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1. Introduction
In the postepidemic era, agriculture, as the most basic 
source of material security for human life, has received 
great attention from various countries. In recent years, 
the pace of agricultural modernization and technological 
development has accelerated, and people have gradually 
combined agriculture with various types of high-tech and 
intelligent algorithms, and the concepts such as “smart 
agriculture”, “precision agriculture”, “digital agriculture”, 
“decision agriculture”, and “agriculture 4.0” have emerged. 
These developments are inseparable from the help and 
promotion of artificial intelligence (AI) technology. Looking 
at the current agricultural production process, artificial 
intelligence is everywhere. However, most AI applications 
are based on large amounts of data, and the data and time 
cost problems they bring have gradually become new 
challenges for farmers. In response to these challenges, 
digital twins have come to the forefront of agricultural 
researchers’ minds. Digital twin technology aims to build 
mirror models of information in the hyper-real world, using 
computerized virtual reality. For example, a model of a plant 
can be constructed in which its physical characteristics 
are transformed into digital information, and this digital 
information can be used to make it grow naturally in the 
virtual space beyond reality. This makes it easier to develop 

and test new agricultural technologies in virtual reality. This 
means that issues such as data and time costs are no longer 
a barrier to progress. Therefore, digital twins have become 
an important research direction in the field of agriculture in 
the future. This paper introduces the typical application of 
artificial intelligence in agriculture and the development of 
digital twin technology in agriculture. 

This paper will outline and answer the following 
research question:

· What is the current state of development of artificial 
intelligence technologies in agriculture? In the whole 
process of agricultural production, what are the main 
technologies and applications of artificial intelligence 
technology for different agricultural tasks in the 
preproduction, midproduction, and postproduction 
stages?

· What is the “digital twins”? What are the basic 
characteristics and attributes of the architecture based 
on digital twins? What are the main technologies and 
application directions of the digital twins?

· How to integrate digital twin technology with 
agriculture? What is the impact of the introduction of 
the digital twins on the agricultural sector? What are the 
scenarios in which digital twin technology can be applied 
in the agricultural sector and truly benefit from it?
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· What are the opportunities and challenges in the 
application of artificial intelligence technology and digital 
twin technology in agriculture at this stage? What are the 
possible future evolution and development trends?

The remainder of the paper is organized as follows. 
In Section 2, starting from the three links of the 
preproduction, midproduction, and postproduction stages 
of the agricultural production process, the research and 
application status of artificial intelligence in the agricultural 
field are introduced. An overview of the digital twins is 
given in Section 3, followed by a description and analysis 
of its current state of the art in agriculture. The challenges 
and possible future directions of AI and DT in agriculture 
are discussed in Section 4. Finally, a brief conclusion is 
given in Section 5.

2. Artificial intelligence in agriculture
At present, artificial intelligence agriculture dominates 
the development direction of modern agriculture, 
and researchers are committed to applying artificial 
intelligence technology to the whole process of agricultural 
production. The agricultural production process can be 
divided into three stages: preproduction, midproduction, 
and postproduction. Figure 1 shows the agricultural 
production process after division. The application of 
artificial intelligence technology in the preproduction, 
midproduction, and postproduction stages of agricultural 
production is briefly introduced to provide a reference for 
the rapid and effective transformation and improvement 
of intelligent agricultural technology and the promotion of 
agricultural industrialization and modernization.
2.1. Preproduction stage of agricultural production
In the preproduction stage of agriculture, “what are we 
going to grow?” is the question that people need to consider. 
The application of artificial intelligence technology to 
the preproduction stage is aimed at helping agricultural 
workers to grasp the prerequisites in the agricultural 
scene. At this stage, we focus on soil fertilizer quality 
testing, irrigation scheme design, seed quality testing, and 
crop yield and quality forecast to briefly introduce the 
application of AI in agriculture in the past five years.
2.1.1. Soil fertilizer quality testing
At the preproduction stage of the agricultural process, the 
quality of soil fertilizer plays a decisive role in the growth 
of crops. The determination of the content of minerals, 
nutrients, and other elements in the soil is an important 
indicator to judge whether the soil is polluted (Jia et al., 
2021), and whether it is suitable for planting a particular 
plant (Chen et al., 2019; Wilhelm et al., 2022), and whether 
it meets the nutrients required by crops (Kulkarni et al., 
2019). Therefore, it is vital to systematically test and 
evaluate soils and fertilizers before planting. There are many 

substances in the soil that affect crop growth. This paper 
simply divides them into “human-eye distinguishable” 
and “human-eye indistinguishable”, which are introduced 
in the following contents respectively. Among them, the 
“human-eye distinguishable” substances in the soil are 
mainly the residues from the previous cropping cycle while 
the “human-eye indistinguishable” substances in the soil 
refer to the physical, chemical, and biological indicators 
that are hardly observable by human beings alone and 
require the help of some professional detection tools, such 
as the content of some trace elements, minerals, and the 
activity of some microorganisms.

Firstly, the detection of “human-eye distinguishable” 
substances in the soil is focused on plant residues that 
have a major protective effect on the soil. Not only do they 
reduce soil erosion and consolidate soil quality, but also 
bring nutrients and improve soil structure for recultivation. 
However, the workload of manually determining the types 
of residues and the coverage rate of residues on large 
areas of land is undoubtedly huge and extremely time-
consuming, and it is subjective and uneven, and the error 
of the results is uncertain with the experience of different 
observers. In this regard, with the help of machine vision, 
image processing and other technologies, people have 
proposed a series of reliable, consistent, and automated 
methods. For example, Tao et al. (2021) developed a 
deep learning method MSCU-net + C, which was used to 
draw the residual coverage area of maize on high spatial 
resolution satellite remote sensing images, and classify 
different coverage rates and measure the classification 
accuracy index. The results showed that the average value 
of IoU increased from 0.8604 to 0.908, and the average 
value of Kappa increased from 0.8864 to 0.9258. Another 
example is the crop residue level estimation using machine 
learning methods for RGB images of three different ground 
image resolutions (GSD) by Upadhyay’s team (2022). The 
RFE-SVM feature selection method was used to obtain 
cross-validation scores up to 10 times better than other 
methods, as well as residual cover estimation by location 
for classified images using a Bayesian-based classification 
model.

