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1. Introduction
Walnut (Juglans regia L.) belongs to the family Juglandaceae 
(Şen, 2011). It ranks third in nut production worldwide 
after cashews and almonds (Amin et al., 2017). Walnuts 
are quite rich in oils, proteins, vitamins, fibers, minerals, 
and antioxidants; thus they are considered quite healthy 
nuts for human nutrition (Khir et al., 2014). Walnuts are 
used not only as an individual foodstuff, but also as an 
ingredient of several baked and processed foods (Eliseeva 
et al., 2017). 

The physical properties of agricultural products have 
long attracted the attention of researchers (Bahrami et al., 
2017). Previous researchers assessed the quality attributes 
of agricultural products such as shape, size, density, 
ripening level, moisture and oil content, firmness, flavor, 
and color of the products (Titova et al., 2015). The food 
industry uses various products in quite different sizes, 
colors, and shapes. Color can be used as a significant 
parameter in designing mechanical equipment to be used 
in sorting and grading processes of agricultural products 
(Mohsenin 1984; Pathare et al., 2013; Mahawar et al., 
2017).

Quality standards for the nut and kernel of walnuts 
have already been established by the Turkish Standards 
Institute (TSE, 1990, 1991). Shell thickness, kernel size, 
kernel ratio, flavor, and kernel color are also indicated as 
significant quality attributes of walnuts (Warmund, 2008). 
The ones with symmetric or round shapes usually have 
higher market value than the others (Jun et al., 2017).

Color is considered a significant quality indicator for 
both raw and processed agricultural products since it is the 
first item perceived by consumers. It has a great potential 
to attract the attention and perceptions of buyers (Ellis and 
Kok, 2017; Goñi and Salvadori, 2017). For instance, for 
walnuts, light colors are usually preferred by consumers 
(Fuentealba et al., 2017).

The color of agricultural products is usually assessed 
through L*, a*, and b* values or CIELab color space (Goñi 
and Salvadori, 2017). CIELab color space is commonly 
used for comparing product colors (Rodríguez-Pulido et 
al., 2013). It is an international standard adopted by the 
Commission Internationale d’Eclairage (CIE) in 1976 for 
color measurements (León et al., 2006).
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Color measurement instruments, usually colorimeters, 
are used to measure the color characteristics of agricultural 
products (Van Roy et al., 2017). Colorimeters also use 
CIELab color space and these instruments are used in 
quality assurance applications (Wickström et al., 2017). 
In CIELab color space, L* represents lightness and ranges 
between absolute black (L* = 0) and absolute white (L* 
= 100). The a* values are positive for reddish colors and 
negative for greenish colors. Similarly, b* takes positive 
values for yellowish colors and negative values for bluish 
colors. The a* and b* values are used to calculate C* 
(chroma) and h° (hue) angle values with the equations  C* 
= (a*2 + b*2)1/2 and h° = tan–1 b*/a* (McGuire, 1992; Cáceres 
et al., 2016; Rodríguez-Pulido et al., 2017).

Several previous researchers used CIELab color space-
based colorimeters to assess the color attributes of different 
fruit species (Sacks and Shaw, 1993; Heredia et al., 1998; 
Ayala-Silva et al., 2005; Christopoulos and Tsantili, 2011; 
Khir et al., 2014; Bujdoso et al., 2016; Cáceres et al., 2016; 
Amin et al., 2017; Cárdenas-Pérez et al., 2017; Kus et al., 
2017; Udomkun et al., 2017), to assess the color attributes 
of different vegetable species (Kabelka et al., 2004; Colonna 
et al., 2016; Corona et al., 2016; De Oliveira Moura et al., 
2016; Schoeninger et al., 2017; Zhang et al., 2017) and 
for various other food industry processes (Azabou et al., 
2017; Guiné et al., 2017; Nascimento et al., 2017; Popa and 
Boran, 2017).

In recent years, artificial intelligence-based tools 
such as data mining and artificial neural networks have 
been applied for prediction of the physical properties of 
agricultural products (Demir et al., 2017; Eski et al., 2017; 
Kus et al., 2017; Gürbüz et al., 2018).

