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1. Introduction
Protecting the crop from rising temperatures, particularly 
from extreme heat stress, has been a major concern for 
scientists in current and future climate scenarios (Zheng 
et al., 2012). Globally, air temperature is projected to rise 
by 2.6–4.8 °C from 2016 to 2035 (IPCC, 2014), while 
the temperature increasing rate during 2000–2010 has 
been recorded 2.2% higher than the temperature rise 
rate during 1970–2000. This increase in temperature due 
to climate change negatively affects the yield and quality 
of field crops (Falconnier et al., 2020). Greater efforts are 
expected from researchers to assess the projected impact 

of rising temperatures on crop yields under such expected 
temperature increases. 

 Cotton is a multipurpose cash crop; its fiber is used 
in textile industry and seed in vegetable oil industry. The 
cottonseed oil fulfils the vegetable oil demands by 18.8% 
in Pakistan. Pakistan is ranked fourth among cotton-
producing countries worldwide. Around 1.7 million 
people in Pakistan are involved in cotton cultivation 
(Shuli et al., 2018). In Pakistan, cotton production was 
7.064 million bales and grown on an area of 2.079 million 
hectares during 2021. Cotton contributes 0.6% to GDP 
and 3.1% of value added in agriculture and is the backbone 

Abstract: High temperature stress at reproductive stages of cotton crop severely affects the yield and quality of cotton crop under 
changing climatic conditions. To alleviate the adverse effects of high temperature stress on cotton crop, the regulatory effects of 
potassium (K), zinc (Zn), and boron (B) were assessed by applying different temperature regimes at three reproductive stages of cotton 
crop under field and glass house conditions. Cotton plants were subjected to low (32/20 °C ± 2), medium (38/24 °C ± 2), and high (45/30 
°C ± 2) temperatures under glasshouse, but sown at specific dates in field to provide different temperatures at three reproductive stages. 
High-temperature stress at squaring, flowering and boll formation stages in both field studies increased relative cell injury (RCI), total 
soluble proteins (TSP), reactive oxygen species and reduced fiber yield attributes i.e. total number of bolls per plant (TNBPP), number 
of sympodial branches per plant (NSBPP) and quality traits. For example, RCI, TNBPP and fiber fineness were reduced by 73%, 42% and 
29%, respectively under supra thermal regime (SupTR) of glass house study over the optimal thermal regime (OpTR). Foliar application 
of K and Zn followed by B increased TSP, RWC, TNBPP, NSBPP, fiber fineness, fiber length and fiber strength. Further, foliar spray of K 
and Zn followed by B also reduced H2O2 under SupTR and SubTR over the OpTR. The findings of the present study clearly demonstrate 
that foliar spray of Zn, K and B alleviated adverse effects of high temperature stress at squaring, flowering and boll formation stages and 
increased seed cotton yield and quality of cotton crop.
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in country economy (Government of Pakistan, 2021). 
Among all the abiotic factors that are responsible for yield 
reduction, high temperature is the major one (Lopes et al., 
2021). The favorable temperature for cotton growth has 
been observed between 20 and 30 °C (Reddy et al., 1991). 
High-temperature stress negatively affects all life cycle 
stages of cotton, but the reproductive stage is the most 
sensitive (Snider et al., 2009). At the earlier stages, high-
temperature stress reduces seed germination, seedlings, 
and root development. At vegetative and reproduction 
stages, heat stress increases the rate of transpiration and 
water loss, reduces photosynthetic efficiency, causes 
oxidative stress, and reduces seed yield and fiber quality 
(Reddy et al., 1997; Snider et al., 2009).

Though cotton crop favors warm environment and is 
often grown in hot semiarid climates, it may experience 
high-temperature episodes leading to yield losses (Raza 
and Ahmad, 2015). For example, cotton-growing areas 
in Pakistan often experience very high temperatures 
(> 45 °C) during the cotton growth season (Sarwar 
et al., 2017). In an earlier study, cotton lint yield was 
reduced by 110 kg ha−1 for each 1 °C rise in maximum 
day temperature (Singh et al., 2007). High-temperature 
influences cotton production in various ways; sowing 
dates, plant growth and development, fiber quality, plant 
metabolism, biochemistry, and water relations (Singh et 
al., 2007). Crop physiology and biochemistry in cotton 
are affected by reactive oxygen species (ROS) under high 
temperatures (Mishra et al., 2008). High temperature 
also disturbs the equilibrium between ROS and the plant 
defensive system, creating the oxidative burst that affects 
biomolecules and the cellular redox homeostasis (Sachdev 
et al., 2021). However, plants metabolize the ROS through 
their defensive system, i.e. via the production of a set of 
enzymatic and nonenzymatic antioxidant systems that 
could be measured by assessing total soluble proteins 
(Keles et al., 2004; Hänsch and Mendel, 2009). Similarly, 
oxidative stress under high-temperature increases leaf 
cell membrane leakage (Sarwar et al., 2018) that reduces 
the hydration status of leaves (Carmo-Silva and Salvucci, 
2012). Reduced physiological and biochemical activities 
at high temperatures (31 °C) declined fiber fineness and 
length (Conaty et al., 2015). 