Secondly, the most familiar part of the “human-eye 
indistinguishable” substances in the soil is the detection 
of soil salinity, followed by the detection of nitrogen (N), 
phosphorus (P), potassium (K), and carbon (C), which are 
the main nutrients provided by the soil for crop growth. 
Soil salinization is closely related to the sustainable 
development of agriculture and is a phenomenon of 
soil degradation. Therefore, it is of great significance to 
accurately monitor soil salinization. Recently, the popular 
way of predicting soil salinity is “Internet of things + 
machine learning”, such as Wang et al. (2021) and Wei et 
al. (2020) both used the way combination of “multispectral 
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image acquisition + machine learning prediction model” 
to predict soil salinity. Analyzing the nutrient levels of 
elements in the soil and adjusting fertilizer planning to 
crop needs can not only mitigate the general environmental 
degradation, climatic disasters, and economic losses 
caused by over-fertilization, but also increase crop yields 
and productivity. Some typical examples of combining 
machine learning with soil chemical element prediction in 
the last 5 years are presented in Table 1.

After testing the elemental content of the soil, scientific 
fertilization planning based on soil nutrient status is the 
basis for high-quality and high-yielding crops (Chen et 
al., 2018; Nie et al., 2021). Uneven distribution and low 
utilization of fertilizer will be caused by blind, mechanical 
application of fertilizer, which can even cause adverse 
consequences such as soil pollution and excess crop 
nutrients. Researchers have conducted research on this 
problem. Chaganti et al. (2019) used technologies such 
as machine learning, image processing, and the Internet 
of things to optimize fertilizer use decisions on farms. 
Escalante et al. (2019) used machine learning to determine 
the optimal fertilizer dose for specific barley varieties. In 
an application program developed by Goyal et al. (2021), 
the fertilizer calculator function provides the user with the 
number of DAPs, MOPs, and kilograms of urea needed 
for the crop after entering the “crop type” and “number 
of hectares”. These efforts have promoted the progress of 
fertilization methods in a more reasonable and accurate 
direction, all of which are of great significance to the 
sustainable development of agriculture and the successful 
implementation of precision agriculture.
2.1.2. Irrigation scheme design
Besides soil, water is another decisive factor restricting 
agricultural production. In the preproduction stage of 

agriculture, proper irrigation planning is the basis for 
sustainable agricultural production (García-Tejero et al., 
2011). The introduction of several artificial intelligence 
technologies has made intelligent and automatic irrigation 
possible, while irrigation management and decision 
making are continuously optimized, thus advancing the 
development of fine agriculture and sustainable agriculture. 
A typical AI-based intelligent irrigation system is shown in 
Figure 2.

The typical intelligent irrigation system shown in 
Figure 2 is mainly composed of terminal monitoring part, 
gateway module, cloud service module, expert decision 
system, and user terminal. The expert decision system is 
a key part whose main function is to process, calculate, 
predict, and analyze the historical or real-time data in 
the cloud system through a series of artificial intelligence 
algorithms to obtain the best irrigation decision. As can 
be seen from the figure, the data affecting the decision-
making are mainly irrigation water quality, soil condition, 
reference evapotranspiration (ETo), precipitation, crop 
factor and other.

Agriculture is inseparable from water, and the primary 
concern in the irrigation process is the quality of irrigation 
water. Traditional methods of irrigation water quality 
assessment are cumbersome and costly, which increases 
the burden of farmers. Therefore, the use of artificial 
intelligence technology to predict and manage the quality 
of groundwater is a valuable research direction at present. 
Zhao et al. (2020) compared the CAR-RR model and the 
advanced CAR-SVR model they developed for depth 
modeling of the groundwater table with the support vector 
regression (SVR) model and multiple linear regression 
(MLR) model, and they validated them in the Hetao 
Irrigation Area in northwest China; Chen et al. (2020b) 

Figure 1. Three links in the agricultural production process.
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designed an improved near-infrared CNN calibration 
model that can be used for quantitative determination 
of water pollution levels; Band et al. (2020) predicted 
groundwater nitrate concentrations in Iran’s Marvdasht 
watershed based on support vector machine (SVM), 
Cubist, random forest (RF), and Bayesian artificial neural 
network (Baysia-ANN) models. El Bilali et al. (2021) 
developed and evaluated Adaboost, random forests (RF), 
artificial neural networks (ANNs), and support vector 
regression (SVR) models that predict the Berrechid 
aquifer in Morocco, promising in low-cost and real-time 
prediction of groundwater quality.

Soil conditions are mainly the determination and 
prediction of soil temperature, salt content, and water 
content. The daily soil temperature (DST) model proposed 
by Zeynoddin et al. (2019), the method for determining 
soil salinity levels and environmental conditions based on 
machine learning proposed by Bashir et al. (2020), and the 
ResBiLSTM model for detecting soil water content (SWC) 
proposed by Yu et al. (2020a), all provide important 
information for irrigation demand forecasting. Soil salinity 
prediction has been briefly outlined in Section 2.1.1 and 
will not be repeated here. For soil moisture content, the 
mode of “Internet of things + machine learning” is also 
the most widely used mode at present. Thus, Tseng et al. 
(2018) used drones to collect images and compared seven 
different prediction methods based on deep learning; 
Singh et al. (2019) assembled data collected from sensors 
deployed in the field and weather forecast data from the 
Internet, to analyze and compare multiple ML techniques 
to predict future soil moisture.

