Assessment of Response to Drought Stress of Chickpea (*Cicer arietinum* L.) Lines Under Rainfed Conditions

Cengiz TOKER, M. İlhan ÇAĞIRGAN

Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya-TURKEY

Received: 28.01.1996

Abstract: Totally sixty four chickpea lines were grown for assessment of response to drought stress in the stress and non-stress environments under rainfed conditions. The seed yield of the lines when grown under the non-stress condition increased at a rate of 53% over the in stress condition. The line, FLIP 92-154C, was determinated as the best tolerant line to drought stress environment under the field condition. Also, seed yield strongly correlated with biological yield, harvest index, mean productivity, tolerance to drought stress and drought susceptibility index in the stress environment.

Yağmurla Beslenen Koşullar Altında Nohut (Cicer arietinum L.) Hatlarının

Kuraklığa Tepkilerinin Belirlenmesi

Özet: Toplam altmışdört nohut hattı, kuraklık stresine tepkilerinin belirlenmesi amacıyla yağmurla beslenen koşullar altında kuraklık stresi ve kuraklık stresi olmayan çevrelerde yetiştirilmişlerdir. Kuraklık stresi olmayan koşullar altında yetiştirilen hatların dene verimleri kuraklık stresi olan kuşallardakilere göre %53 oranında artmıştır. FLIP 92-154C hattı, tarla koşullarında kuraklık stresi çevreleri için kuraklığa en tolerant hat olarak belirlenmiştir. Ayrıca, kuraklık stresi olan çevrelerde dane verimi ile biyolojik verim, hasat indeksi, ortalama verimlilik, kuraklık stresine tolerans ve kuraklığa duyarlılık indeksi arasında önemli ilişki bulunmuştur.

Introduction

In Semi-Arid Tropics (SAT) and Mediterranean environments, especially in West Asia and North Africa (WANA), the major abiotic constraints are drought and high temperature stresses because spring crops, with the exceptions of faba bean (Vicia faba L.), pea (Pisum sativum L.) and lentil (Lens culinaris Medic.), are usually grown on poor soil and under low-input conditions. Chickpea (Cicer arietinum L.) is the only pulse crop which is sown in spring without irrigation in the Mediterranean basin (1, 2). The crop, in particular, is affected drought stress because of late sowings. Terminal drought stress is normally accompanied by increasing temperature towards maturity, often to levels, more than 30°C, those which may be affected to pod filling (3, 4). Although it is possible for the crop to avoid drought stress when sowing time is changed from spring to fall, but the breeding efforts for resistant to drought have been limited by contrast to cereals. Drought stress is the second important constraint of yield in chickpea after disease, while research efforts and success of breeding have a share of 10% and 5%, respectively (5). Breeding for resistance or tolerance to drought and high temperature stresses in chickpea is limited by the lack of adequate selection criteria for stress tolerance. Most breeding programs are based on visual scoring in the controlled or field conditions.

The objective of this paper was to evaluate of correlation among tolerance to drought stress, mean productivity and drought susceptibility index and yield and yield components as well as determining tolerance to stress of chickpea lines *via* drought susceptibility index under rainfed conditions.

Materials and Methods

The present study was conducted under farmer's conditions. Sixty one chickpea lines from the International Center for Agricultural Research in the Dry Areas (ICARDA) and three checks, of which are an improved lines from ICARDA (FLIP 82-150C) and two checks from Turkey (ILC 482 and Ürkütlü native landrace) were grown between 1994-96, as winter (non stress environment)- and spring-sowings (stress environment) in the Mediterranean plateau. The lines were arbitrarly clustered in two groups accordance with line number (Table 2 and 3). The lines were planted as winter-sowing on 11 December 1994 and spring-sowing on 4 April 1996 in Ürkütlü, Burdur province (about 37°04' N, 30°12' E, 1014 m above sea level). Genotypes were

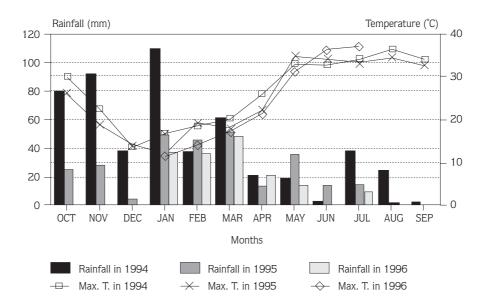


Figure 1. Monthly prencipitation and maximum temperatures between 1994-96 (6).