The present study was conducted to develop a new rule 
(equation) with Prediction and Find Laws algorithms of 
data mining to calculate color index (CI), chroma (C*), 
and hue (h*) angle parameters of 10 different walnut 
cultivars by using CIE-L*, a*, and b* values and to estimate 
the same color parameters calculated with this equation by 
using an adaptive neuro-fuzzy approach. 

2. Materials and methods
The walnut cultivars Bilecik, Fernette, Fernor, Kaman-1, 
Maraş-12, Maraş-18, Sunland, Şen-2, Yalova-1, and 
Yalova-3 were used as the material of the present study. 
The walnuts were supplied by the Eğirdir Fruit Research 
Institute during the 2016 harvest season.

One hundred randomly selected walnuts of each 
cultivar were subjected to color measurements (Demir et 
al., 2017). Color measurements were performed over the 
outer surface of the walnut shells with a chroma meter (CR-
5; Konica Minolta Bench-top, Japan). Measured CIE-L*, 
a*, and b* values were used to calculate color index (CI), 
hue angle (h*), and chroma (C*) values (McGuire, 1992):                       
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h b a if a and b* * *tan ( / ), ( * * )= > ≥-1 0 0 h b a if a and b* * *tan ( / ), ( * * )= > ≥-1 0 0        (3)

h b a if a and b* * *tan ( / ), ( * * )= + < ≥-180 0 01
 h b a if a and b* * *tan ( / ), ( * * )= + < ≥-180 0 01

      (4)

h b a if a and b* * *tan ( / ), ( * * )= + < <-180 0 01
 h b a if a and b* * *tan ( / ), ( * * )= + < <-180 0 01

     (5)

h b a if a and b* * *tan ( / ), ( * * )= + > <-360 0 01
 h b a if a and b* * *tan ( / ), ( * * )= + > <-360 0 01

     (6)

2.1. Prediction and Find Laws algorithms 
Various methods have been developed for parameter 
estimations from real data. The Find Laws (FL) algorithm 
of PolyAnalyst is a common prediction engine used for 
parameter estimation. The algorithm yields complicated 
formulas expressing dependencies among real data. It 
employs symbolic knowledge acquisition technology 
and inquires operational relations in data. The rules can 
range from simple user-inputted equations to complex, 
high-degree rational polynomials generated by the FL 
algorithm. The ability of FL to automatically build a wide 
variety of mathematical constructions, including complex 
nonlinear algebraic expressions and functions, makes it 
a unique knowledge discovery tool. Resultant rules are 
mathematical expressions commonly used to generate a 
value based on a set of attributes (PolyAnalyst, 2007). 
2.2. Predicted versus real graphs
The predicted versus real graph shows all the data points in 
the real dataset as well as model-predicted data points. Such 
presentation of the data points allows users to comprehend 
the accuracy and predictive power of the model. While the 
real data are placed on the x-axis, the predicted data are 
presented on the y-axis. When all the data points are quite 
close to the diagonal regression line, the predictive rule is 
considered perfect (PolyAnalyst, 2007). 
2.3. Adaptive neuro-fuzzy interface system 
The adaptive neuro-fuzzy interface system integrates a 
neural network with a fuzzy interface system (FIS). The FIS 
method is composed of 3 elements: a rule base, a database, 
and a reasoning mechanism. The adaptive neuro-fuzzy 
interface system uses two inputs (y1 and y2) and one output 
(v) to explain the fuzzy inference system. If the rule base 
contains a fuzzy set, if–then rules are applied as follows:

Rule 1: If y1 is θ1 and y2 is β1 then v1 = a1 y1 +b1 y2 +s1  (7)

Rule 2: If y1 is θ2 and y2 is β2 then v2 = a2 y1 +b2 y2 +s2,  (8)
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where θi and βi are fuzzy membership sets, bi is the number 
of membership equations, and si is the design parameter 
that is defined during the training process. 

The adaptive neuro-fuzzy interface system consists of 
six layers as follows:

Layer 1: This is the input layer that determines actual 
data and desired data.

