
Introduction

Osmotic stress is one of the effects of salinity on
plants. It is induced by a decrease in soil water potential,
which is reflected morphologically as a decrease in leaf
expansion. In saline environments, plant adaptation to
salinity during germination and early stages of growth is
crucial for the establishment of species (Ungar, 1991,
1995). The seedling stage is the most vulnerable stage of
the life cycle of plants, whereas germination determines
where and how seedling growth begins (Gutterman,
1993; Kigel, 1995). An important stage in the life cycle
of plants that is vulnerable to salinity stress is seed
germination (Mayer & Poljakoff-Mayber, 1982; Biss et
al., 1986; Corchete & Guerra, 1986; Kurth et al., 1986).
Seed germination involves imbibition of water, activation
and formation of enzyme systems, mobilisation of
storage reserves, and growth and establishment of the
seedling. All these processes may be adversely affected by

NaCl (Levitt, 1980). Salinity has inhibitory effects on seed
germination by limiting water uptake and arresting
radical emergence, although the ion toxic influence of salt
cannot be excluded (Alwan et al., 1989; Sharma &
Yamdagni, 1989).

Plant growth is affected by the interaction of Na+ or
Cl-, as well as by mineral nutrients, causing imbalance in
nutrient availability, uptake, or distribution within plants
(Grattan & Grieve, 1992). Thus, a high concentration of
Na+ in the external solution causes a decrease in both K+

and Ca2+ concentrations in plant tissues. This decrease
could be due to the antagonism of Na+ and K+, or Ca2+ at
sites of uptake in roots (Gronwald et al., 1990; Lynch &
Lauchli, 1998). 

There are reports indicating the importance of
adequate levels of Ca2+ in alleviating the deleterious
effects of salinity on plant growth (Epstein, 1972; Rains,
1972; Gong & Yang, 1994). This is due to the role of
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Ca2+ in maintaining the selectivity and integrity of the
membrane, and hence decreasing the passive
accumulation of Na+ in plant tissues (Hu et al., 1997).
Two processes are of considerable importance in the
establishment of seedlings in a saline environment: cell
elongation and maintenance of a balanced nutrient ion
uptake, both of which require Ca2+ (Epstein, 1972;
Mengel & Kirkby, 1982). 

Because the Chenopodiaceae species used in this study
are cultivated under various conditions throughout the
world, comparisons between varietals are questionable;
nonetheless, identification of varietal differences in
response to salinity between some Chenopodiaceae
species was the aim of the present study. The differences
in nucleic acid content and nucleolytic enzyme activity
were determined in order to detect if they had similar
responses to salinity stress during their growth. It was
also determined if the changes in nucleolytic enzyme
activity, especially ribonuclease, could support the
hypothesis that they could be used as a marker for salt
stress.

Materials and Methods

Seeds of 5 Chenopodiaceae species, Ruby Red Chard,
Swiss Chard (Beta vulgaris L. var. flavescens Lam.),
quinoa (Chenopodium quinoa Willd. cv. Andean Hybrid),
spinach (Spinacea oleracea L.), Allenrolfia occidentalis
(S.Watson) Kuntze, and garden orach (Atriplex hortensis
L.) were obtained from Thompson and Morgan (Jackson,
NJ, USA), and were sterilised and germinated in a dark
incubator at 25 °C. All experiments consisted of 8
treatments. The non-saline treatment was modified
Hogland's nutrient solution (Epstein, 1972; Table 3-1).
The salt treatments were NaCl at –3, –9.5 and –14.2 bar
in addition to Hogland's solution. The other 4 treatments
contained an additional 0.5 mM CaSO4 with Hogland's
nutrient solution or in combination with salt treatment
solutions. 

Six replicates of 100 seeds of each species were
placed in 9-cm plastic petri dishes containing a standard
blue germination blotter moistened with 10 ml of each
solution. The solutions were replaced every 2-3 days. 