Physical properties			Macro and micro plant nut	Macro and micro plant nutrients						
рH	:	8.050	Available phosphorus	(ppm) :	8.198					
CaCO ₃ (%)	:	30.76	Exchangeable potassium	(ppm) :	187					
Total soluble			Exchangeable calcium	(ppm) :	4648					
salt (%)	:	0.002	Exchangeable magnesium	(ppm) :	4648					
Sand (%)	:	31.12	Exchangeable sodium	(ppm) :	23					
Clay (%)	:	26.88	Available copper	(ppm) :	0.604					
Silt (%)	:	42	Available zinc	(ppm) :	0.184					
Texture	:	loam	Available iron	(ppm) :	4.62					
Total N (%)	:	0.1064	Available manganese	(ppm) :	2.324					

Physical properties, macro and micro plant nutrients of the soil.

grown in a randomized complete block design with two replications. The experimental plot, consisted of one row of 2 m length, 40 cm apart, were employed and forty seeds planted by hand per plot. The experimental lines were harvested by hand in June 1995 and July 1996, winter- and spring-sowings, respectively. The area harvested in each plot were 0.56 m². The experimental area was hand weeded. Fertilization was applied at a rate of 23 kg nitrogen and 60 kg phosphorus per hectare. The monthly rainfalls and maximum temperatures were given in Figure 1.

As it can be seen from Figure 1, precipitation is irragular. Also, high temperature raising to 36.3° C during reproductive phase of the growth in June, affect the crop

drasticaly when planting time is shifted from March to the end of May in order to escape from *Ascochyta rabiei*.

Table 1.

A brief summary of the physical conditions of the soil was given in Table 1. Generally organic matter and macro plant nutrients was found at the low level.

The plot seed yield was recorded in grams in each line and then data was converted in kilograms to hectare basis. The biological yield was recorded in grams in each line. The harvest index was calculated in percent by using the following fomula: (Plot seed yield/Biological yield) x 100. The 100-seed weight was recorded in grams by multiplicating of means of the weight of twice sampled 50 kernels from each entry by 2 cofficient. The days to flower was recorded in days from planting time to the day on which at least 50% of plants in the plot had started to flowering. The plant height was measured in centimeters with the average height from hour randomly selected plants in the center of plot at the end of flowering.

The following equality suggested by Rosielle and Hamblin (7) was used for determination of tolerance to drought stress (TDS) of genotypes. Where Y_a is TDS,

$$Y_{3} = Y_{2} - Y_{1}$$

 Y_1 is the seed yield in the non-stress environment (winter-sown) and Y_2 is in the stress environment (spring-sown). Mean productivity was calculated by using following formula:

$$Y_4 = (Y_1 + Y_2)/2$$

The mean productivity (MP) was defined as $Y_{_{\rm 4}}$ (7) and rate of productivity (S/W) was arbitrated as $Y_{_{\rm F}}.$

$$Y_{5} = (Y_{2}/Y_{1})$$

Also, drought susceptibility index (DSI) was calculated with following equivalent used for cereals and applied by Fischer and Maurer (8), whereD is the rate of means as:

$$DSI = 1 - (Y_2/Y_2)/D$$

$$E = \frac{\text{Mean of all of}}{\text{Mean of all of genotypes in } Y}$$

Concequently, simple correlation matrix was obtained among the traits studied by using the MINITAB software program.

Results and Discussion

The seed yields of the lines in the non-stress environment clearly outyielded in the stress environment (Table 2 and 3) due to absence to drought stress. The yield of chickpea in the stress environment was restricted by limited moisture availability and traditional planting, i.e., spring sowing, resulding increased temperature during the reproductive stage of growth (1, 9, 10). Also, these results confirmed with Wery et. al. (4)'s findings. The seed yield of the lines in the non-stress environment was 1493 kg ha⁻¹ (Table 3) as average of the location, giving a 53% increase over the stress environment. Similar results were also reported by Hawtin and Singh (11).

