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1. Introduction
Fine roots are generally categorized as roots less than 2 
mm in diameter (Strand et al., 2008), and their production 
accounts for 4–70% of the total net primary production 
(NPP) in temperate forests (Vogt, 1991). In addition, 
fine root dynamics might be associated with patterns of 
the above-ground physiological processes and changes in 
litter production (Block et al., 2006; Satomura et al., 2006). 
The positive relationships of fine root production (FRP) 
with NPP and above-ground litter production have been 
reported in temperate forest ecosystems (Newman et al., 
2006; Van Do et al., 2015; An et al., 2017).

Fine root dynamics, such as fine root biomass 
(FRB), FRP, and turnover rate, are affected by the soil’s 
environmental conditions. In general, soil physical 
properties (bulk density and clay content), soil chemical 
properties (soil organic matter and inorganic nitrogen), 
and soil microclimate (soil temperature and moisture) 
directly and indirectly affect fine root dynamics (Joslin et 

al., 2006; Quan et al., 2010; Finér et al., 2011). Cai et al. 
(2019) found that FRB and turnover rate were reduced by 
increasing soil nitrogen availability in forest ecosystems. 
In the metaanalysis, FRB, FRP, and turnover rate were 
controlled by air temperature, precipitation, soil nitrogen 
concentration, and soil phosphorus concentration in forest 
ecosystems globally (Yuan and Chen, 2010; Finér et al., 
2011). In particular, soil microclimate and soil chemical 
properties showed differences along the soil depth, 
because topsoil is directly affected by climate and above-
ground activity such as litterfall (An et al., 2017). These 
soil environmental conditions can differentiate FRB and 
FRP along the soil depth gradients (Makita et al., 2011). 
In previous studies, FRB and FRP at topsoil occupied over 
50% of the total biomass and production in temperate 
forests (Noguchi et al., 2005; Han et al., 2006).

Approximately 90% of previous studies about fine root 
dynamics were conducted on roots defined as 0–2 mm 
in diameter (Finér et al., 2011). However, fine roots may 
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show functional differences with root diameter and root 
branch order (Guo et al., 2008b; Makita et al., 2011). The 
functions of fine roots are divided into the absorption of 
water and nutrients, and the transport capacity according 
to the root diameter and root branch order (de Kroon 
and Visser, 2003; Makita et al., 2011). Very fine roots and 
lower-order roots were characterized by fast metabolic 
activities (Makita et al., 2011). Water and nutrient 
absorption mainly occurs in very fine roots defined as <1 
mm diameter (Strand et al., 2008). Also, very fine roots 
were sensitive to status of soil resources such as water and 
nutrients because of vulnerability to soil environmental 
conditions (Konôpka et al., 2013). As a result, biomass, 
production, and turnover rate of very fine roots are more 
susceptible to respond to the changing soil environment 
compared to those of fine roots (<2 mm) (Joslin et al., 
2006; Guo et al., 2008a). Because of this, studies on more 
detailed diameter classification of fine roots such as less 
than 0.5 mm or 1 mm are necessary (Finér et al., 2011; 
Mucha et al., 2019). Many previous studies have focused 
on the changes in root morphology and nutrient content 
according to the functional difference. Very fine roots 
showed high potential for nutrient and water uptake, and 
mycorrhizal colonization (Guo et al., 2008b; McCormack 
et al., 2015), resulting in changes in root morphology, such 
as specific root length and thickness (Guo et al., 2008b; 
Makita et al., 2011). Doi et al. (2017) found that root 
morphological traits directly correlated with root nutrient 
content such as inorganic nitrogen and carbon. However, 
as yet there have been few studies on the relationships 
between fine root dynamics (according to root diameter) 
and surrounding soil conditions in response to soil depth 
and NPP (An et al., 2017; Doi et al., 2017).