Reference evapotranspiration (ETo) reflects the impact 
of weather on crop water requirements. Using machine 
learning model, people can not only estimate the past and 

current ETo more accurately, but also predict the future 
ETo value. With the continuous development and progress 
of technology, people compare a variety of models to find 
the best method to predict ETo. For example, Huang et 
al. (2019) evaluated CatBoost, RF, and SVM models, of 
which CatBoost is a machine learning method based on 
gradient-boosted decision trees; Ferreira and da Cunha 
(2020) evaluated long-term short-term memory (LSTM), 
one-dimensional convolutional neural networks (1D 
CNN), CNN-LSTM in deep learning models, as well 
as artificial neural network (ANN) and random forest 
(RF) in traditional machine learning models; Ponraj and 
Vigneswaran (2020) trained, validated, and tested datasets 
using multiple linear regression, random forest (RF), 
and gradient augmented regression (GBR) algorithms; 
Mohammadi and Mehdizadeh (2020) compared PL-SVR, 
RF-SVR, PCA-SVR, and COR-SVR models and coupled 
the whale optimization algorithm (WOA) with the best-
performing RF-SVR to form a new hybrid called RF-SVR-
WOA model. In addition, researchers have also worked 
to find ways to use less information while obtaining more 
accurate results. Nagappan et al. (2020) reduced the input 
variable dimensions from six to three when modeling 
based on deep learning neural networks (DLNN).
2.1.3. Seed quality testing
Seed quality testing mainly includes purity analysis, variety 
determination, germination test, viability determination, 
and health determination. Inspection and determination 
of seeds by scientific and reliable methods, and thus 
evaluation of seeds, are important tools for ensuring seed 
quality, calculating appropriate sowing amounts, selecting 
suitable seed batches, and making rational tillage decisions. 
However, old quality testing equipment, insufficient 
number of professional testers, and insufficient knowledge 

Terminal monitoring part

Expert decision systemInternet of Things (IoT)
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Figure 2. A typical intelligent irrigation system based on artificial intelligence.
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reserve of testers have restricted the results of seed quality 
testing, and have made the results lack accuracy and less 
scientific. At present, the seed quality testing methods are 
also mostly combined with “IoT + ML” and generally use 
the Internet of things technology to collect image and other 
source information, mainly spectroscopy, hyperspectral 
imaging (Zhang et al., 2021), electronic nose, thermal 
imaging technology, and X-ray imaging technology; then 
the algorithms of machine learning, especially of deep 
learning, are introduced to assist model construction. 

For example, Larios and his colleagues (2020) used 
infrared spectroscopy (FTIR) and machine learning 
algorithms to distinguish soybean seed vigor, and in 
their cross-validation tests, high and low vigor soybean 
seeds were discriminated with 100% accuracy. Another 
example, Tigabu et al. (2020) studied the potential of near-
infrared spectroscopy in the rapid and nondestructive 
determination of Chinese fir seed viability, and the average 
classification accuracy of the test was 99% and above. In 
addition, Zeng’s team (2019) worked on identifying and 
classifying the maturity stages of cucumber seeds in a 
nondestructive, accurate, fast, and inexpensive manner. 
The single-core near-infrared spectroscopy (SK-NIRS) 
technique they proposed, successfully distinguished five 
categories of cucumber seeds with different maturity levels 
in a nondestructive state, and obtained an accuracy of 
99.69%. These research results show the high adaptability 
and mutual achievement of artificial intelligence and seed 
quality detection.
2.1.4. Crop yield and quality forecast
Crop yield and quality forecasting is one of the challenging 
issues in precision agriculture and an important task 
for agricultural decision makers. Accurate crop yield 
forecasting models can help farmers decide what to plant 
and when to plant it, as well as help governments develop 
timely food policies, market prices, import/export policies 
and proper storage. Crop yield forecasting is not an easy 
task as crop yields depend on many different factors such 
as climate, weather, soil, fertilizer use and seed variety (Xu 
et al., 2019). The mainstream method in recent years is 
to apply artificial intelligence technologies (Paudel et al., 
2021) such as machine learning and machine vision to 
forecast crop yield. 

Prior to this, researchers have conducted extensive 
systematic literature review (SLR) work: Vaidya et al. 
(2022) focused on precision agriculture and examined 
related work using hyperspectral remote sensing for 
crop yield prediction and estimation; Klompenburg et al. 
(2020) conducted an extensive study of the literature on 
yield forecasting and summarized and analyzed it from 
three perspectives: prediction feature selection, machine 
learning algorithm selection, and evaluation parameter 
selection. The results show that the most commonly used 

methods are CNN, LSTM, and DNN; Koirala et al. (2019) 
reviewed methods for fruit detection and yield estimation 
using deep learning, and also recommended methods such 
as CNN, LSTM, and deep regression.
2.2. Midproduction stage of agricultural production
In the midproduction stage of agricultural production, 
“How are we going to grow?” is the core issue that 
people need to consider. At this stage, farmers expect 
high yields and high-quality returns through newer and 
better farming techniques. Around this core goal, various 
agricultural intelligent systems have been developed, and 
various disease detection and control methods have been 
proposed to better answer the question of “how to grow”.
2.2.1. Various agricultural intelligent systems
Agricultural expert system is an intelligent computer 
program system, which integrates the knowledge and 
experience of agricultural experts and can deal with the 
problems in the process of agricultural production from 
the perspective of experts (McKinion and Lemmon, 
1985). It is well known that when solving agricultural 
problems, agricultural experts are usually required to have 
considerable experience accumulation and research basis, 
and have high requirements for talents. However, the 
help of agricultural experts is not always available when 
farmers need it. In order to solve the above problems, 
agricultural expert system uses big data technology to 
integrate relevant data into database, and establishes 
mathematical model through machine learning, so as to 
carry out heuristic reasoning, which can effectively solve 
the problems encountered by farmers and scientifically 
guide planting. For example, Khalil’s apple tree knowledge 
system designed by CLIPS with Delphi can help farmers 
get the correct diagnosis and treatment of more than a 
dozen apple diseases (Khalil et al., 2019).

