (Wu et al., 2008), rice (Stangoulis et 
al., 2007), wheat (Tiwari et al., 2009; Pu et al., 2014), and 
maize (Jin et al., 2013).

In conclusion, this study represents the first use of GBS 
as a means of identifying QTLs for Fe concentration in 
seeds of lentil. A wide range of phenotypic variation was 
detected for Fe concentration among RILs population. 
The results showed that Fe concentration in lentil seed was 
quantitatively inherited. The QTL analysis indicated that 
most QTLs were significant and stable at more than one 
location over 2 years. The presence of the same QTLs at 
different locations is a genotypic characteristic and not an 
environmental effect. These stable QTLs could be useful 
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for molecular breeding strategies that use marker-assisted 
selection to detect genotypes with high Fe concentration in 
seed. This would help accelerate biofortification strategies 
to increase and stabilize the concentration of Fe in lentil 
seed. By this means, new varieties of lentil with high Fe 
concentration could be developed in the future. A high 
density linkage map using SNP markers through GBS 

shows promise for use with lentil and may open avenues 
for further genetic mapping and biofortification studies.
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