Pinus densiflora (pine) are widely used as timber or 
fuel (Lee et al., 2017) and Quercus spp. (oak) are usually 
utilized as logs for mushroom cultivation (Lee et al., 2018). 
Pine and oak are important in forest ecosystem research 
since these species occupy more than 24.7% and 15.4% 
of South Korean forest area, respectively (Korea Forest 
Service, 2018). This study aimed (1) to examine the effect 
of soil depth on FRB and FRP, and (2) to determine the 
relationship between FRP and NPP in P. densiflora and 
Q. serrata forests. These relationships were evaluated 
according to root diameter (<1 mm and 1–2 mm). Our 
primary hypothesis was that biomass and production of 
very fine root (<1 mm) would decline with soil depth 
as being more closely related to the soil environmental 
conditions than those of fine roots (1–2 mm). Secondly, 
we hypothesized very fine root (<1 mm) production would 
be more closely related to NPP than fine root (1–2 mm) 
production, since they play an important role in absorption 
of water and nutrients which directly influences plant 
growth as well as above-ground activities. 

2. Materials and methods
2.1. Study site
This study was conducted in P. densiflora (37°47′01″N, 
127°10′37″E, 420 m asl) and Q. serrata forests 
(37°46′39″N, 127°11′08″E, 370 m asl) in the Gwangneung 
Experimental Forest (GEF), central Korea. The mean 
annual air temperature and precipitation in GEF were 
11.2 °C and 1503.0 mm, respectively, from 1981 to 2010 
(Korea Meteorological Administration 2011). The soil 
of both forests is classified as a slightly dry brown forest 
soil (mostly Inceptisols, United States Soil Classification 
System). P. densiflora and Q. serrata forests had similar 
stand ages (75 and 85 years), while they differed in aspect 
(SW 260° and NW 320°) and soil texture (sandy clay loam 
and loam). Detailed characteristics of the two study forests 
are described in Table 1. Three 20 m × 20 m plots were 
established in each forest for the study.
2.2. Fine root biomass
FRB was estimated using the soil sequential coring method 
with a soil corer (diameter: 7.2 cm, length: 10 cm, volume: 
407 cm3). Three soil sampling points were randomly 
designated in each plot, and soil from each point was 
sampled four times, on April 8, August 5, and December 
9, 2016, as well as March 27, 2017. Soil sampling was 
conducted at equal intervals for a year to consider seasonal 
changes. Soil was separately collected at 0–10, 10–20, and 
20–30 cm depths, and individually sealed in zipper bags. 
Woody roots of dominant species and others in each soil 
sample were collected, separated from understory plants, 
sorted by root diameter (<1 and 1–2 mm), and carefully 
washed. These roots were oven-dried to a constant mass at 
65 °C to weigh biomass.
2.3. Fine root production
FRP was estimated by the ingrowth core method using a 
stainless steel mesh cylinder (diameter: 5 cm, length: 35 
cm, pore size: 5 mm). On April 6, 2016, 18 ingrowth cores 
(2 species × 3 plots × 3 points × 1 collection times) were 
established by digging a hole (30 cm depth) using an auger 
(approximately 5 cm in diameter), and then filling the 
hole with root-free soil collected near the site. The upper 
section of the cores, which remained above the soil surface 
(about 5 cm), was covered by litter to correspond with the 
environmental conditions of the surrounding areas. Three 
points of establishing ingrowth cores were designated 
in each plot in coordination with the soil core sampling 
points, and three ingrowth cores in each plot were collected 
on March 27, 2017. Ingrowth cores were divided into 
three soil depths (0–10, 10–20, and 20–30 cm). Woody 
roots of dominant species and others were separated from 
understory plants, sorted by root diameter (<1 and 1–2 
mm) in each soil sample, and carefully washed. Roots were 
oven-dried to a constant mass at 65 °C. 
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2.4. Soil moisture, organic matter, and inorganic nitrogen
In April 2016, soil samples at 0–10, 10–20, and 20–30 cm 
depths were collected from three points in each plot using 
a coring method. Plant materials >2 mm were removed 
using a sieve with a 2 mm mesh. Soil moisture was 
estimated gravimetrically after oven-drying the fresh soil 
at 105 °C. Soil organic matter (SOM) was estimated after 
soil samples were air-dried and sieved with a 2 mm mesh 
using the 0.167 M K2Cr2O7 solution (Walkley and Black, 
1934) and a factor (1.724) to convert soil organic carbon 
to SOM (Hudson, 1994).