On the basis of seed yield per se, lines, FLIP 91-45C, FLIP 92-110C and FLIP 92-154C gave a higher yield than the best check, ILC 482, and FLIP 90-111C the lowest in the non-stress environment. However, FLIP 92-163C, FLIP 92-191C and FLIP 92-154C gave the highest yields and FLIP 91-175C the lowest in the stress environment. The mean productivity was the highest in FLIP 92-154C. followed by FLIP 92-110C and FLIP 92-163C and FLIP 91-175C showed the lowest values. On the other hand, the tolerance to drought stress was the lowest in FLIP 90-8C, FLIP 92-167C and FLIP 90-111C lines, whereas FLIP 91-45C gave the highest value. The highest rate of productivity in the seed yield was observed in FLIP 90-8C and the lowest rate of productivity in ILC 482. Drought susceptibility index was ranged from -1. 166 to 0.025, in FLIP 90-8C and FLIP 92-65C, respectively.

The tolerance to drought stress, mean productivity, rate of productivity and drought susceptibility index was given in Table 2 and 3. In the non-stress environment, the higher yielding lines than the best check, ILC 482, had also high values for the mean productivity, e.g. FLIP 91-45C, FLIP 92-110C and FLIP 92-154C. High yield potential of the lines may be evaluated in the stress and non-stress environment. Also, high values for tolerance to drought stress of lines, (FLIP 91-45C, FLIP 92-169C and FLIP 92-102C) could be revealed as favorable for only adequate environment.

Sadiq et. al. (12), indicated that yield potential may be useful selection criterion in wheat under water-stress conditions. Therefore, high yielding lines in the non-stress environment may be advised to the non-stress environments for winter-sown if they tolerant to cold and resistant to ascochyta blight. On contrary, if seed yield of lines outyielded the best check in the stress environment and these lines had low value for the tolerance to drought stress, thus they could be considered as adopted to the stress environments.

The high yielding capacity and mean productivity of lines could be explained as tolerant to drought stress. Sadiq et. al. (12) reported that drought resistance may be present as an unidentified component of stability in genotype performance and provide an adequate assurance for farmers against environmental fluctuations

	Yield	Yield				
Lines	in Y ₁	in Y_2	MP	TDS	S/W	DSI
FLIP 90-8C	1000	964	982	-36	0.964	-1.166
FLIP 90-111C	911	661	786	-250	0.726	-0.632
FLIP 91-15C	1250	1054	1152	-196	0.843	-0.894
FLIP 91-15C	1464	714	1089	-750	0.488	-0.097
FLIP 91-19C	1107	518	813	-589	0.468	-0.052
FLIP 91-45C	2161	643	1402	-1518	0.298	0.330
FLIP 91-50C	1536	1054	1295	-482	0.686	-0.542
FLIP 91-58C	1518	786	1152	-732	0.518	-0.164
FLIP 91-59C	1482	982	1232	-500	0.663	-0.490
FLIP 91-63C	1357	1000	1179	-357	0.737	-0.656
FLIP 91-130C	1411	661	1036	-750	0.468	-0.052
FLIP 91-140C	1517	732	1152	-839	0.446	-0.047
FLIP 91-141C	1429	804	1117	-625	0.563	-0.265
FLIP 91-146C	1375	804	1090	-571	0.585	-0.315
FLIP 91-155C	982	696	839	-286	0.709	-0.593
FLIP 91-156C	1375	732	1054	-643	0.532	-0.196
FLIP 91-162C	1286	804	1045	-482	0.625	-0.405
FLIP 91-163C	1268	661	965	-607	0.521	-0.171
FLIP 91-169C	1464	571	1009	-875	0.395	0.112
FLIP 91-175C	964	482	723	-482	0.500	-0.124
FLIP 91-183C	1429	804	1117	-625	0.563	-0.265
FLIP 91-189C	1518	1054	1286	-464	0.694	-0.560
FLIP 91-204C	1517	804	1188	-767	0.512	-0.151
FLIP 91-206C	1589	714	1152	-875	0.449	-0.009
FLIP 92-22C	1196	768	982	-482	0.642	-0.443
FLIP 92-25C	1643	804	1224	-839	0.489	-0.099
FLIP 92-27C	1196	892	1044	-304	0.746	-0.676
FLIP 92-40C	1517	875	1223	-696	0.557	-0.252
FLIP 92-48C	1000	625	813	-375	0.625	-0.405
FLIP 92-58C	1232	786	1009	-446	0.638	-0.434
FLIP 92-65C	946	589	768	-357	0.623	0.025
Mean	1340	775	1062	-574	0.590	-0.313
Checks						
FLIP 82-150C	1617	1036	1327	-581	0.641	-0.441
ILC 482	1786	446	1116	-1340	0.250	0.438
Ürkütlü	1196	750	973	-466	0.627	-0.409
Mean	1533	744	1139	-796	0.504	-0.137

Table 2. The seed yield, mean productivity, tolerance to drought stress, rate of productivity and drought susceptibility index of chickpea lines.

in water-stress areas. From above mentioned point of view, FLIP 92-154C was determined as the best drought tolerant line, followed by FLIP 92-110C and FLIP 92-163C.