It has been reported that the application of S also 
acts as an osmoprotectants (Manzoor et al., 2016). The 
deficiency of K, Zn, and B affects the plant protection 
mechanisms (Koshiba et al., 2008; Demidchik et al., 
2010; Peck and McDonald, 2010). However, exogenous 
application of these nutrients protects the membranes 
from oxidative stress (Cakmak, 2000; Wang et al., 2009; 
Hajiboland and Farhanghi, 2010). Previous reports have 
also demonstrated that K, Zn and B maintain potential 
osmoregulation, osmotic and turgor maintenance, while 

deficiencies of these nutrients affect plant water relations 
(Mouline et al., 2002; Khan et al., 2004; Stavrianakou et 
al., 2006). Furthermore, an increase in cotton crop yield 
and fiber quality have been observed with the external 
application of K, Zn and B under field conditions (Kim 
et al., 2008; Rashidi and Seilsepour, 2011; Waraich et al., 
2011). However, the effect of combined application of 
these nutrients has not previously been quantified under 
different glasshouse and field thermal regimes. 

Several approaches have been reported to mitigate 
the heat stress, such 1) development of heat tolerant 
genotypes (Mondal et al., 2016), 2) cultural practices i.e. 
changing sowing dates (Saeed et al., 2017), exogenous 
application of compatible solutes (Siddique et al., 2018), 
signaling molecules, plant growth regulators (Hu et al., 
2016) and foliar spray of nutrients (Warraich et al., 2012). 
Foliar application of nutrients is one of the important 
cultural practice for mitigating the adverse effects of 
high temperature stress (Ragunath et al., 2021). High 
temperature decreases nutrient uptake, their utilization 
and partitioning (Matías et al., 2021). However, the foliar 
application of macro/micronutrients activates the plant 
defense system and reinforces physiological activities 
(Dordas and Brown, 2005; Ahmad and Prasad, 2011). The 
improvement of the high-temperature stress tolerance 
with the exogenous application of mineral nutrients 
makes it an easy and economically feasible approach to 
alleviate that stress (Waraich et al., 2015; Seth et al., 2018). 
For example, K is an essential nutrient that regulates 
several physiological and biochemical processes of plants 
to reduce the oxidative stress, and has a vital role under 
various environmental stresses (Hossain et al., 2020). To 
the best of our knowledge, no work has been conducted 
under combined glass house and field conditions to check 
the comparative effects of medium and high temperature 
stresses at squaring, flowering and boll formation stages 
of cotton and also no study has been conducted to check 
the comparative effects of K, Zn and B for alleviating 
the adverse effects of high temperature stress at three 
reproductive stages of cotton crop. 

Keeping in view the importance of heat stress at 
reproductive stages of cotton crop and the mitigatory 
role of K, Zn and B under high temperature stress, we 
hypothesized that the adverse effects of high temperature 
stress at three reproductive stages of cotton could be 
minimized through foliar application of macro- and 
micronutrients. Therefore, the present study aimed to 
assess the impacts of temperatures, under both glasshouse 
and field conditions, on cotton leaf biochemistry, water 
relationships, membrane stability, yield, and fiber quality 
traits. The study also aimed to compare the role of K, Zn, 
and B in mitigating the adverse effects of high-temperature 
stress.
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2. Materials and methods
2.1. Conditions for glasshouse experiment 
Cotton plants were grown in pots organized in a completely 
random block design with split plot arrangement in a 
glasshouse at the University of Agriculture Faisalabad 
Pakistan. Sun was the sole source of active photosynthetic 
radiation (1400–1600 mmol m–2 s–1) in glass house and 
florescent bulbs were used in growth chambers to provide 
supplementary light, while light in glass house was set 
to be at 14/10 h day/night light period. The effect of 
temperature regimes was studied with a medium heat-
tolerant cotton variety (AA-802-the variety was screened 
under a preliminary experiment). Soil conditions and 
properties were similar as described in Sarwar et al. 
(2017). Three temperature regimes were applied i.e. 32/20 
°C (optimal: OpTR), 38/24 °C (critical point for cotton 
growth: SubTR), and 45/30 °C (prevails in most of the 
cotton-growing areas in Pakistan: SupTR) at squaring, 
flowering and boll formation stages of cotton. Plants 
were raised first at OpTR and then moved to SubTR and 
SupTR. A day before shifting pots in SubTR and SupTR 
nutrients spray i.e. water spray (control), K-1.5%, Zn-0.2% 
and B-0.1% were applied at squaring, flowering and boll 
formation stages. The same nutrients were also applied 
under OpTR and nutrients combinations such as K+Zn 
and K+Zn+B were not used. Four replications were used 
in completely randomized design with split arrangement. 
Each replication contained four pots under each thermal 
regime. Total soluble proteins (TSP), hydrogen peroxide 
(H2O2), relative cell injuries (RCI) and relative water 
contents (RWC) were measured 7 days following heat 
treatment. The pots were then moved back to optimal 
temperature regime. The experiments were completed in 
120 days from the sowing date.
2.2. Conditions for field experiment
Cotton plants were also grown on the farm at Department 
of Agronomy, University of Agriculture Faisalabad, 
Pakistan and three sowing dates were used to experience 
different temperatures during three reproductive stages 
of cotton crop. For example, April, May and June sowing 
dates provided different temperatures to cotton crop at 
three reproductive stages (squaring, flowering and boll 
formation). April (early sowing) and May sowing dates 
provided high temperature at three reproductive stages of 
cotton crop while June (late) sowing provided optimum 
temperature at three reproductive stages of cotton crop 
and is considered as control. Foliar spray of potassium (K) 
(1.5%), zinc (Zn) (0.2%) and boron (0.1%) was applied at 
three reproductive stages of cotton one day before the onset 
of high temperature stress (through weather forecast). 
Leaf samples were collected seven days after spraying for 
different physiological and biochemical attributes. Each 
sowing date (thermal regime) and nutrients spray was 