For the analysis of inorganic nitrogen (NH4
+ and 

NO3
–), mineral soil was collected at 0–10, 10–20, and 

20–30 cm depths from five points in each plot during the 
growing season (August 2017). The soil was sampled after 
removing the litter and humus layers. Each soil sample 
was individually sealed in a zipper bag and stored at 4 °C 
until analyses. Plant materials >2 mm were removed using 
a sieve with a 2 mm mesh. Inorganic soil nitrogen was 
extracted with 30 mL of 2 M KCl solution from 6 g of fresh 
soil and was quantified using the colorimetric methods 
(Miranda et al., 2001; Mulvaney, 1996).
2.5. Net primary production
NPP was calculated as the sum of the above- and below-
ground biomass increments, litter production, and FRP. 
Above- and below-ground biomass increments were 
calculated using the allometric growth equation from the 
DBH measured in April 2016 and April 2017. All allometric 
growth equations which were developed for pine and oak 
in South Korea were referred to the Korea Forest Research 
Institute (2014). These equations were in the form of ‘y = 
a*(DBH)b’. To estimate the above-ground litter production, 
five litter traps (0.25 m2) were established in each plot in 
April 2016. Litter production was collected 3 times when 
the soil sequential coring was conducted. The collected 
litterfall was oven-dried to a constant mass at 65 °C and 
weighed. Annual litter production was determined as the 
sum of litterfall over the year. 

2.6. Statistical analysis
All data, except for soil NH4

+ and NO3
–, were normalized 

by log-transformation prior to statistical analysis. A three-
way ANOVA was used to test the effects of species, root 
diameter, and soil depth on FRB and FRP (n = 3). Tukey’s 
HSD test was used to determine differences in FRB and 
FRP within each root diameter class among the soil depths 
and in soil properties such as SM, SOM, NH4

+, and NO3
– 

among the soil depths in each forest. Pearson correlation 
analysis was performed to determine the relationship 
among the soil properties, FRB, and FRP for each soil depth 
(n = 18). Relationships between NPP and FRP or litter 
production and between FRP and litter production were 
tested with linear regression analysis (n = 6). All statistical 
analyses were conducted with SAS 9.4 (SAS systems, Cary, 
NC, USA) at the significance level of P = 0.05.

3. Results
3.1. Fine root biomass
Mean FRB significantly differed by species, root diameter, 
and soil depth during the study period (Table 2). There was 
a significant interaction between root diameter and soil 
depth. In P. densiflora and Q. serrata forests, mean FRB <1 
mm (2.22 ± 0.23 and 2.63 ± 0.23 Mg ha–1) was higher than 
mean FRB 1–2 mm (0.63 ± 0.12 and 1.72 ± 0.38 Mg ha–1) 
at 0–30 cm soil depth (Figures 1a and 1b). Additionally, 
mean FRB <1 mm significantly decreased with soil depth, 
while mean FRB 1–2 mm showed no significant difference 
among the soil depths (Figures 1a and 1b). Mean FRB <1 
mm at 0–10 cm soil depth accounted for 61.6% and 58.2% 
of FRB <1 mm at 0–30 cm soil depth for P. densiflora and 
Q. serrata forests, respectively.
3.2. Fine root production
Annual FRP differed by species, root diameter, and 
soil depth, and there were also significant interactions 
between soil depth and the species and root diameter in P. 
densiflora and Q. serrata forests (Table 2). In P. densiflora 
and Q. serrata forests, annual FRP <1 mm (0.97 ± 0.09 and 

Table 1. Site characteristics of Pinus densiflora and Quercus serrata forests in central Korea.

P. densiflora Q. serrata

Location 37°47′01″N, 127°10′37″E 37°46′39″N, 127°11′08″E
Altitude (m) 410–420 360–370 
Aspect (°) SW 260 NW 320
Stand age (year) 70–80 80–90 
Stand density (trees ha–1) 933 741 
Mean DBH (cm) 34 41 

Understory vegetation Q. mongolica, Q. variabilis, Carpinus laxiflora, 
and Styrax obassia

Q. serrata, C. cordata, C. laxiflora, S. obassia,
and Acer pseudosieboldianum
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1.55 ± 0.16 Mg ha–1 year–1) was higher than annual FRP 
1–2 mm (0.26 ± 0.14 and 0.20 ± 0.06 Mg ha–1 year–1), and 
there was a significant difference only in annual FRP <1 
mm with soil depth (Figures 1c and 1d). Mean FRP <1 mm 
and FRP 1–2 mm at 0–10 cm soil depth accounted for 58.0 
and 53.2% for the P. densiflora forest and 53.3 and 40.6% 
for the Q. serrata forest, respectively.
3.3. Relationship between fine root production and soil 
properties
Changes in soil properties with soil depth are shown in 
Table 3. The soil moisture, SOM, and NO3