Radical protrusion was taken as the criterion for
germination. Plants were harvested at the end of the
experiment (15 days after seed germination). Shoot and
root lengths were recorded in 10 germinated plants for

each treatment. Fresh samples were immediately used for
the determination of nucleic acid content and enzyme
activity. A known weight of the fresh seedling was placed
in a mortar and homogenised in 20 ml of distilled water.
The filtrate was separated from the residue and used in
the study.

Deoxyribonuclease (DNase 1) assay

Estimation of DNase I was carried out by the method
of Kunitz (1950), in which 0.5 ml of sample was mixed
with 2.5 ml of buffer substrate (pH 5.0), and E/30 s for
5 or 10 min at 260 nm was measured against a blank.
The volume activity was equal to (3.0 × 1000)/0.5 × ∆E
(units/ml sample).

Endonuclease assay

Endonuclease activity was measured by the method of
Linn & Lehman (1965), in which 0.5 ml of the sample
was mixed with 1.0 ml DNA buffer (pH 8.0) and 0.55 ml
of distilled water. An aliquot was taken at zero time and
another after 30 min for the blank. The incubation
solution (0.3 ml) was mixed with 0.2 ml of distilled water
and 0.5 ml of 1 M perchloric acid. The mixture was
centrifuged at 3000 rpm for 5 min, and 0.1 ml of the
supernatant was taken, mixed with 2.9 ml of distilled
water, and measured at 260 nm. ∆E = Esample – Eblank.
Volume activity was equal to (1.6 × 1.0 × 3.0)/(0.3 × 0.1
× 0.05) × ∆E (units/ml sample).

Ribonuclease A (RNase A)

Estimation of RNase A was carried out according to
Kunitz (1946). In this method, 0.5 ml of the sample was
mixed with 1.5 ml of ribonuclease solution (0.055%) and
1.45 ml of distilled water. The optical density was
measured every 0.5 min for 10 min, and then after 1, 2,
and 3 h at 300 nm. The volume activity was equal to (3.0
× 10)/ε × 1.0 × (0.05) × (Eo –Et)/t × 1/Eo – Ef) (Kunitz
units/ml sample). The extinction coefficient, ε, and the
optical density, Eo, were extrapolated to the time when
the reaction started. Et was the optical density after t
time (2-4, according to the position of the line), and Ef

was the final optical density after completion of the
reaction (approximately 3 h).

Ribonuclease T (RNase T)

RNase T was measured according to Egami et al.
(1964). The sample (0.1 ml) was mixed with 0.25 ml of
Tris buffer (pH 7.5), 0.1 ml of 0.02 M EDTA, and 0.3 ml
of distilled water. The mixture was placed in a water bath
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at 37 °C for 5 min, then 0.25 ml of 0.012% ribonuclease
solution was added and the mixture kept at 37 °C for 15
min. The reaction was stopped by adding 0.25 ml
perchloric acid/uranyl acetate solution (22 ml 70%
perchloric acid + 78 ml distilled water + 750 ml uranyl
acetate), followed by 5-min centrifugation at 3000 rpm.
To 0.2 ml of the clear supernatant was added 4.8 ml of
distilled water. The optical densities of the sample and
blank were measured at 260 nm. The volume activity was
equal to (31.2 × 10,000)/0.01× ∆E (Egami units/ml
sample).

Estimation of nucleic acid content

Nucleic acid content was estimated
spectrophotometrically by the method of Chaykin
(1970).

Statistical analyses

Significant variation in the estimated variable in
relation to the different treatments was determined using
one-way analysis of variance (ANOVA) and the
complementary test least significant difference (LSD),
using SPSS version 11 (2001, SPSS Inc., Chicago).