The correlation matrix (Table 4), indicated strong and

significant (p< 0.01) correlation of seed yield with biological yield (r=0.515 and 0.552) in the non-stress and stress environments, repectively. These results were agreement with the previously reported ones (13). A negative but non-significant correlation coefficent

	Yield	Yield				
Lines	in Y ₁	in Y ₂	MP	TDS	S/W	DSI
FLIP 92-98C	1161	804	983	-357	0.693	-0.557
FLIP 92-101C	1214	643	929	-571	0.530	-0.191
FLIP 92-102C	1929	786	1358	-1143	0.408	0.083
FLIP 92-110C	2036	929	1483	-1107	0.456	-0.025
FLIP 92-111C	1411	500	956	-911	0.354	0.205
FLIP 92-112C	1500	518	1009	-982	0.345	0.225
FLIP 92-120C	1714	679	1197	-1035	0.396	0.110
FLIP 92-122C	1589	750	1170	-839	0.472	-0.061
FLIP 92-123C	1875	768	1372	-1107	0.410	0.079
FLIP 92-125C	1393	732	1063	-661	0.525	-0.180
FLIP 92-126C	1732	982	1357	-750	0.567	-0.274
FLIP 92-134C	1339	518	929	-821	0.387	0.130
FLIP 92-135C	1571	1000	1286	-571	0.596	-0.339
FLIP 92-142C	1643	946	1295	-697	0.587	-0.319
FLIP 92-146C	1554	714	1134	-840	0.460	-0.034
FLIP 92-147C	1679	1000	1340	-679	0.596	-0.339
FLIP 92-154C	1964	1071	1518	-893	0.545	-0.225
FLIP 92-155C	1875	857	1366	-1018	0.457	-0.027
FLIP 92-162C	1750	982	1366	-768	0.561	-0.261
FLIP 92-163C	1732	1214	1473	-518	0.701	-0.575
FLIP 92-164C	1786	1018	1402	-768	0.570	-0.281
FLIP 92-165C	1518	1036	1277	-482	0.683	-0.535
FLIP 92-166C	1464	1000	1232	-464	0.683	-0.535
FLIP 92-167C	1125	964	1045	-161	0.857	-0.926
FLIP 92-169C	1768	518	1143	-1250	0.293	0.342
FLIP 92-177C	1268	857	1063	-411	0.676	-0.519
FLIP 92-180C	1589	714	1152	-875	0.449	-0.009
FLIP 92-191C	1518	1143	1331	-375	0.753	-0.692
FLIP 92-195C	1821	1000	1411	-821	0.549	-0.234
FLIP 92-196C	1714	857	1286	-857	0.500	-0.124
Mean	1607	850	1231	-758	0.535	-0.203
Checks						
FLIP 82-150C	1617	1036	1327	-581	0.641	-0.441
ILC 482	1786	446	1116	-1340	0.250	0.438
Ürkütlü	1196	750	973	-446	0.627	-0.409
Total Mean	1493	790	1211	-709	0.543	-0.218

Table 3. The seed yield, mean productivity, tolerance to drought stress, rate of productivity and drought susceptibility index of chickpea lines.

(r=-0.245) was obtained between harvest index and 100-seed weight in the non-stress environment.

Also, plant height was positively and significantly (p< 0.05) correlated with biological yield (r=0.307) in the

non-stress environment, while this relationship was stronger (r=0.333) in the stress environment. Singh et. al. (14) also reported that seed yield are strongly positive correlated with biological yield, 100-seed weight and, to a less extent, with a plant height. In addition, Eser (15)