– concentration 
decreased with soil depth in P. densiflora and Q. serrata 
forests (Table 3). In particular, the effect of soil depth on 
SOM was significant in both forests, but effects on the 
soil moisture and NO3

– concentration were significant 
only in the Q. serrata forest (Table 3). The SOM and NO3

– 
concentration at 0–10 cm soil depth were higher than 
other soil depths, with values of 3.6% and 8.5 mg kg–1 for 

Table 2. F ratios of a three-way ANOVA for the effects of species, 
root diameter, and soil depth on the mean fine root biomass and 
annual fine root production for Pinus densiflora and Quercus 
serrata forests in central Korea.

Df Fine root
biomass

Fine root
production

Species (S) 1 12.8** 6.3*

Diameter (DI) 1 35.6**** 24.7****

Depth (DE) 2 34.9**** 101.1****

S × DI 1 2.7 0.4

S × DE 2 0.6 9.5**

DI × DE 2 12.2*** 13.2***

S × DI × DE 2 1.3 1.1

* P< 0.05; ** P< 0.01; *** P< 0.001; **** P< 0.0001;

Figure 1. Mean fine root biomass for (a) Pinus densiflora and (b) Quercus serrata forests and the annual fine root production for 
(c) Pinus densiflora and (d) Quercus serrata forests in central Korea. Vertical bars indicate standard error of the mean (n = 3). 
Values followed by a different letter are significantly different within each root diameter class. 
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the P. densiflora forest and 4.3% and 11.2 mg kg–1 for the 
Q. serrata forest, respectively. NH4

+ concentration did not 
show a significant difference among the soil depths. 

Annual FRP < 1 mm was significantly related to soil 
moisture (R = 0.52), SOM (R = 0.59), NH4

+ (R = 0.54), 
and NO3

– concentration (R = 0.78), it was also highly 
correlated with FRB < 1 mm and FRP 1–2 mm (Table 4). 
However, annual FRP 1–2 mm did not show a significant 
relationship with soil properties or FRB (Table 4).
3.4. Relationship between fine root production and net 
primary production
In P. densiflora and Q. serrata forests, NPP (Mg ha–1 year–1) 
was 13.01 ± 1.51 and 20.65 ± 0.93, respectively, and FRP < 
1 mm occupied 7.5% of the NPP in both forests (Table 5). 
There was a significant linear relationship between NPP 
and either FRP < 1 mm (P < 0.01 and R2 = 0.91; Figure 
2a) or litter production (P = 0.01 and R2 = 0.84; Figure 
2c) across the forests. On the other hand, there was no 
significant relationship between NPP and FRP 1–2 mm 

(P > 0.05; Figure 2b). Also, litter production showed a 
significant linear relationship with FRP < 1 mm (P < 0.05; 
Figure 2d), but not with FRP 1–2 mm (P > 0.05).

4. Discussion
Mean FRB and annual FRP peaked at the topsoil (0–10 
cm depth) in both P. densiflora and Q. serrata forests. 
These patterns, influenced by soil depth, coincided with 
previous studies conducted in temperate forests (Noguchi 
et al., 2005; Han et al., 2016; An et al., 2017). The gradient 
in soil properties among the soil depths was closely 
related to FRB and FRP (Table 4). In particular, FRB and 
FRP strongly reflect soil water and nutrient availability 
(Noguchi et al., 2005; Makita et al., 2011; Han et al., 2016). 
Above all, nitrogen availability is an important factor 
regulating root dynamics such as biomass, production, 
mortality, and turnover rate (Aber et al., 1985; Yuan and 
Chen, 2010). Fast decomposition of SOM and the nitrogen 
input from precipitation could induce the higher nitrogen 

Table 3. Soil moisture (SM), soil organic matter (SOM), and concentrations of NH4
+ and NO3

– for 
Pinus densiflora and Quercus serrata forests in central Korea, expressed as the mean value ± standard 
error. Different letters for each species indicate significant differences among the soil depths (Tukey’s 
HSD test; n = 3).