replicated thrice in field conditions. The net plot size was 
6.0 m × 4.5 m. A total of 12 plots (12 treatments) were 
used in each replication and there were 180 plants in each 
plot.  Randomized complete block design with split plot 
arrangement was used to manage the layout by having 
sowing dates in main plots and nutrients in subplots. 
The climatic data were collected from the Observatory 
of Department of Agronomy, University of Agriculture 
Faisalabad, Pakistan. The tested sowing dates were April 
2 and 4, May 3 and 2, June 17 and 19 during the first and 
second year, respectively. These sowing dates considered 
as thermal regimes provided different temperatures at 
three reproductive stages, i.e. squaring, flowering, and boll 
formation, and April and May thermal regimes provided 
high temperatures at squaring, flowering, and boll forming 
stages, while June thermal regime provided optimum 
thermal regimes for all three reproductive stages (Sarwar 
et al., 2017).
2.3. Chemical analysis
2.3.1. Total soluble proteins 
Fully extended young leaves, mostly 4th from the top, 
were collected seven days after treatment application. 
Total soluble proteins were calculated (as mg g–1 of fresh 
weight, FW), by quantifying protein contents through 
combining a total volume of 100 μL enzyme sample with 
5 mL Bradford reagent. Mixture absorbance was estimated 
at 595 nm (Bradford, 1976).
2.3.2. Hydrogen peroxide 
H2O2 (µ mol g–1 FW) was measured following a procedure 
outlined in Velikova et al. (2000). The reaction mixture, i.e. 
1 mL of potassium iodide and 0.5 mL of phosphate buffer 
(pH 7.0) was transferred in 0.5 mL hydrogen peroxide 
extract. The absorbance was measured at a wavelength of 
390 nm.
2.3.3. Leaf relative water contents 
Fresh leaf samples (0.5 g FW) were soaked overnight in 
distilled water to make them completely turgid, and the 
turgid weight (TW) of the soaked leaves was taken. The 
leaves were then oven-dried at 80 °C for 24 h until a 
constant dry weight (DW). Weatherley (1950) procedure 
was used to calculate the RWC:

Equation number 1: RWC = ("#$%#)
('#$%#)

	× 100. 

 

Equation	number	2:	RCI = 1 −
($)!"!#*

($)$"$#*
	× 100, 

2.3.4. Relative cell injury/cell membrane thermostability
Two 10-mm diameter disks were taken from both sides 
of fully grown leaves. After washing them 3–4 times with 
double distilled water, samples were poured into test tubes 
containing deionized water. One set of tubes was heated 
in water at 50 °C, while the other set was kept at 25 °C 
(room temperature) for an hour. The initial electrical 
conductivity was measured in the test tubes with an 
electrical conductivity meter (Model, Jenway 4510, Japan). 
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After autoclaving, the samples (Model, HAU-85, Hirayam 
instruments, Japan) at 0.1 MPa pressure for 10 min, final 
EC was measured and RCI (%) was calculated according to 
Sullivan (1972) as follows.

Equation number 1: RWC = ("#$%#)
('#$%#)

	× 100. 

 

Equation	number	2:	RCI = 1 −
($)!"!#*

($)$"$#*
	× 100, 

where T1 and T2 are the initial and final EC readings of 
heat-treated vials, while C1 and C2 are the initial and 
final EC of 25 °C vials. The CMT was then calculated by 
subtracting the values of RCI from 100.
2.4. Total number of bolls and number of sympodial 
branches per plant
The total number of bolls per plant (TNBPP) and the 
number of sympodial branches per plant (NSBPP) were 
determined and averaged from randomly selected 10 
plants from each plot.
2.5. Fiber quality 
For conditioning purposes, 10 g of lint sample was kept 
at 20 °C with 65%–68% relative humidity (6–8 h) from 
twenty randomized selected plants of each experimental 
unit. The HVI instrument was used to record the fiber 
fineness (µg/inch), length (mm), and strength (g/tex).
2.6. Statistical analysis
Statistix 10.1 program was used for the analysis of variance 
while treatments’ means were compared using honestly 
significant difference (HSD) test at 5% and 1% probability 

level under field and glasshouse conditions, respectively 
(Steel et al., 1997). Graphs were made by using Microsoft 
Excel Program.