	sy ₁	SY ₂	BY 1	BY 2	ні ₁	ні ₂ з	sw ₁	sw ₂	PH 1	PH ₂	F ₁	F ₂	MP	TDS	S/W
SY 2	0.275*														
SY 1	0.628**	0.011													
14 2	0.172	0.653**	0.234												
11 1	0.515**	0.269*	-0.079	-0.148											
2	0.178	0.552**	-0.213	-0.257*	0.506**										
V 1	0.155	0.014	0.402**	0.338**	-0.245	-0.305*									
V 2	0.111	0.080	0.350**	0.255*	-0.142	-0.155	0.776**								
4 1	0.037	-0.225	0.307*	0.140	-0.314*	-0.427**	0.074	0.054							
12	0.070	-0.084	0.339**	0.333**	-0.329**	-0.458**	0.137	0.102	0.980*	*					
L	-0.194	-0.075	0.041	0.324*	-0.527**	-0.451**	0.598**	0.545**	0.155	0.217					
	-0.103	0.151	-0.011	0.095	-0.165	0.069	0.030	0.071	0.094	0.109	-0.057				
>	0.885**	0.691**	0.477**	0.445**	0.517**	0.401**	0.123	0.122	-0.081	0.012	-0.212	-0.004			
DS	-0.799**	0.359**	-0.602	0.242	-0.331**	0.172	-0.142	0.058	-0.177	0.120	0.120	0.194	-0.426**		
W	-0.523**	0.651**	-0.470**	0.406**	-0.149	0.368**	-0.188	-0.055	-0.267*	-0.173	0.058	0.180	-0.077	0.915**	
SI	0.523**	-0.651**	0.470**	-0.406**	0.149	-0.368**	0.118	0.055	0.267*	0.173	-0.058	-0.180	0.077	-0.915**	-1.0*
Y: Seed yield			1	HI : Harvest	index		F	F : Floweri	ng						
SY: Seed yield SW: 100-seed weight				1	MP : Mean p	roductivity									
: Biological	yield		:	SW: 100-see	d weight		1	FDS: Toleran	ce to droug	gt stress					
: Biolocical	yield		I	PH: Planthei	ght		5	S/W: Rate of	productivit	у					
I: Harvest in	de0		I	PH: Plant he	ight		I	DSI : Drough	t susceptib	ility index					

Table 4. Correlation matrix of mean productivity, tolerance to drought stress, rate of productivity, drought sensitivity index and other important traits in chickpea lines (N=64).

1: Non-stess and 2: Stress environments; Correlation significant 0.250 and 0.325 for 1 and 5% levels, respectively.

F : Flowering

found that seed yield was correlated with pod number per plant.

The mean productivity was positively and significantly (p< 0.01) correlated with seed yield (r=0.885 and 0.691), biological yield (r=0.477 and 0.445), harvest index (r=0.517 and 401) and tolerance to drought index (r=-0.426) under drought stress and non-drought stress conditions, respectively. In the non-drought stress environment, tolerance to drought stress strongly and negatively (p< 0.01) correlated with seed yield (r=-0.799), biological yield (r=-0.602) and harvest index (r= -0.331), while it was positively correlated with seed yield (r=0.359) and biological yield (r=0.242) in the drought stress environment. When chickpea lines were planted in the non-drought stress condition, correlation of drought susceptibility index with seed yield (r=0.523), biological yield (r=0.470) and plant height (r=0.267) were found positive and significant (p< 0.01). Under drought stress environment, however, correlation coefficants for drought susceptibility index with the above mentioned traits were adversely obtained. Tolerance to drought stress strongly (p< 0.01) correlated with rate of productivity (r=0.915) and drought susceptibility index (r=-0.915).

Baker (15), introduced to the definition of stress tolerance and selection index. It was concluded that selection index in non-stress environments would be more effective than direct selection for productivity under stress whenever the correlation between the two types of environments exceeds the heritability of productivity under stress. There is the need to be incorporate drought tolerance mechanisms into germplasm with high yielding capacity to develop both high yielding and drought tolerant cultivars.

Acknowledgment

This project (TOGTAG-1464) is supported by TUBITAK and the authors are thankful for their support. Also we wish to thank for soil analysis of Mrs. Sibel TOKER.