Results

The germination of B. vulgaris, S. oleracea, and A.
occidentalis was delayed in comparison to that of C.
quinoa and A. hortensis (Table 1). The last 2 species
expressed the greatest germination percentage, whereas
the first 3 species showed the lowest germination
percentage under control and different salinity
treatments. In general, germination percentage decreased
significantly in response to increased NaCl concentration
alone, or in the presence of CaSO4, especially in S.
oleracea (Table 1). ANOVA indicated that seed
germination percentage decreased significantly in C.
quinoa (P < 0.001), A. hortensis (P < 0.001), A.
occidentalis (P < 0.001), S. oleracea (P < 0.001), and B.
vulgaris (P < 0.001). Addition of 0.5 mM CaSO4 slightly
reduced the effect of NaCl on seed germination
percentage with all NaCl concentrations in B. vulgaris, S.
oleracea, and A. hortensis, but it increased the effect of
NaCl in C. quinoa and A. occidentalis, particularly at –3.0
and –9.5 bar, respectively (Table 1).
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Table 1. Germination percentage of the 5 species of Chenopodiaceae after 15 days of exposure
to different concentrations of NaCl, with or without the addition of 0.5 mM CaSO4. The
results are the mean of 4 replications. 

Treatments B. vulgaris C. quinoa S. oleracea A. occidentalis A. hortensis

NaCl alone

0.0 38.50 98.00 39.00 48.25 96.25

–3.0 32.75 98.50 28.75 47.50 94.50

–9.5 25.25 92.75 23.75 34.50 89.00

–14.2 15.25 86.25 14.25 19.00 92.75

NaCl combined with CaSO4

0.0 30.00 98.00 37.00 41.25 90.50

–3.0 38.75 95.75 32.00 41.75 95.75

–9.5 28.25 91.25 25.00 27.50 91.00

–14.5 17.00 86.75 15.75 18.75 93.50

F 19.985 101.848 64.192 89.569 6.027

P < 0.001 0.001 0.001 0.001 0.001

LSD 2.787 0.718 1.575 1.431 1.751



Root and shoot length in C. quinoa, S. oleracea, A.
occidentalis, and A. hortensis were reduced with
increasing NaCl concentration (Figure 1C). In B. vulgaris,
seedling length was significantly reduced (P < 0.001), as
shown in Figure 1A. On the other hand, the addition of
CaSO4 to NaCl caused a greater reduction in root and
shoot length in C. quinoa, S. oleracea, and A. occidentalis,
and a greater reduction in shoot length in A. hortensis
(Figure 1D). The response of root length varied among
the 5 species; however, the reduction in root length was
significant and more than 75% in A. occidentalis (P <
0.001) and S. oleracea (P < 0.006) when treated with
–14.2 bar NaCl mixed with CaSO4. Root length in C.
quinoa declined significantly (55%) (P < 0.001) in
response to –9.5 bar NaCl, and in A. hortensis it declined
significantly (ca. 30%) (P < 0.001) when treated with
–14.2 bar NaCl.

The highest nucleic acid content of the control plants
was recorded in A. hortensis, while the lowest content
was recorded in C. quinoa (Figure 2A). Application of
NaCl treatments slightly reduced nucleic acid content, but
addition of CaSO4 to saline solutions resulted in a
significant reduction in NaCl’s effect in C. quinoa (P <
0.001) and A. occidentalis (P < 0.001), while it caused a
significantly greater reduction in nucleic acid content in B.
vulgaris (P < 0.001), S. oleracea (P < 0.001), and A.
hortensis (P < 0.001).

The activity of DNase I increased along with increased
salinity stress in all of the studied plants, except A.
hortensis, where DNase I activity significantly decreased
(P < 0.001) (Figure 2B). At the highest concentration
NaCl treatment, enzyme activity was significantly
enhanced (4 times that of the control) in B. vulgaris (P <
0.001). The combination of CaSO4 with NaCl treatments
significantly reduced the effect of NaCl on enzyme activity
in C. quinoa (P < 0.001), S. oleracea (P < 0.001), and A.
occidentalis (P < 0.001). Similar results were obtained in
A. hortensis, except that of the control. Additionally, the
combination of CaSO4 and NaCl significantly decreased
the effect of NaCl on enzyme activity in B. vulgaris.