3. Results
3.1. Glass house experiment
In this study, TSP, H2O2, and RCI increased significantly 
(p < 0.01) under SubTR and SupTR (Table 1). Plants 
exposed to SubTR and SupTR showed 45% and 22% 
higher TSP contents (averaged across three reproductive 
stages), respectively than plants grown under OpTR; 
while, H2O2 and RCI increased by 71% and 73% under 
SubTR and SupTR plants over the plants of OpTR (Table 
1). TNBPP, NSBPP, fiber fineness, fiber length, and fiber 
strength varied significantly (p < 0.01) across the thermal 
regimes (Tables 1 and 2), while TNBPP in water-treated 
plants of SupTR and SubTR were decreased by 42% and 
19%, respectively over the plants of OpTR. Similarly, fiber 
fineness was reduced by 16% and 29% in water-treated 
plants of SubTR and SupTR, respectively, over the water-
treated plants of OpTR and NSBPP.

Foliar application of nutrients (K and Zn) increased 
TSP but decreased H2O2 and RCI (p < 0.01) in all thermal 
regimes. For example, under SupTR and SubTR, K and Zn 
improved TSP by 1.22 folds and 1.02 folds over the water-
treated leaves of respective thermal regimes. Similarly, 
H2O2 contents were decreased by 64% and 30% by K and 

Table 1. Effect of different thermal regimes and nutrients’ spray on total soluble proteins (TSP), hydrogen peroxide (H2O2), relative 
water contents (RWC), relative cell injury (RCI) (averaged across of squaring, flowering, and boll formation stages) of cotton leaves; 
the total number of bolls per plant (TNBPP) and the number of sympodial branches per plant (NSBPP) under glasshouse conditions.

Thermal regimes Nutrients TSP  H2O2 RWC% RCI% TNBPP NSBPP

Control 4.87 d ± 0.22 0.77 a ± 0.03 87.21  a ± 3.9 47.50 a ± 2.1 47.86 a ± 1.8 21.88 b± 0.8
32/20 °C Potassium (1.5%) 8.68 b ± 0.31 0.63 c ± 0.02 88.87 a ± 4.1 40.50 b ± 1.7 46.55 a ± 1.9 22.39 a ± 0.9

Zinc (0.2%) 7.68 a ± 0.44 0.58 b ± 0.09 89.45 a ± 4.2 39.00 b ± 1.8 46.39 a ± 2.0 22.31 a ± 0.9
Boron (0.1%) 6.57 c ± 0.24 0.59 b ± 0.02 89.29 a ± 4.0 38.75 b ± 2.0 46.20 a ± 2.0 22.46 a ± 0.9
Control 7.09 c ± 0.21 1.32 a ± 0.04 54.23 c ± 2.1 80.00 a ± 3.9 33.15 c ± 1.5 16.92 b ± 0.6

45/30 °C Potassium (1.5%) 15.78 a ± 0.62 0.80 c ± 0.03 74.39 a ± 3.0 57.85 c ± 2.9 39.23 a ± 1.9 18.89 a ± 0.8
Zinc (0.2%) 16.20 a ± 0.74 0.79 c ± 0.02 73.06 a ± 2.9 59.00 bc ± 3.0 39.07 a ± 1.3 18.93 a ± 0.7
Boron (0.1%) 10.37 b ± 0.41 0.85 b ± 0.03 63.84 b ± 2.5 62.28 b ± 2.7 38.62 ab ± 1.7 18.01 a ± 0.8
Control 5.80 d ± 0.19 0.83 a± 0.04 71.97 b ± 3.2 62.73 a ± 2.4 39.03 b ± 1.6 18.78 b ± 0.8

38/24 °C Potassium (1.5%) 12.10 b ± 0.48 0.64 c ± 0.03 84.50 a ± 3.7 50.73 b ± 1.8 44.03 a ± 1.8 20.29 a ± 1.0
Zinc (0.2%) 13.85 a ± 0.52 0.55 d± 0.02 84.66 a ± 3.5 51.23 b ± 1.9 44.06 a ± 1.9 20.59 a ± 1.0
Boron (0.1%) 9.91 c ± 0.34 0.70 b ± 0.04 82.54 a ± 2.8 49.28 b ± 2.0 44.36 a ± 1.8 19.92 a ± 0.8
HSD 0.623 0.041 4.345 3.770 2.301 1.082