Soil depth
(cm)

SM 
(vol %)

SOM
(%)

NH4
+

(mg kg–1)
NO3

-

(mg kg–1)

P. densiflora 0–10 20.9 ± 1.0 3.6 ± 0.3a 1.2 ± 0.3 8.5 ± 1.3
10–20 20.7 ± 1.1 2.7 ± 0.6b 1.5 ± 0.5 7.4 ± 1.0
20–30 19.2 ± 0.4 1.5 ± 0.1c 0.7 ± 0.1 7.1 ± 0.7

Q. serrata 0–10 33.3 ± 0.2a 4.3 ± 0.0a 3.0 ± 1.0 11.2 ± 1.1a
10–20 31.0 ± 0.9ab 4.2 ± 0.1a 2.9 ± 1.0 8.9 ± 0.9ab
20–30 30.5 ± 0.6b 4.1 ± 0.2b 1.4 ± 0.6 7.9 ± 0.3b

Table 4. Pearson correlation coefficients between annual fine root production and soil 
moisture, soil organic matter, NH4

+ and NO3
– concentrations, and fine root biomass at 

0–30 cm soil depths (n = 18).

FRP < 1 mm FRP 1–2 mm FRP = 0–2 mm

Soil moisture 0.52* 0.05 0.47*
Soil organic matter 0.59** 0.42 0.63**
NH4

+ concentration 0.54* 0.04 0.48*
NO3

– concentration 0.78**** 0.39 0.78****
FRB < 1 mm 0.80**** 0.30 0.77***
FRB 1–2 mm 0.73*** –0.02 0.63**

FRP t mm: fine root (defined as t mm diameter) production; FRB t mm: fine root 
(defined as t mm diameter) biomass; 
* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.
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deposition at the topsoil. FRB and FRP at the topsoil 
would be higher than those at the subsoil, as the carbon 
allocation to fine roots is closely related to soil nitrogen 
availability (Nadelhoffer et al., 2000). Furthermore, soil 
water availability could affect fine root dynamics indirectly 
by influencing nutrient uptake as well as water uptake of 
fine roots (Quan et al., 2010). Meanwhile, depth patterns 
of FRB and FRP were different according to root diameter. 
FRB < 1 mm and FRP < 1 mm were higher at 0–10 cm 
depth, while FRB 1–2 mm and FRP 1–2 mm showed no 
tendencies with soil depth. It appears that only very fine 
roots were directly affected by soil properties with soil 
depth, and these results support the first hypothesis. Very 
fine roots, which conduct the absorption of water and 
nutrients, have a more pronounced trend compared with 
the thicker roots, according to the gradient in the soil 
environmental conditions with soil depth (Makita et al., 
2011). Konôpka et al. (2013) have shown that very fine 
roots (<1 mm) are not fully developed (not yet suberized); 
thus, are more sensitive to soil water availability than fine 
roots (<2 mm).

Our findings support the second hypothesis that 
very fine root production (FRP < 1 mm) shows positive 
correlations with NPP, but not FRP 1–2 mm (Figure 2). It 
seemed that NPP was regulated by the capability to absorb 
soil water and nutrients (Tateno et al., 2004). In general, 
carbon allocation to fine roots and litter production 
accounts for a larger proportion of annual NPP in more 

productive forests (An et al., 2017), and both have a positive 
correlation (Hendricks and Pregitzer, 1993; Van Do et 
al., 2015). Higher litterfall could indicate an increase in 
nutrient input to soils over the long-term in mature forests 
(Nadelhoffer et al., 1985). The increase in soil nutrients, due 
to rapid decomposition of SOM, at the topsoil would cause 
an increase in very fine root production (Han et al., 2019). 
In this study, although very fine roots occupied a small 
portion of the NPP (7.5%) compared to litter production 
(41.8%), very fine roots showed a stronger correlation 
with NPP than litter production. These results support 
the notion that very fine roots may be an indicator for 
estimating the NPP in forests as well as litter production (An 
et al., 2017). However, our findings can be misinterpreted 
because of the small number of replicates. To precisely 
understand and determine the below-ground carbon 
dynamics, the relationships between fine root dynamics 
with root diameter and environmental conditions should 
be determined at multiple sites with varying ranges of soil 
water and nutrient availabilities (Newman et al., 2006).