Endonuclease activity was affected by NaCl treatments
and the effect varied among the studied plants (Figure
3A). Salinity significantly inhibited the enzyme activity in
S. oleracea (P < 0.001) and A. occidentalis (P < 0.001),
but generally increased the activity in B. vulgaris (P <
0.001), C. quinoa (P < 0.001), and A. hortensis (P <
0.001). A. hortensis expressed a remarkably higher

endonuclease activity under all NaCl treatments compared
to the control values. Addition of CaSO4 to the NaCl
solution significantly increased the activity of the enzyme
in C. quinoa, S. oleracea, and A. occidentalis, under all
treatments. Conversely, addition of CaSO4 reduced the
enzyme activity in B. vulgaris and A. hortensis under NaCl
treatments. 

RNase A activity under the control condition was
similar in all examined plants, as indicated by insignificant
variation (Figure 3B). NaCl treatments inhibited the
enzyme activity in B. vulgaris, A. occidentalis, and A.
hortensis, but induced the activity in C. quinoa and S.
oleracea. Combining CaSO4 with NaCl solution slightly
reduced the inhibitory effect of NaCl on endonuclease
activity in A. occidentalis and A. hortensis, while it
decreased its activity in B. vulgaris, C. quinoa, and S.
oleracea.

RNase T activity varied in response to salinity among
the studied plants. Its activity significantly increased with
increasing salinity in B. vulgaris (P < 0.001) and C.
quinoa (P < 0.001), and in A. hortensis it decreased at
–9.5 bar (P < 0.001). A slight reduction effect was
observed in RNase T activity in A. occidentalis (P <
0.001). CaSO4 in combination with NaCl reduced RNase T
activity in B. vulgaris and A. hortensis, while it reduced
the inhibitory effect of NaCl in C. quinoa, S. oleracea, and
A. occidentalis.

Discussion

Germination percentage of the studied species was
highest in control or low salinity conditions, but higher
salinity levels caused a gradual suppression of
germination. It has been reported that inhibition of
germination in A. occidentalis occurs at high
concentrations of NaCl (Gul & Weber, 1999; Tattini &
Gucci, 1999). The rate of suppression due to NaCl
stresses varied among the studied species. In addition,
salinity delayed the emergence of radicals in some of the
studied species (S. oleracea, B. vulgaris, and A.
occidentalis), and the delay was longer in S. oleracea than
in the other species. Coincidentally, a decline in seed
germination percentage with increasing salinity was
reported in Atriplex spp. (Khan & Ungar, 1984; Katembe
et al., 1998; Ungar, 1996), in A. occidentalis (Khan &
Ungar, 1997), and in B. vulgaris (Ghoulam & Fares,
2001). Conversely, Jacobsen et al. (1998) found that
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Figure 1. The seedling length of B. vulgaris (A) and (B), root, shoot length and root/shoot ratio (C) and (D) of C. quinoa, S. oleracea, A. occidentalis
and A. hortensis under different concentration of NaCl singly or in combinations with 0.5 mM CaSO4. The results are means of 4 replicates
± standard deviation.
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Figure 2. The total nucleic acids (A) and DNase I activity (B) of B. vulgaris, C. quinoa, S. oleracea, A. occidentalis and A. hortensis under different
concentrations of NaCl singly or in combination with 0.5 mM CaSO4. The results are means of 4 replicates ± standard deviation.
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Figure 3. Endonuclease (A), ribonuclease A (B) and ribonuclease T (C) activities of B. vulgaris, C. quinoa, S. oleracea, A. occidentalis and A. hortensis
under different concentrations of NaCl singly or with 0.5 mM CaSO4. The results are means of 4 replicates ± standard deviation.



350 mM NaCl concentration stimulates C. quinoa
germination percentage and 700 mM stimulates it to a
greater degree. Addition of CaSO4 alleviated the NaCl
inhibitory effect on seed germination in B. vulgaris, S.
oleracea, and A. hortensis, but led to greater inhibition in
C. quinoa and A. occidentalis. It is also remarkable that A.
hortensis had the highest NaCl stress tolerance in
comparison to the other studied plant species. A.
hortensis showed the highest germination percentage
under the highest NaCl concentration, whereas S.
oleracea could be considered the most sensitive plant to
salinity as it expressed the lowest percentage of
germination. 