In addition, some systems support users to access 
them through the Internet and enter questions to obtain 
expert-level answers. For example, Galala developed a 
system for early date coconut disease diagnosis consulting 
(Galala, 2019); Adi and Isnanto (2020) developed a rice 
management expert system based on positive chain and 
deterministic factor method, including seed selection 
consultation and pest detection consultation. Such Expert 
Question Answering System can answer users’ questions 
in natural language with accurate and concise natural 
language, which is a research direction that has attracted 
much attention and has broad development prospects 
in the field of artificial intelligence and natural language 
processing (Hu, 2006). The emergence of Expert Question 
Answering System combines knowledge map with 
question-and-answer system, simulates experts to answer 
farmers ‘ questions one to one, and provides farmers 
with fast, convenient, and accurate query services and 
knowledge decision-making.
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Recording, monitoring, and controlling environmental 
conditions in agricultural production is particularly 
important. Internet of things equipment, wireless sensor 
networks, suitable sensors, and cloud services embedded 
with the capabilities of artificial intelligence and machine 
learning are the pillars of smart environmental monitoring 
(SEM). Intelligent environment detection system plays 
an important role in intelligent or green agriculture 
(Nayyar and Puri, 2016; Shahzadi et al., 2016; Sushanth 
and Sujatha, 2018; Pathak et al., 2019). It can help people 
obtain soil health, water analysis, water pollution level, 
water level and other factors data, and intelligent analysis 
is very important to obtain the sustainable productivity of 
the agricultural sector. In addition, agricultural intelligent 
system includes weed identification system (Sabzi et 
al., 2018; Espejo-Garcia et al., 2020; Yang et al., 2022b), 
agricultural decision support system (Hafezalkotob et al., 
2018; Asher and Brosh, 2022), geographic information 
system (Manuel et al., 2020), portable agricultural 
information system (Keerthana et al., 2018; Akhter et al., 
2021), etc.
2.2.2. Crop disease detection and control
Plant diseases cause great losses to the production, 
economy, quality and quantity of agricultural products. 
Therefore, it is necessary to monitor the disease of crops 
from the first stage of crop life cycle to before harvest. The 
traditional method is a visual observation, which is not 
only time-consuming and labor-intensive, but also requires 
supervisors to have a lot of professional knowledge. To 
solve these problems, researchers have proposed a series 
of automated and intelligent disease detection methods. 
Table 2 lists some typical cases of crop pest detection using 
artificial intelligence technology in recent years.

It is not difficult to see from Table 2 that the main 
implementation methods of disease recognition are 
gradually moving from traditional deep learning to few-
shot learning. This is primarily because the algorithms 
based on Deep Learning typically rely heavily on large 
amounts of data. Deep Learning driven by big data 
faces the challenges of the high cost of data acquisition, 
high cost of high-end hardware and high consumption 
of power resources (Li and Chao, 2021b), which is not 
conducive to the sustainable development of agriculture. 
In order to conform to the sustainable development of 
agriculture, researchers should focus on the trade-off 
between data quality and quantity. For the data quality in 
the agricultural field, Li et al. (Li and Chao, 2021a; Li et 
al., 2021; Li et al., 2022b) believed that limited good data 
can defeat a large number of bad data. For the problem of 
data quantity, Yang et al. (2022a) examines the application 
of few-shot learning in smart agriculture, and Nie et al. 
(2022) investigated sustainable computing in intelligent 
agriculture. The results show that using small sample 

in some agricultural tasks can achieve a better model 
algorithm with less sample data.
2.3. Postproduction stages of agricultural production
In the postproduction stage of agricultural production, 
it is necessary to consider the harvesting of agricultural 
products, that is, to achieve the transformation of 
agricultural product output to efficiency. The review 
of the postproduction stage of agriculture mainly 
focuses on the harvesting, inspection, and marketing of 
agricultural products. Among them, the general trend of 
agricultural product harvesting work lies in automation 
and robotization, while the current state of harvesting 
technology for different types of crops has a different focus; 
agricultural product inspection work mainly includes 
maturity grading, quality inspection and appearance 
classification, and its mainstream technology lies in 
computer vision technology; every part of agricultural 
product marketing work relies heavily on the application 
of information technology.
2.3.1. Harvest of agricultural products
Crop harvesting activities include harvesting, stacking, 
handling, threshing, cleaning, and hauling. These jobs 
are usually tedious and require large labor and high 
repeatability. Under the influence of increasing demand 
for agricultural products and labor shortage, the harvest 
of agricultural products needs to improve the level of 
agricultural automation and roboticization. 

For cereal crops, such as wheat and corn, which mature 
evenly in the field, large machines can be used to harvest 
the crop efficiently and on a large scale. For melon and fruit 
crops, different fruits have different growth environment, 
spatial location, geometry shape, size, color, hardness, 
and maturity, so it is not suitable for uniform harvesting. 
At the same time, factors such as rugged orchard terrain 
and obstacle interference also increase the difficulty of 
harvesting melon and fruit crops. The smaller harvesting 
robots capable of sensing and adapting to different crop 
types or environmental changes are therefore required 
for harvesting (Zhao et al., 2016; Silwal et al., 2017). At 
present, fruit harvesting robots can already use visual 
perception to perceive and learn crop information, which 
can complete camera calibration (Wang et al., 2019), 
target recognition and localization (Yu et al., 2020b), 
target background recognition (Feng et al., 2019), 3D 
reconstruction (Kusumam et al., 2017; Blok et al., 2019; 
Onishi et al., 2019), robot behavior planning based on 
visual positioning (Gongal et al., 2015; Wibowo et al., 
2016), and avoid complex factors interference localization 
(Xiong et al., 2018) and other tasks. The object recognition 
methods for these harvesting robots are mainly single-
feature vision methods, multifeature fusion methods, and 
deep learning algorithms. In addition, the study found 
that for sweet potato, potato, yam, taro, and other root 
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crops (also known as potato crops) growing in the soil, the 
harvesting technology mostly stays in the way of manual 
mining, or semiman and semimechanical harvesting at 
present. There are few intelligent automatic harvesting 
technologies for this kind of crop, and most of them remain 
in the development of mechanical institutions (Bahadirov 
et al., 2020; Matmurodov et al., 2020) and the optimization 
stage of the automatic control system, which need to be 
broken through and improved.
2.3.2. Inspection of agricultural products
With the support of various intelligent algorithms, 
microelectronic systems, nanotechnology, sensors, on-site 
rapid detection technology, and remote data transmission 
and processing technology, the agricultural product 
inspection, and detection system tend to be miniaturized 
and intelligent. This paper mainly introduces the inspection 
of agricultural products under the influence of artificial 
intelligence from three aspects of maturity classification, 
quality inspection, and appearance classification. 
2.3.2.a. Maturity classification
Firstly, judging the maturity of agricultural products 
and choosing appropriate preservation methods are the 
prerequisites for consumers to obtain fresh agricultural 
products. The ripening process of fruit is usually 
accompanied by changes in color, aroma, texture, and 
pattern. These changes are usually gradual, subtle, and 
inappropriate for human judgment. Using artificial 
intelligence can quickly and accurately grasp these changes 
that are not obvious in the eyes of people, so as to judge the 
immaturity, maturity, and decay of agricultural products. 
Using artificial intelligence, researchers have proposed 
various detection methods of fruit ripeness based on 
sound, light, color, and taste, and combined them with 
intelligent algorithms (Balbin et al., 2018; Gutierrez et al., 
2019; Zhang et al., 2020). The method of fruit ripeness 
detection using acoustic vibration (Fadchar et al., 2020) 
is a typical example of the abovementioned sound-based 
methods; the light-based detection methods mainly 
include spectral technology and hyperspectral imaging 
technology (Pu et al., 2019; Garillos-Manliguez et al., 
2021); the color-based fruit ripening detection methods 
use color feature extraction technology (Alfatni et al., 2020; 
Zhong et al., 2021); and there is no doubt that methods 
using the electronic nose (Jia et al., 2019; Guo et al., 2021) 
exemplify taste-based approach. At this stage, spectral 
technology and hyperspectral imaging technology are 
still the mainstream. However, the expensive equipment 
limits their large-scale application and development, and 
low-cost photodiode-based fruit maturity estimation 
(Giovenzana et al., 2015; Bhatnagar et al., 2019) may 
become a more popular direction in the future.