Values are the means of three replications (n = 3) ± SE, and variables possessing the same letters are not statistically significant at p ˂ 
0.01. Main factors and interaction are significant at p ˂ 0.01. Lettering is done separately for each thermal regime using the HSD of the 
interaction between thermal regimes and nutrients’ spray.
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Zn, respectively, under SupTR and SubTR, while RCI 
were decreased by 37% and 24%. Thermal regimes and 
nutrient spray had a major effect (p < 0.01) on RWC, 
TNBPP, NSBPP, fiber fineness, fiber length and fiber 
strength (Tables 1 and 2). For instance, RWC reduced by 
61% and 23% in SupTR and SubTR, respectively, in the 
absence of the nutrient application. Foliar application of 
K and Zn increased RWC, TNBPP, NSBPP, fiber fineness, 
fiber length, and fiber strength under SupTR and SubTR 
thermal regimes, but the effect was more pronounced for 
SupTR. Likewise, foliar application of K and Zn increased 
TNBPP by 19% and 14% under SupTR and SubTR over 
the water-treated plants of respective thermal regimes. 
Similarly, K and Zn-treated leaves of SupTR and SubTR 
treatments increased fiber fineness by 16% and 11%, 
respectively, over the water-treated plants of respective 
thermal regimes (Tables 1 and 2). 
3.1.1. Association of leaf RCI with TSP, RWC, fiber 
quality and yield components
The relationships between RCI with RWC, TNBPP, and 
fiber quality (fiber fineness, fiber length and fiber strength) 
were assessed with regression analyses, and the effects 
of different nutrients were investigated under different 
thermal regimes (Figures 1a–1f). The relationship was 
substantially different for three thermal regimes, although 
RCI had a poor negative relation with TSP, RWC, yield, 
and fiber quality under OpTR, but RCI showed significant 

strong negative associations in SubTR (p < 0.05) and 
SupTR (p < 0.01). The R-squared values indicated that 
4.3%–12.8% of variance in the variance of TSP, RWC, 
fiber quality, and yield components could be explained 
by RCI at the OpTR, but RCI could explain 47%–55% of 
the variance of the same variables at the SubTR, and 87% 
–96% of the variance at the SupTR (Figure 1).
3.1.2. Association of leaf TSP with RWC, yield and fiber 
quality components, and association of RCI with H2O2 
The relationships between TSP with RWC, TNBPP, quality 
parameters (fiber fineness, fiber length, and fiber strength; 
Figures 2a–2e) and RCI with H2O2 (Figure 2f) were analyzed 
under various thermal regimes, while the strength of the 
relationship was significantly differed across the thermal 
regimes. Regardless of the degree of relationship, leaf TSP 
had insignificant positive correlations with RWC, TNBPP, 
and fiber quality under OpTR. The associations of TSP 
with RWC, TNBPP, and quality parameters were positive 
and significantly strong in SubTR (p < 0.05) and SupTR 
treatments (p < 0.01), whereas RCI was substantially and 
positively linked with H2O2 in SubTR (p < 0.05) and SupTR 
(p < 0.01; Figure 2f). The R-squared values indicated that 
14%–21% of the variance in the variance of TSP, RWC, 
fiber quality, and yield components could be explained 
by TSP at OpTR, but TSP could explain 55%–60% of the 
variance of the same variables at SubTR, and 87%–96% of 
the variance at the SupTR (Figure 2).

Table 2. Effect of different thermal regimes and nutrients’ spray-on fiber fineness (µg/inch), fiber 
length (mm), and fiber strength (g/tex) under glasshouse conditions.

Thermal regimes Nutrients Fiber fineness Fiber length Fiber strength

Control 4.13 a ± 0.20 26.74 a ± 1.3 30.81 a ± 1.4
32/20 °C Potassium (1.5%) 4.12 a ± 0.19 26.52 a ± 1.2 30.68 a ± 1.3

Zinc (0.2%) 4.10  a ± 0.17 26.55 a ± 1.1 30.53 a ± 1.2
Boron (0.1%) 4.15 a ± 0.16 26.65 a ± 1.2 30.60 a ± 1.3
Control 3.20 c ± 0.12 19.57 d ± 0.20 23.84 c ± 1.9

45/30 °C Potassium (1.5%) 3.73 a ± 0.15 24.22 b ± 1.1 28.83 a ± 1.2
Zinc (0.2%) 3.80  a ± 0.17 25.14 a ± 1.2 28.26 a ± 1.2
Boron (0.1%) 3.65 ab ± 0.14 22.13 c ± 1.0 26.10 b ± 2.0
Control 3.54 b ± 0.13 23.95 c ± 0.20 25.99 b ± 1.8

38/24 °C Potassium (1.5%) 3.93 a ± 0.18 24.10 a ± 1.2 29.20 a ± 1.2
Zinc (0.2%) 3.94 a ± 0.18 24.87 a ± 1.2 29.35 a ± 1.1
Boron (0.1%) 3.91 a ± 0.17 25.78 b ± 1.1 28.46 a ± 1.9
HSD 0.146 0.874 1.350

Values are the means of three replications (n = 3) ± SE, and variants possessing the same letters are not 
statistically significant at p ˂ 0.01. Main factors and interaction are significant at p ˂ 0.01. Lettering is 
done separately for each thermal regime using the HSD of the interaction between thermal regimes 
and nutrients’ spray.