Layer 2: Each nodal in this layer is an adaptive nodal 
with a fuzzy membership equation. For two inputs, the 
nodal outputs are

Li
1= αθi(y),   i=1,2     (9)

Li
1= αβi(y),   i=1,2,                 (10)

where αθi and αβi are membership functions. 
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where {pi, ri,ti} is the coefficient group.

Layer 3: Each nodal in the third layer is a circle nodal 
called “Ƞ”, which multiples all signals and sends the 
product out.

wi= αθi(y) αβi(y)  (i=1,2..)                  (12)

Layer 4: Each nodal in the fourth layer is a circle nodal 
called “Ɲ”. 
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Layer 5: In this layer, each nodal i has the following 
function:
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5
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Layer 6: The single nodal in the sixth layer is a circle 
nodal called “Ʃ”. 
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A schematic illustration of the adaptive neuro-fuzzy 
structure predictor is represented in Figure 1.

3. Results and discussion
The equations developed using L*, a*, and b* values of 
walnut cultivars as an alternative to formulations provided 
in the literature and cultivar-independent R2 values 
of training and test data for CI, C*, and h* parameters 
estimated with these equations are provided in Table 1.

Randomly selected 70% of the data (700 items of data) 
were used for training and the remaining data (300 items 
of data) were used for testing. R2 values for testing and 
training processes were respectively calculated as 1 and 
0.99.

As seen from R2 values, significant rules were obtained 
for predicting the color parameters of all types of walnut. 
This means the predicted values by the FL were almost 
equal to the target output.

The results in Figures 2–4 showed that adequate 
prediction was obtained with the predicted versus real 
graph of CI, C*, and h* by FL.  

In Figures 2–4, the horizontal axis represents actual 
values of CI, C*, and h* parameters and the vertical axis 
represents estimated values of CI, C*, and h* parameters.

The results in Figures 5–7 showed that adequate 
prediction was obtained with the predicted and real versus 
counter of CI, C*, and h* by FL.

In Figures 5–7, record numbers of CI, C*, and h* 
parameters were provided on the horizontal axis and the 
actual and estimated values of CI, C*, and h* parameters 
were provided on the vertical axis. 

The parameters calculated with the new equations 
were used to train the adaptive neuro-fuzzy structure. 

Figure 1. Schematic illustration of the adaptive neuro-fuzzy structure predictor.
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Figure 2. The predicted versus real graph of CI by FL. Figure 3. The predicted versus real graph of C* by FL.

Figure 4. The predicted versus real graph of h* by FL. Figure 5. The predicted and real versus counter of CI by FL.

Figure 6. The predicted and real versus counter of C* by FL. Figure 7. The predicted and real versus counter of h* by FL.

Table 1. Prediction results for CI, C*, and h*.  

Predicted 
parameter Rule obtained R2 training value R2 test value 

CI* (–2466.09 *h*L+668383 *L–6.15865e+006 +23100.2 *h)/
(h*L2–1069.03 *L–107.365 *L2) 1 1

C*  –3.29937e+007 *a*b/(a–3.29937e+007) 1 1

h* (–2.91915e–007 *L*CI4+304.96 *L*CI3–0.079729 *L2*CI4–134795 *CI2)/
(L*CI3–1.02014e–007 *L3*CI5–496.48 *CI2) 1 0.999
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Prediction results of the neuro-fuzzy structure for CI, C*, 
and h* parameters of each walnut cultivar are presented in 
graphs. In Figure 8, the dashed line shows the calculated 
data and the solid line shows predictions of the adaptive 
neuro-fuzzy structure. The predictions for the Yalova-1 
cultivar with a root mean square error (RMSE) value of 
0.01 were quite good (Table 2). Adaptive neuro-fuzzy 
predictions for the Bilecik and Fernor walnut cultivars are 
presented in Figures 9 and 10. Prediction results with an 
RMSE value of 0.02 were good. Figures 11 and 12 present 
predicted and calculated results for the Maraş-12 and 
Maraş-18 walnut cultivars. Prediction results for CI, C*, 
and h* parameters of the Kaman-1 and Fernette cultivars 
are presented in Figures 13 and 14. The results with an 
RMSE value of 0.01 were considered quite good. Prediction 
results for the Sunland and Yalova-3 walnut cultivars are 
presented in Figures 15 and 16 and the results for the Şen-
2 cultivar are presented in Figure 17. Experimental and 
simulation results revealed that the adaptive neuro-fuzzy 
structure was able to predict CI, C*, and h* parameters 
with the least error by using L*, a*, and b* parameters. It 
is quite a tiresome and troublesome process to calculate 
color characteristics of walnut cultivars with the equations 
in the literature. However, color characteristics of a walnut 
cultivar can be predicted with an adaptive neuro-fuzzy 
structure trained for another walnut cultivar. Neural 
network-based structures can also be used to estimate 
physical, pomological, and color characteristics of several 
other agricultural products. 