2.3.2.b. Quality inspection
The quality and safety of agricultural products is directly 
related to people’s health, and its quality testing is mainly 
divided into two aspects: component content testing and 
damage testing. Firstly, for ingredient content detection, 
the easiest way is of course to cut it open and conduct 
chemical inspection. However, due to the consideration 
of food protection and sustainable agriculture, in 
recent years, people have been striving for physical 
nondestructive testing. Taking fruit sweetness analysis as 
an example, Tran et al. (2021) used a simple spectroscopic 
system with a classifier based on machine learning they 
developed and trained to detect apple sweetness, with 
a maximum accuracy of 91.5%; Nguyen et al. realized 
the precise sweetness classification of mango by using 
low cost visible near infrared ( VIS-NIR ) multispectral 
sensors and random forest ( RF ) classifier. Secondly, 
the nondestructive damage detection of fruits is of great 
significance for screening bad fruits and fruit grading. The 
damage of agricultural products is divided into internal 
damage and surface damage. Here, the surface damage can 
be classified as appearance classification of agricultural 
products, so internal damage is mainly introduced here. 
Traditional physical methods include magnetic resonance 
imaging (Thybo et al., 2004), acoustic localization (Yoshida 
et al., 2018), computer tomography (Meberg et al., 2001) 
and so on. However, these methods are either complicated 
to operate, expensive, or not compatible with different 
fruits, so they are not suitable for large-scale production 
practice. Therefore, researchers have proposed to apply the 
deep learning algorithm. Only by determining the internal 
damage of a small number of samples to train the classifier 
model, the machine can quickly and reliably predict the 
situation of a large number of fruits. In the nondestructive 
detection of withered kernels in shelled walnuts, Zhai et 
al. (2020) used walnut images and weight information 
to fuse the training of the machine learning algorithm, 
and achieved 97% classification accuracy with only 0.001 
average cost calculation time.
2.3.2.c. Appearance classification
The classification of agricultural products according to 
their appearance characteristics, such as size, shape, color 
and so on, is also an important step before their sales work. 
However, the efficiency of manual operation is low and 
the influence of subjectivity is large, and the accuracy rate 
of pure mechanical operation is low. That is why people 
want to apply artificial intelligence to the classification 
of agricultural products. After the introduction of a very 
reliable inspection tool-machine vision technology, the 
fruit can be accurately and efficiently identified and 
classified according to the color, texture, shape, disease 
defects, and other characteristics, which is helpful to 
increase yield, reduce production time and improve quality 
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control (Ayyub and Manjramkar, 2019). Such methods 
have been relatively mature at this stage, so the problems 
to be considered have gradually shifted from the method 
itself to how to put them into practical application.
2.3.3. Sales of agricultural products
The final work of the postproduction stages of agricultural 
is the sale of agricultural products, which needs to 
be processed, packaged, transported, and sold. In the 
transportation process, most agricultural products are 
perishable, which inevitably leads to certain losses. People 
will be based on the Internet of things radio frequency 
identification technology is applied to this, through the 
dynamic way to obtain product information, so that 
managers can monitor the whole circulation process, 
real-time tracking. In this way, it can effectively plan the 
quantity of product storage and transportation, reduce 
operating costs and prevent transportation losses. In 
the sales process, artificial intelligence technology can 
be applied to collect data on production, consumption, 
storage, and circulation, and in-depth analysis of the whole 
market. It can effectively understand the current level of 
agricultural development, prevent sharp rise or fall, and 
promote more stable product transactions. In addition, 
the online marketing of mobile or PC-side e-commerce 
platforms built by artificial intelligence and Internet 
technology can maximize the use of online integration 
advantages to effectively integrate information resources, 
reduce production costs, and improve the relationship 
between suppliers and consumers. At the same time, based 
on the Internet of things and mobile network technology 
(Zhou and Zhou, 2012), the information management 
of agricultural production and circulation process, the 
traceability management of agricultural product quality 
(Yang et al., 2018), the management of agricultural product 
production archives (origin environment, production 
process, and quality detection), and the establishment 
of agricultural product quality and safety traceability 
system based on website and mobile phone short message 
platform (Tian, 2017; Zheng et al., 2021) can realize the 
traceability of the whole quality and service of agricultural 
product quality and safety, improve the brand effect of 
traceability agricultural products, and ensure the quality 
and safety of agricultural products.

3. Digital twins in agriculture
3.1. Overview of digital twins
3.1.1. General definition of digital twins
Review history, the prototype of digital twins, “mirror 
space model”, was first conceived by Michael Grieves in 
2003 (Githens, 2007). In 2010, the National Aeronautics 
and Space Administration (NASA) adopted two identical 
aircrafts, one was the native and the other one was 

the twin, to realize the comprehensive diagnosis and 
prediction function of the flight system, which led to the 
concept of “digital twins” (Piascik et al., 2010). In 2014, 
Michael Grieves provided another detailed definition 
of digital twins. He proposed that the basic framework 
of the digital twins system should include the physical 
space, the virtual space, and the flow of information and 
data connecting the two spaces (Grieves, 2014). With the 
development of related technologies, the definition of the 
term “digital twins” has been more widely discussed by 
different researchers and institutions. For example, Mayani 
et al. (2018) saw the digital twins as a bridge between the 
physical and digital worlds; Wanasinghe (2020) regarded it 
as an immersive data analysis technique; Poddar (2018) and 
Sharma et al. (2018) regarded it as a virtual and simulated 
model or a realistic replica of a physical asset. Although 
these definitions differ somewhat from each other, none of 
them has ever departed from the basic framework of the 
digital twins.