SARWAR et al. / Turk J Agric For

572

3.2. Field experiment 
Leaf TSP, H2O2 contents, and RCI were significantly 
higher (p < 0.05) in crops planted in April and May (high-
temperature regimes) over the June thermal regime, for 
instance, TSP was increased by 55% and 29% in water-
treated plants under SupTR and SubTR of April and May 
thermal regimes (averaged over three reproductive stages 

and two years of study) compared with water control 
plants of June thermal regime (Table 3). Likewise, H2O2 
was increased by 68% and 37% and RCI was increased 
by 48% and 19% under supra- and subthermal regimes 
of April and May thermal regimes, respectively, over the 
plants of June thermal regime. Different thermal regimes 
varied significantly in RWC, fiber fineness, fiber length, 
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Figure 1. The relationships between relative cell injury and (a) total soluble proteins, (b) relative water contents, (c) total number of bolls 
per plant, (d) fiber fineness, (e) fiber length, and (f) fiber strength under glasshouse conditions at three thermal regimes (averaged across 
of three reproductive stages). * and ** indicate significance at 5% and 1% levels, respectively.
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and fiber strength (p < 0.05; Tables 3–5), for example, the 
plants of April and May thermal regimes produced lower 
RWC, fiber fineness, fiber length and fiber strength than 
plants of June thermal regime. The RWC reduced by 57% 
in water control plants of May thermal regime over the 
water-treated plants of June sowing date. Likewise, TNBPP, 

NSBPP, fiber fineness, fiber length, and fiber strength were 
reduced in water-treated plants of April and May sown 
plants over the water-treated plants of June sown crop.

Foliar application of K and Zn increased TSP in cotton 
crop irrespective of reproductive stages but reduced H2O2 
and RCI under all thermal regimes, with prominent 

Figure 2. The relationships between total soluble proteins and (a) relative water contents (b) total number of bolls per plant, (c) fiber 
fineness, (d) fiber length, (e) fiber strength and (f) relative cell injury with hydrogen peroxide under glasshouse conditions at three 
thermal regimes (averaged across of three reproductive stages). * and ** indicate significance at 5% and 1% levels, respectively.
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response under the high-temperature regimes (April 
and May sowing; Table 3). Both K and Zn-treated leaves 
followed by B (averaged across) had 1.58-fold, 1.20-fold, 
and 0.68-fold higher TSP under supraoptimal, suboptimal, 
and optimal thermal regimes than water-treated leaves 
of respective thermal regimes, while both K and Zn 
(averaged across) decreased H2O2 contents by 52% and 
29% over control plants under supra- and subthermal 
regimes (averaged over three reproductive stages and two 
years of study). Application of K and Zn decreased RCI by 
48% and 19% under supra- and subthermal regimes (April 
and May sown crops), respectively, than their respective 
control plants (averaged across three reproductive stages 
and both years of study). Further, RWC, TNBPP, NSBPP, 
fiber fineness, fiber length and fiber strength were also 
improved by K and Zn followed by B under all thermal 
regimes (p < 0.05), but the impact was more prominent 
under April and May sown crops (Tables 3–5). Application 
of K and Zn (averaged over three reproductive stages and 
two years of study) improved RWC by 36% under the 
high-temperature regime (May) than water-treated plants 
under the respective thermal regime. Application of K and 
Zn (averaged over both years of study) increased the total 
number of bolls by 14% and 16% under April and May 
thermal regimes than that of control plants of respective 
sowing dates; while, foliar spray of K and Zn (averaged 
across) increased fiber fineness by 26% and 23% under 
April and May thermal regimes than the water-treated 

plants of respective thermal regimes. Likewise, under April 
and May sowing dates, application of K and Zn improved 
NS/ plant, fiber length, and fiber strength. 
3.2.1. Association of leaf RCI with TSP, RWC, fiber 
quality and yield components
The relationships between RCI with RWC, TNBPP, and 
quality parameters were evaluated by regression analysis 
to test the impact of different nutrients under various 
thermal regimes (Figures 3a–3f), and April and May 
thermal regimes showed strong negative correlations (p 
< 0.05, p < 0.01) of RCI to all other parameters, while 
RCI showed insignificant negative associations with other 
parameters under June (control) thermal regime. Whereas 
R2 showed that between 52% and 91% of the variance of 
TSP, RWC, fiber quality, and yield components could be 
explained by RCI in April and May thermal regimes, only 
3%–15% of the variance in the same variables explained by 
RCI in June thermal regime (Figure 3).
3.2.2. Association of leaf TSP with RWC, fiber quality 
and yield components; and association of RCI with H2O2
Similar to the findings from glass house experiment, TSP 
showed a low but positive association with RWC, total 
number of bolls and fiber quality parameters under optimal 
temperature regimes (Figures 4a–4e), while April and May 
sown crops demonstrated strong positive relationships of 
TSP with RWC, TNBPP, fiber fineness, fiber length, and 
fiber strength (Figure 4e). The mean squares of regression 
were highly significant (p < 0.01) under April and May 

Table 5. Effect of different thermal regimes and nutrients’ spray on fiber strength (g/tex) of cotton crop 
during 2012 and 2013.