References

- Saxena, M.C., The Challenge of Developing Biotic and Abiotic Stress Resistance in Cool-Season Food Legumes, in Breeding for Stress Tolerance in Cool-Season Food Legumes, Edited by K.B. Singh and M.C. Saxsena, A Wiley-Sayce Publication, p:3-14, 1993.
- Wery, J., Adaptation to Frost and Drought Stress in Chickpea and Implications in Plant Breeding, in M.C. Saxena, J.I. Cubero and J. Wery, (eds.), Present Status and Future Prospect of Chickpea Crop Production and Improvement in the Mediterranean Countries, Options Mediterraneennes, Serie A: Seminaires Mediterranees: No:9, Zarogosa, Spain: CIHEAM, p:77-85, 1990.
- Johansen, B., Baldev, B., Brouwer, J.B., Erskine, W., Jermyn, W.A., Li-Juan, L., Malik, B.A., Ahad Miah, A., Slim, S.N., Biotic and Abiotic Stresses Constraining Productivity of Cool Season Food Legumes in Asia, Africa and Oceania, in Expanding the Production and Use of Cool Season Food Legumes, Eds. F.J. Muehlbauer and W.J. Kaiser, Kluwer Academic Pub., printed the Netherlands, p:175-194, 1994.
- Wery, J., Slim, S.N., Knights, E.J., Malhotra, R.S., Cousin, R., Screening Techniques and Sources of Tolerance to Extremes of Moisture and Air Temperature in Cool Season Food Legumes, in Expanding the Production and Use of Cool Season Food Legumes, Eds. F.J. Muehlbauer and W.J. Kaiser, Kluwer Academic Pub., printed the Netherlands, p:439-456, 1994.
- Singh, K.B., Malhotra, R.S., Halila, M.H., Knights, E.J., Verma, M.M., Current Status and Future Strategy in Breeding Chickpea for Resistance to Biotic and Abiotic Stresses, in Expending the Production and Use of Cool Season Food Legumes, Eds. F.J. Muehlbauer and W.J. Kaiser, Klwer Academic Pub., printed the Netherlands, p:572-591, 1994.
- Anonymous, 1996. T.C. Başbakanlık Devlet Meteoroloji İşleri Genel Müdürlüğü Yayınları, Ankara (unpublished).
- Rosielle, A.A., Hamblin, J., Theoretical Aspects of Selection for Yield in Stress and Non-Stress Environments, Crop Science, 21, 943-946, 1981.

- Fischer, R.A., Maurer, R., Drought Resistance in Spring Wheat Cultivars, I. Grain Yield Response, Aust. J. Agric. Res., 29, 897-912, 1978.
- Singh, K.B., Problems and Prospects of Stress Resistance Breeding in Chickpea, in Breeding for Stress Tolerance in Cool-Season Food Legumes, Eds. by K.B. Singh and M.C. Saxena, A Wiley-Sayce Pub. p:17-35, 1993.
- Wery, J., Turc, O., Lecoeur, J., Physiological and Morphological Basis of Biotic and Abiotic Stress Resistance in Chickpea, in Breeding for Stress Tolerance in Cool-Season Food Legumes, Eds. K.B. Singh and M.C. Saxsena, A Wiley-Sayce Publication, p:311-320, 1993.
- Hawtin, G.C. and Singh, K.B., Prospects and Potential of Winter Sowing of Chickpeas in the Mediterranean Region, in Ascochyta blight and winter sowing of chickpea (Saxena M.C. and Singh, K.B. eds.) The Mague, Neterlands: Martinus Nijhoff/Junk Pub., p:7-16, 1984.
- Sadiq, I.I., Siddiqui, K.A., Arain, C.R., Azmi, A.R., Wheat Breding in a Water-Stress Environment. I. Delineation of Drought Tolerance and susceptibility, Plant Breeding, 113, 36-46, 1994.
- 13. ICARDA, Increased Biomass Yield, Legume Program, Annual Report for 1993, Aleppo, Syria, p:22-23, 1994.
- 14. Singh, K.B., Malhotra, R.S., Withcombe, J.R., Kabuli Chickpea Germplasm Catalog, ICARDA, Aleppo, Syria, 1983.
- 15. Eser, D., Hertability of Some Important Characters, Their Relationships with Yield and Inheritance of Blight Resistance in Chickpea (Cicer arietinum L.), Heritability of Some Important Plant Characters, Their Relationships with Plant Yield: Ankara Üniversitesi, Ziraat Fakültesi Yayınları 620, pp:40, 1976.
- Baker, R.J., Breeding Methods and Selection Indices for Improved Tolerance to Biotic and Abiotic Stresses in Cool Season Food Legumes, in Expanding the Production and Use of Cool Season Food Legumes, Eds. F.J. Muehlbauer and W.J. Kaiser, Kluwer Academic Pub., printed the Netherlands, p:429-438, 1994.