A general definition of digital twins is that it refers 
to the establishment and simulation of a physical entity, 
process, or system in the information platform. By 
integrating physical feedback data, assisted by artificial 
intelligence, machine learning and software analysis, 
a digital simulation is established in the information 
platform, and this simulation will automatically make 
corresponding changes with the change of physical entities 
according to feedback. Ideally, digital twins can self-learn 
according to multiple feedback source data, and present 
the real situation of physical entities in the digital world 
almost in real time. In other words, with the help of digital 
twins, the state of physical entities can be understood on 
the information platform, and the predefined interface 
components in physical entities can be controlled (Schleich 
et al., 2017; Vatn, 2018; Liu et al., 2019).
3.1.2. Basic architecture of digital twins
The most typical and widely accepted DT framework 
still consists of three main components: “physical space”, 
“virtual space”, and “connections between these spaces” 
(Grieves, 2014). Among them, the physical space contains 
physical assets, sensors, and actuators; the virtual space 
includes multiphysics, multiscale, probabilistic simulation 
models; and the connection between the physical space 
and the virtual space ensures seamless data and drive 
command exchange between these two spaces. With 
the continuous expansion and upgrading of application 
demands, DT faces more service demands from different 
fields, different levels of users, and different services (Qi 
et al., 2021). At the same time, the interconnection of all 
things provides conditions for realizing the information 
physical interaction and data integration of DT. To facilitate 
further applications of DT in more domains, researchers 
have extended the three-component DT framework. Tao 
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and Zhang added “DT data fusion” and “service system” 
modules to the original framework which have only 
“physical space” and “virtual space”, and the connection 
between them was also expanded accordingly. The six-
component framework proposed by Parrott and Warshaw 
consists of five enabling components and a six-step 
process. Their work embodies “physical space” and “virtual 
space”: “sensors” and “actuators” in enabling components, 
and “act”, “create”, and “communicate” in processes belong 
to physical space; while the enabling components “data” 
and “analytics”, as well as the “aggregate”, “analyze”, and 
“insight” processes belong to the virtual space; in addition, 
the role of “integration” is to connect the physical and 
virtual worlds.
3.1.3. Key technologies and typical applications of digital 
twins
The digital twins exists in virtual form, which can not 
only reflect the characteristics, behavior process and 
performance of physical objects in a highly realistic way, 
but also realize real-time monitoring, evaluation, and 
management in a surreal form. Its ability to present a 
surreal mirror image of the target physical entity object 
relies on the support of the following technologies: high-
performance computing, advanced sensing acquisition, 
digital simulation, high-fidelity modeling, intelligent data 
analysis, VR presentation, etc. By constructing digital 
twins, not only the health state of the target entity can be 
described perfectly and meticulously, but also the deep, 
multiscale, and probabilistic dynamic state assessment, 
life prediction, and task completion rate analysis can be 
realized through the integration of data and physics.

Through the integration with artificial intelligence, 
mobile Internet, cloud computing, big data analysis, 
and other technologies, DT has potential application 
value in many fields involving physical and virtual space 
mapping, fusion, and collaborative evolution. DT can be 
applied in different fields such as smart city, construction, 
medical treatment, agriculture, freight, drilling platform, 
automobile, aerospace, manufacturing, electric power, and 
other fields.
3.2. The applications of digital twins in agriculture
With the current global expectations for the agricultural 
field, scientific and technological achievements such as 
agricultural artificial intelligence technology, agricultural 
Internet of things technology, agricultural data model 
analysis system, and agricultural intelligent equipment 
continue to emerge. Agriculture has basically realized 
digitalization and networking, is moving towards the 
stage of intelligence and virtualization. The emergence 
of the agricultural digital twins system will realize the 
organic integration of the physical entity of agricultural 
production and the digital cyberspace, so as to realize the 
integration of “connection-perception-decision-control”. 

This will support the better realization of accurate, efficient, 
and sustainable smart agriculture, and provide new 
momentum for the digital transformation and upgrading 
of agriculture.

Agricultural digital twins are mainly based on the 
elements of the agricultural production process (physical 
entities) as the object, focus on the digital solidification 
of agricultural knowledge based on various types of 
production models, system rules, and data collections. 
Agricultural digital twins are dedicated to constructing 
multidimensional, multiscale, multidisciplinary, and 
multiphysical quantity dynamic virtual models to portray 
the attributes, behaviors, and laws of each element in the 
agricultural production process to replace some complex 
experiments in real environments. Figure 3 shows a typical 
schematic diagram of an agricultural digital twins system. 
In the figure, the virtual model is constructed based on 
agricultural entities and iteratively interacts and optimizes 
with them in the agricultural production process. Through 
the data and information interaction between the twin 
data fed back to the 3D model and the physical world, the 
integrity of the digital world is continuously improved, 
and then precise control over agricultural entities can 
be achieved. The agricultural digital twin system realizes 
the simulation, monitoring, diagnosis, prediction and 
control of agricultural objects by constructing real-
time and accurate digital mapping of physical objects—
animals, plants, and motion trajectories—in virtual 
space. According to the state of agricultural entities in the 
physical world and application requirements, quantitative 
prediction, and decision feedback are carried out.

Digital twins have been used less in agriculture in 
recent years. Our examination of it reveals its main 
applications as follows.