Thermal regimes Nutrients Fiber strength 2012 Fiber strength 2013

April (High temperature) Control 27.10 b ± 2.2 27.52 b ± 2.4
Potassium (1.5%) 30.80 a ± 2.6 31.61 a ± 2.8
Zinc (0.2%) 30.76 a ± 2.5 31.40 a ± 2.8
Boron (0.1%) 30.77 a ± 2.6 30.20 ab± 2.6

May (High temperature) Control 23.83 b ± 2.0 24.85 b ± 2.0
Potassium (1.5%) 27.90 a ± 2.3 28.94 a ± 2.4
Zinc (0.2%) 27.83 a ± 2.3 28.67 a ± 2.4
Boron (0.1%) 27.71 a ± 2.2 28.62 a ± 2.3

June (late sown as optimal) Control 29.28 a ± 1.8 28.50 a ± 2.3
Potassium (1.5%) 30.37 a ± 2.7 30.50 a ± 2.6
Zinc (0.2%) 29.07 a ± 2.6 30.35 a ± 2.6
Boron (0.1%) 29.96 a ± 2.6 30.17a ± 2.5
HSD 3.447 3.804

Values are the means of three replications (n = 3) ± SE and variants possessing the same letters are not 
statistically significant at p ˂ 0.05. Lettering is done separately for each thermal regime using the HSD of 
the interaction between thermal regimes and nutrients’ spray.
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thermal regimes and the points of regression along the 
regression line showed strong negative associations. 
Regardless of the association points, leaf RCI had a positive 
and strong relationship to H2O2 under high-temperature 
regimes (Figure 4f), and R-squared values indicate that 
57%–87% of the variance of RWC, fiber quality, and yield 
components could be explained by TSP in April and May 
thermal regimes. However, only 14%–39% of the variance 

in the same variables could be explained by TSP in June 
thermal regime (Figure 4).

4. Discussion 
Application of adequate and balanced availability of 
essential macro- and micronutrients ensures healthy 
plants. The foliar applications of nutrients could mitigate 
the negative effects of abiotic stress, such as heat, and 
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Figure 3. The relationships between relative cell injury and (a) total soluble proteins, (b) relative water contents (c) total number of bolls 
per plant, (d) fiber fineness, (e) fiber length and (f) fiber strength under field conditions at three thermal regimes (averaged across of 
three reproductive stages). * and ** indicate significance at 5% and 1% levels, respectively.
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enhance tolerance in plants (Ahmad and Prasad, 2011; 
Seleiman et al., 2019). High-temperature influences 
plant biochemistry and metabolism (Wu et al., 2016). 
Stress prevents crop growth and development; though 
reproductive processes are the most vulnerable to stressful 
conditions (Fahad et al., 2017). Being a cost-effective and 
efficient method, foliar application of nutrients could be an 
important way of managing environmental stresses.

Leaf total soluble proteins and hydrogen peroxide 
increased prominently from medium to high temperature 
regimes of present study over the optimal temperature 
regime. The increase in total soluble proteins (TSP) 
under medium and high temperature stress reduces the 
concentration of hydrogen peroxide but this increase in 
TSP and antioxidants are not enough to maintain a balance 
between ROS and plant defensive system (Sreenivasulu 
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Figure 4. The relationships between total soluble proteins and (a) relative water contents (b) total number of bolls per plant, (c) fiber 
fineness, (d) fiber length, (e) fiber strength and (f) relative cell injury with hydrogen peroxide under field conditions at three thermal 
regimes (averaged across of three reproductive stages). * and ** indicate significance at 5% and 1% levels, respectively.
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et al., 2007; Sarwar et al., 2019). The lower production of 
TSP under high temperature stress could be due to the 
suppression of genes and the denaturation of proteins 
under high temperature stress (Rollins et al., 2013; Cottee 
et al., 2014; Zafar et al., 2018). Previously,           Chen et al. 
(2005) documented that high temperature stress reduces 
total soluble proteins and the gene expression in cotton 
due to more oxidative stress. Foliar application of K and Zn 
significantly increased total soluble proteins and decreased 
H2O2 contents of present study over the water-treated and 
boron treated plants. Foliar application of K and Zn could 
maintain a balance between ROS and antioxidants under 
high temperature stress due to the stimulation of plant 
defensive system for the production of TSP (Kareem et al., 
2022). The foliar application of K and Zn in tea and rice 
crops under drought and high temperature stress activates 
the plant defensive system and the soluble proteins, which 
reduces the oxidative stress (Upadhyaya et al., 2013; Shahid 
et al., 2018; Mosavian et al., 2021). 