In a previous study, Demir et al. (2018a) used physical 
attributes and developed quite accurate rules to predict the 
width and depth of stalk cavity and eye basin of different 
apple varieties. In another study, Demir et al. (2018b) used 
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Table 2. Neural network parameters of adaptive neuro-fuzzy approach.

NN type h α N RMSEs

Adaptive neuro-fuzzy structure 0.1 0.6 4,000,000

Yalova-1 0.01

Bilecik 0.02

Fernor 0.02

Maraş-12 0.01

Maraş-18 0.01

Kaman-1 0.01

Fernette 0.01

Sunland 0.01

Yalova-3 0.01

Şen-2 0.01

Figure 8. Adaptive neuro-fuzzy structure estimation results for 
Yalova-1. 
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Figure 9. Adaptive neuro-fuzzy structure estimation results for Bilecik.  Figure 10. Adaptive neuro-fuzzy structure estimation results for Fernor.
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Figure 11. Adaptive neuro-fuzzy structure estimation results for 
Maraş-12.

Figure 12. Adaptive neuro-fuzzy structure estimation results for 
Maraş-18. 
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Figure 13. Adaptive neuro-fuzzy structure estimation results for 
Kaman-1.

Figure 14. Adaptive neuro-fuzzy structure estimation results for Fernette. 

Figure 15. Adaptive neuro-fuzzy structure estimation results for Sunland.  Figure 16. Adaptive neuro-fuzzy structure estimation results for Yalova-3. 
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data mining approaches to predict color properties of fruits 
and developed rules with the FL algorithm of the data 
mining approach to estimate the color parameters (color 
index, hue angle, and chroma) of fruits. Gürbüz et al. (2018) 
estimated the weight of almond nuts from the physical 
attributes with data mining approaches and developed a 
highly accurate equation to calculate nut weights. Kus et al. 
(2017) predicted the hue angle, chroma, and color index 
of six apple varieties through artificial neural networks. 
According to the experimental and simulation results, the 
proposed ANFIS predictor had a superior performance in 
prediction of these color parameters. Demir et al. (2017) 
used two NN structures in the prediction of some physical 
parameters of pumpkin seeds. The RBNN had superior 
performance to predict different physical parameters of 
the pumpkin seeds.

Classifications are made in several agricultural 
products based on measured and calculated parameters. 
Color is a significant parameter for color standardization 
of agricultural products and for machine vision systems 
able to make color-dependent classifications. 

Color-dependent manual grading of walnuts is a time-
consuming and inconsistent process. Rapid and objective 
color measurements are required for classification and 
quality control of agricultural products like walnuts. 

It was concluded that data mining could be used as 
an efficient tool to estimate the parameter values that 
are difficult to measure directly from the values of easily 
measured parameters. Therefore, the method can reliably 
be used in agricultural crops including vast amount of data. 
The present simulation results and error values revealed 
that the recommended adaptive neuro-fuzzy predictor 
was quite reliable in prediction of color index, chroma, 
and hue angle values of different walnut cultivars. The 
results also demonstrated that the adaptive neuro-fuzzy 
model successfully achieved quite high accuracy rates.
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Figure 17. Adaptive neuro-fuzzy structure estimation results for Şen-2. 
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