Agricultural product model was established to monitor 
crop growth or determine crop quality parameters. Li et al. 
(2022a) proposed a single-view leaf reconstruction method 
of plant growth digital twins system based on deep learning 
ResNet, which provided important ideas and methods for 
single-view leaf reconstruction in plant growth digital twins 
system. Evers et al. (2020) are committed to developing 
digital twins of greenhouse tomato crops, updating the 
3D simulation model through real-time input of sensor 
information from real greenhouses, so as to simulate the 
interaction between crop quality, environmental factors, 
and crop management. Pattanaik and Jenamani (2020) 
created digital twins of three different mango varieties, 
Alphonso, Totapuri, and Kesar, and accurately simulated 
the cooling behavior of real mangoes according to the 
airflow rate and temperature, so as to analyze and grasp 
the cooling heterogeneity and quality attenuation in 
the process of mango export. Kampker et al. (2019) 
established a plastic “potato digital twin” as a substitute for 
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real potatoes to detect the impact and rotation of potatoes 
during harvest.

The environment model is established to obtain 
decision support. The farm management simulation tool 
AgROS developed by Tsolakis et al. (2019) allows the 
introduction of static object layout characteristics such 
as actual fields and trees, so as to carry out field tests of 
agricultural robots or autonomous unmanned ground 
vehicles (UGV) in quasireal environment. Jo et al. (2018) 
proposed an intelligent pig farm based on digital twins 
to improve animal welfare, and conducted a feasibility 
study on it. Alves et al. (2019) established a digital twins 

intelligent farm using sensing data from soil detectors, 
weather stations, irrigation systems, and equipment to 
obtain visual return and decision-making suggestions. 
Moghadam et al. (2020) developed an automatic dynamic 
crown monitoring system, AgScan3D +, which is now 
used in mango, macadamia, avocado, and vine orchards 
and generates digital twins of 15,000 trees. It uses a 
rotating 3D camera to create a digital twin model for each 
tree in the orchard, and monitors the health, structure, 
pressure, fruit quality, and other indicators of each tree to 
predict pressure, disease, and crop loss, and provide real-
time farm decision support for farmers. Cor Verdouw et 

Figure 3. Typical schematic diagram of agricultural digital twin system.
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al. proposed a conceptual framework for the design and 
implementation of digital twins, which has been applied 
and verified in five intelligent agricultural cases (field 
zoning management, cow welfare, greenhouse tomato 
production, weed monitoring and pig farm management) 
of the European IoF2020 project.

4. Discussion
This chapter focuses on “AI in agriculture” and “DT in 
agriculture”, and discusses and analyzes the challenges 
and future development trends of these two technologies 
in agriculture at this stage. In Subsections 4.1 and 4.2, the 
challenges and development trends of AI in agriculture are 
discussed respectively, while the corresponding contents 
of digital twin are discussed in Subsections 4.3 and 4.4.
4.1. Challenges of artificial intelligence
The survey shows that the abovementioned AI 
technologies are cutting-edge agricultural science 
research hotspots, and their applications run through the 
preproduction, midproduction, and postproduction stages 
of the agricultural production process. They have helped 
to achieve intelligent management and precise control, 
improve production efficiency and product quality, and 
reduce environmental pollution and energy waste. They 
have shown excellent performance and great application 
potential and have undoubtedly played a role in promoting 
work related to agricultural sustainability. At the same 
time, we find that AI in agriculture, especially in the field 
of agricultural sustainability, still faces many challenges:

· Various artificial intelligence technologies have 
not been integrated and implemented with intelligent 
equipment widely and on a large scale, and the intelligent 
agricultural system still needs to be improved. On the 
one hand, different types and growth cycles of crops have 
different growth states, which makes the agricultural 
analysis model not have a universal; on the other hand, the 
high cost or lack of key technologies and equipment makes 
it impossible for various intelligent algorithms to be put 
into agricultural production on a large scale. Therefore, 
most of the research on it is still in the process of algorithm 
development, which fails to enable farmers to truly enjoy 
the convenience of artificial intelligence algorithms.

· The application of AI in various fields of agriculture 
lacks in-depth analysis with relevance. The factors involved 
in agricultural production are complex. Regions, seasons, 
types of crops, production environments, and operating 
methods all affect the application effect of various 
intelligent technologies. At the present stage, most of the 
studies only stay on the acquisition and surface analysis 
of agricultural data. They fail to start from the excavation 
of agricultural production laws and lack the deep analysis 
of error laws with the correlation between theory and 
practice.

· The global level of agricultural automation and 
intensification is uneven, and there is a technological 
gap between developing and developed countries. The 
main manifestation is that developing countries are prone 
to form shortcomings in basic theory, core algorithms, 
key equipment, high-end chips, and major systems and 
software of agricultural artificial intelligence.

· Artificial intelligence technology in agriculture is 
inseparable from the support of a large amount of data, 
and how to obtain high-quality data information is one of 
the challenges in the future. Big data mining in agriculture 
is the process of extracting potentially useful agricultural 
information and crop growth laws from a large number of 
incomplete, noisy, fuzzy, and random agricultural data. At 
present, the segmentation and data mining of agricultural 
Internet of Things data resources are still in the initial 
stage, and the intelligent algorithm models and practical 
databases in various agricultural fields are in urgent need 
of expansion. With the continuous updating and expansion 
of intelligent algorithms, at this stage, the amount of data 
required and data costs are both increasing. At the same 
time, agricultural data obtained in the real world is limited 
by the crop growth cycle, and the problems of complex 
acquisition methods and long acquisition periods are also 
a big challenge for researchers.

· Restricted by factors such as the shrinking global 
economy, limited scientific and cultural exchanges, sluggish 
high-tech development, lack of talents, and inadequate 
infrastructure, the infrastructure, policies and regulations, 
investment in agricultural scientific research, and talent 
pools in related fields adapted to the development of smart 
agriculture gradually fail to meet the growing demand for 
agricultural pressure. It is also a great challenge to balance 
the impact of unfavorable factors on the highly intelligent 
development of sustainable agriculture.
4.2. Future directions of artificial intelligence
Artificial intelligence technology, which has a broad 
application space in agriculture, is a pillar to promote 
smart agriculture. Faced with the above challenges, the 
following suggestions for the possible development of 
artificial intelligence technology in agriculture are put 
forward as follows:

· Attention should be paid to the improvement of 
the computing force and technology implementation of 
agricultural AI. The computing force is one of the important 
efficiency indicators of agricultural AI. Conventional AI 
algorithms are too computationally intensive to be directly 
integrated and applied to traditional IoT systems. The 
lightweight and efficient algorithm models, such as Few-
shot Learning and so on, are easy to embed in IoT devices 
and compute at the edge of the devices, thereby realizing 
AI applications on the IoT devices.
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· Research and development of more universal 
agricultural artificial intelligence equipment, strengthening 
standardization and standardized management, and 
improving the level of agricultural intelligence on 
a large scale and without threshold are necessary. 
Artificial intelligence equipment is an important part 
of artificial intelligence technology, among which the 
core technologies such as artificial intelligence chips and 
intelligent sensors need to be developed and optimized. In 
order to meet the different performance requirements of 
agricultural application scenarios, it is necessary to carry 
out continuous and in-depth research, formulate relevant 
standards around the integration of AI technology and 
agricultural IoT, agricultural machinery equipment and 
agricultural big data, and develop agricultural artificial 
intelligence terminal equipment with lower cost and 
higher robustness.