The relative cell injury was increased under medium and 
high-temperature stresses of present study over the optimal 
temperature regime, but the more damage to membranes 
was observed under high temperature stress. The more 
membrane damage under high temperature stress might 
be due to the breakage of bonds and lipid peroxidation of 
membranes by oxidative stress (Liu and Huang, 2000). Bibi 
et al. (2008) documented that high temperature stress in 
cotton crop damages the integral and peripheral proteins 
of cell membranes leading towards membrane leakage. 
Foliar spray of K and Zn reduced membrane leakage under 
medium and high temperature regimes of present study 
over the water-treated plants. The reduction in membrane 
leakage under high temperature stress by K and Zn could 
be due to the production of osmoprotectants, compatible 
solutes and the formation of bonds with membranes and 
phenolic, which protects the membranes from oxidative 
damage (Sarwar et al., 2019; Ju et al., 2021; Weisany et 
al., 2011). The foliar and soil application of K and Zn in 
wheat and sugar beet under heat and drought stresses 
reduces membrane damage due to the stability of lipid 
bilayer of membranes and the reduction in oxidative stress 
(Ghanepour et al., 2015; Aksu and Altay, 2020; Singh et 
al., 2020). Leaf water contents were reduced prominently 
under medium and high temperature stress but the more 
reduction was observed under high temperature over the 
water and boron treated plants. The reduction in leaf water 
contents under high temperature stress could be due to 
the inability of roots to uptake water and nutrients, which 
reduces the solute and water potential of leaves for proper 
leaf turgidity (Sperry et al., 1998; Pei et al., 2000). Machado 
and Paulsen (2001) and Wahid and Close (2007) reported 
that high temperature stress in sugarcane and wheat crops 
at initial growth stages reduces leaf water contents due 

to more evapotranspiration and faster depletion of soil 
water. Foliar application of K and Zn improved leaf water 
contents under high temperature stress of present study, 
which might be due to the ability of K and Zn to provide 
a favorable gradient for water and solute potential. The 
foliar spray of K and Zn might increase the production of 
compatible solutes in field crops under high temperature 
stress that increases the osmotic adjustment and water 
contents in leaves (Abdallah et al., 2019). Shahid et al. 
(2019) and Yavas et al. (2016) also reported that foliar spray 
of K and Zn under heat and drought stresses of wheat at 
grain filling stages improve the osmotic adjustment and 
leaf turgidity for higher water contents. High temperature 
stress at reproductive stages of cotton under glasshouse 
and field conditions causes substantial yield and quality 
reduction (Iqbal et al., 2017; Ekinci et al., 2017; Kanwal 
et al., 2021). For example, for each 1 °C rise in maximum 
day temperature causes a lint yield reduction of 110 kg 
ha–1 (Singh et al., 2007). Similar to the findings of earlier 
workers, the high temperature stress of present study 
significantly reduced the yield attributes and fiber quality. 
The membrane leakage due to oxidative stress under high 
temperature stress of cotton could reduce the health of 
PS-II to PS-I, leaf water contents, which reduces yield and 
fiber quality attributes (Szymańska et al., 2017; Majeed et 
al., 2019). Demmig-Adams et al. (2018) and Zafar et al. 
(2021) reported that high temperature stress in cotton 
affects the synthesis of carbohydrates and its translocation 
towards yield attributes and the fiber. Under nutrient 
deficiency in field crops, PS-II reaction centre overactive 
due to reduced CO2 assimilation and become the cause 
of oxidative stress (Singh and Reddy, 2016; Rai-Kalal et 
al., 2021). Foliar application of K, Zn and B increased the 
yield attributes and the quality of cotton fiber under high 
temperature stress of present study over the water-treated 
plants. The increase in yield attributes and fiber quality 
by K, Zn, and B in cotton under high temperature stress 
could be due to the stimulation of plant defensive system, 
which reduced the oxidative stress, increased membrane 
stability and consequently increased fiber yield and quality 
(Sankaranarayanan et al., 2010). Exogenous application of 
K, Zn and B increases yield and quality of cotton under 
heat and drought stresses due to the increased efficiency 
of PS-II, which increases the production of carbohydrates 
and the yield attributes (Hu et al., 2016; Loka et al., 2020). 

A strong positive link between total soluble proteins, 
yield and fiber-quality components indicates the key role 
of total soluble proteins in thermotolerance. This study 
showed clear adverse relationships between membrane 
damage with cell proteins, water contents, yield and quality 
components of the cotton crop, showing that heat damage 
to membranes affects cotton crops’ biochemistry, yield and 
quality components as reported previously (Rahman et 
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al., 2004; Najeeb et al., 2017). The strong positive relation 
between membrane damage and ROS suggests that 
oxidative stress is a principal cause of membrane leakage 
under high-temperature stress. It shows that membrane 
stability represents a heat tolerance measure (Cottee 
et al., 2007), and membrane leakage starts to rise as the 
temperature reaches more than 30 °C (Bibi et al., 2008).

5. Conclusion
Membrane leakage and oxidative stress due to high-
temperature stress decreased cotton crop yield and fiber 
quality. The low yield was due to low numbers of bolls 
and sympodial branches associated with lower total 
soluble proteins and water contents. The strong negative 
relationships of RCI to cell biochemistry, yields, and fiber 
quality indicate that membrane leakage might be the main 
cause of low yield. Various macro- and micronutrients 
(K and Zn) induced thermotolerance in cotton plants 
by strengthening the biochemistry and membrane 
stability, increased yield, and fiber quality through water 
interactions. These nutrients could be used before the 
onset of high-temperature stress. Future research is 
needed to assess the role of these nutrients in signaling 

for thermotolerance under high-temperatures stress, 
especially in the development of heat-shock proteins by K 
and Zn.
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