Only very fine roots showed a significant difference 
in the root distribution with soil depth and a significant 
positive relationship with soil properties. Also, it was 
found that carbon allocation to very fine roots (<1 mm) 
could be a predictable factor in NPP and litter production 
contrary to carbon allocation to fine root (1–2 mm) 
(Figure 2). In many previous studies, FRP (in general, 
defined as <2 mm diameter) would be affected by soil 

Table 5. Net primary production (NPP) including biomass increment, litter production, and fine root production 
for Pinus densiflora and Quercus serrata forests in central Korea, expressed as mean value ± standard error (n = 3).

P. densiflora Q. serrata

Production 
(Mg ha–1 year–1) Portion (%) Production 

(Mg ha–1 year–1) Portion (%)

Biomass increment
Above-ground Dominant 2.82 ± 0.50 21.7 9.80 ± 0.70 47.5

Others 1.43 ± 0.37 11.0 0.69 ± 0.01 3.3
Belowground Dominant 0.68 ± 0.12 5.2 0.95 ± 0.08 4.6

Others 0.50 ± 0.22 3.8 0.26 ± 0.05 1.3
Subtotal 5.44 ± 1.17 41.8 11.70 ± 0.77 56.7
Litter production 6.34 ± 0.13 48.7 7.19 ± 0.12 34.8
ANPP1 10.60 ± 0.99 81.5 17.69 ± 0.64 85.7
FRP <1mm 0.97 ± 0.09 7.5 1.55 ± 0.16 7.5

1–2 mm 0.26 ± 0.14 2.0 0.20 ± 0.06 1.0
Subtotal 1.23 ± 0.22 9.5 1.75 ± 0.22 8.5

NPP2 13.01 ± 1.51 100.0 20.65 ± 0.93 100.0

1ANPP (above-ground net primary production) = Biomass increment of above-ground + litter production.
2NPP (net primary production) = Biomass increment + litter production + FRP (fine root production).
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water availability (Newman et al., 2006; Han et al., 2018), 
soil nutrient availability (Park et al., 2008), NPP, and litter 
production (Van Do et al., 2015; An et al., 2017). Based on 
our findings, these results may be a consequence of the fact 
that very fine roots account for a large proportion of FRB 
and FRP. Functional divergence among root branch orders 
or root diameters could cause the differences in nutrient 
content, uptake capacity, transport capacity, mycorrhizal 
colonization, and life span (McCormack et al., 2015). The 
more distal or finer roots, with a faster turnover rate, were 
more sensitive to environmental variations than relatively 
thicker roots (Konôpka et al., 2013). The turnover rate of 
very fine roots was 1.8 times higher than that of fine roots 
(1–2 mm) in this study (data not shown). 

Roots of both species were classified using the same 
criteria based on their diameter in this study. Recent studies 
reported that the same root diameter of evergreen-conifers 
and deciduous hardwoods shows different morphological 
traits of roots, resulting in different root functions, such as 
absorption and transport (McCormack et al., 2015; Gu et 

al., 2017). In contrast to the previous results, our findings 
show that fine root dynamics and their patterns with soil 
depth do not vary between two species. However, it is also 
needed to classify the roots based on root branch order in 
addition to root diameter, since each species has different 
root morphological characteristics (Guo et al., 2008b; Gu 
et al., 2017).

5. Conclusion
The present study shows that the trends in the FRB and 
FRP with soil depth and the relationship between FRP 
and NPP were different according to root diameter. Very 
fine roots occupy a large proportion of FRB and FRP, 
and they are more sensitive to changes in environmental 
conditions because of functional divergence among the 
root diameters. Overall, the findings of the current study 
support the theory that functional difference regarding 
root diameter is an important factor in determining 
the carbon cycling of below-ground and NPP in forest 
ecosystems.

Figure 2. Linear regressions between net primary production (NPP) and (a) very fine root production (<1 mm), (b) fine root 
production (1–2 mm), and (c) litter production and (d) between very fine root production (<1 mm) and litter production for 
Pinus densiflora and Quercus serrata forests in central Korea.
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