· People should focus on the fact that technology 
development and information security go hand in hand, 
focus on agricultural data security, and build a green 
data-sharing model. The development of agricultural 
AI technology relies on data. Agricultural data have 
the characteristics of large volume, various types, and 
wide sources. It is necessary to ensure the security of 
agricultural data and information systems to ensure the 
safe production, accurate management, and intelligent 
decision-making of agriculture. At the same time, 
establishing a safe, efficient, and mature agricultural 
data open sharing mode can promote not only the rapid 
development of intelligent agriculture, but also the 
inevitable trend of the environment.

· The cross-integration of different fields should be 
promoted to lead to the transformation of the modern 
agricultural development mode. In order to meet the 
increasingly diversified agricultural production tasks, it 
is necessary to promote the integrated development of 
agricultural AI in different fields. For example, integrating 
the real-world agricultural process with the virtual-world 
agricultural model can reduce the cost and time cycle of 
agricultural data acquisition and accelerate AI technology 
iteration in the real world.
4.3. Challenges of digital twins
As a cutting-edge technology, the digital twin technology 
has received widespread attention from industries that it 
will revolutionize. Driven by technological updates and 
historical experience, the digital twins can almost reflect 
all aspects of products, processes, or services. However, the 
study found that the current potential of the digital twins 
in agriculture is far from being realized, and there are still 
many challenges in the development of agricultural digital 
twin technology: 

· It is easy to see that digital twin technology is still in 
its infancy and rising stage in the agricultural field, and the 

technology and tools need to be developed. Researchers 
have to collect and merge various types of data to model 
all the different parts of an agricultural object or system 
from scratch, which will be a complex and lengthy process.

· How to form and design cognitive digital twins? At 
this stage, although some low-level operations can be 
implemented autonomously without human intervention, 
many decision-making activities still need to be maintained 
by manual operations based on human interaction. How 
to enable spontaneous and intervention-free simulation 
free from human control and seamless interaction among 
multiple models is also a major challenge in the research 
process.

· DT offers real-time simulation possibilities for the 
product lifecycle and can even help integrate the entire 
supply chain through all stages of its lifecycle. However, 
connecting data information collected, aggregated, and 
exchanged between different suppliers, manufacturers, and 
customers in a virtual space, or fusing digital twin models 
developed using different DT architectures, technologies, 
interfaces, communication protocols, models, and 
data, can pose interoperability issues. Therefore, the 
development of standard-based interoperability for digital 
twin applications is undoubtedly another major challenge 
for digital twin technology.
4.4. Future directions of digital twins
Since its inception, the digital twin has shown great 
promise in many aspects. With the further development of 
its technology and the increasing maturity of agricultural 
virtualization technology, everything in the physical 
world may be replicated in digital space by digital twin 
technology in the future. The following are some outlooks 
on future applications of the digital twin in agriculture: 

· Digital twin technology will become the best 
practice in various agricultural sectors. DT supports 
manufacturing and controlling the entire life cycle of 
a product or process and therefore can model complex 
links in agricultural production processes from physical 
to virtual in order to obtain agricultural information. 
For example, by constructing the plant model, the crop 
life cycle and environmental changes can be accelerated 
in the virtual space, so that the data of each stage can be 
easily obtained. By constructing virtual workshops and 
previewing robot motion planning schemes to simulate 
the real-world agricultural product processing, and then 
mapping the virtual data information to the real robot, the 
fully automated processing and production can be realized 
to reduce the production cost of agricultural products. By 
constructing the virtual farm breeding environment, the 
accurate simulation of animals from organs, tissues, and 
systems to the whole can be realized, so as to obtain the 
knowledge database of animal living environment, animal 
nutrition needs, and variety breeding.
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· Industry standardization will allow different models, 
different systems, and even different domains to interact 
and respond to each other. While different physical objects 
can interact with each other naturally and without barriers, 
the problem of interaction in virtual spaces requires the 
creation of application-specific interfaces and functions. 
Industry specifications and interface standardization of 
digital twin technology will enable the models to have 
programmability, interoperability, etc. so that they can 
be interoperated between different production systems 
and application areas in the virtual space. For example, 
an apple tree model constructed by one person using DT 
can be planted accessibly in a pear tree population model 
constructed by another person, and a series of feedback 
information on growth conditions can be obtained.

5. Conclusion
In this paper, we focus on artificial intelligence and 
digital twin technology in sustainable agriculture, review 
and summarize the application of artificial intelligence 
technology in each stage of the agricultural production 
process in the past few years, briefly outline what digital twin 
is, and review the current status of digital twin technology 
in agriculture. The results of the inquiry are as follows:

(1) Application: A range of AI technologies run 
through the whole process of agricultural production 

and are applied to all aspects of the production process. 
In contrast, compared with the application of AI in 
agriculture, the application of DT in agriculture appears 
to be stretched.

(2) Challenges: There is still a lot of work that can 
be done to improve the field of agricultural artificial 
intelligence, especially in terms of computing power 
improvement, large-scale implementation, and multifield 
integration. Due to the specificity and complexity of 
agricultural production, the challenges faced by digital 
twin technology in this application are greater than those 
in any other industry, and it will take time to achieve a real 
breakthrough in all aspects.

(3) Future development: The research on digital twin 
technology in agriculture is still in its infancy, and there 
are still many problems that need to be solved urgently. In 
the era of big data, the origins and development of artificial 
intelligence and digital twin cannot be separated from the 
database, so their development should be complementary 
to each other.
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