The present results support previously reported
results of germination suppression caused by increased
salinity (McCarty & Dudeck, 1993; Mahmood et al.,
1996; Shen & Wang, 1999; Khan et al., 2000). It was
reported that addition of mannitol solution to NaCl
concentrations in sugar beet indicates that the inhibitory
influence of NaCl on seed germination was principally a
specific ionic effect and only a slight inhibition could be
attributed to an osmotic effect (Al-Karaki, 2000). In the
present study, the combination of CaSO4 and NaCl
affected germination percentage negatively, which is in
agreement with the results reported by Debez & Chaibi
(2001). Reduction of salinity’s inhibitory effect on
germination by Ca2+ was also reported by Hamed (2000).
In this study, very similar or higher germination
percentages than in the control were perhaps due to the
high salinity tolerance of most Chenopodiaceae (Ungar,
1995). 

Salinity did not affect only germination of the studied
species, but also reduced shoot and root growth. The
reduction was more apparent in shoot growth and this
increased the root:shoot ratio; thus, directing growth
toward roots is a strategy of adaptation for plants in their
search for water. The root:shoot ratio increased as a
result of both salt and water stress, and it was due to a
greater reduction of shoot growth than root growth
(Gomes Filho et al., 1996). Based on the results obtained
by Gomes Filho et al. (1996) and on the fact that a high
root:shoot ratio has been used as an index of water stress
tolerance (Kramer, 1983), it seems that C. quinoa and S.
oleracea showed a high salt tolerance compared to the
other studied species. Addition of CaSO4 slightly increased
the growth of shoots and roots, and its effect was
obvious at the highest stress level. The increase was more

in shoot growth than root growth, which was reflected in
the decrease in the root:shoot ratio.

The nucleic acid content differed according to the type
of species. The maximum content was recorded in A.
hortensis. Sodium chloride led to a reduction in nucleic
acid level when it was applied alone and this could be
attributed to the general reduction that occurred due to
salinity stress, as reported by Hamed (2004). Greater
reduction was apparent when NaCl was applied in
combination with CaSO4, except in C. quinoa and A.
occidentalis. 

All of the studied plants, except A. hortensis, showed
a progressive increase in DNase I activity with increased
salinity. This showed that for plant cells protecting the
DNA when under salt stress was a priority, which is
confirmed by the data reported by Hasegawa & Bressan
(2000), who observed a salinity stress-induced reduction
in cell elongation, but no reduction in cell division.
Addition of CaSO4 to NaCl increased DNase I activity in
most of the examined plants, whereas NaCl stress
reduced DNase- and RNase-specific activity in alfalfa and
lentil (Yupsanis et al., 2001).

The endonuclease activity in B. vulgaris, C. quinoa,
and A. hortensis increased with different salinity
treatments, while it decreased in S. oleracea and A.
occidentalis. Adding CaSO4 activated endonuclease activity
in stressed C. quinoa, S. oleracea, and A. occidentalis. This
indicated that it reduced the inhibitory effect of salinity on
the enzyme activity in the 3 plants. A. occidentalis showed
greater activity under the combination of NaCl and CaSO4.
This could have been due to the effect of Ca on Na uptake
(Hu et al., 1997). Calcium sulphate decreased
endonuclease activity in B. vulgaris and A. hortensis when
combined with NaCl. This decrease may indicate that the
effect of 0.5 mM CaSO4 was not due to its increase in
osmotic stress, but the sensitivity of the 2 plants to Ca
ions.

The activity of RNase A decreased with increased
salinity stress levels. Increased RNase A activity was
observed in S. oleracea and at the highest NaCl stress
level in C. quinoa. Conversely, RNase T had an increasing
trend under all NaCl stress levels. This indicated that the
2 enzymes responded differently to NaCl stress in the
studied species. These results are in agreement with
other previous reports (Vieira da Silva, 1970; Yi & Todd,
1979; Rouxel et al., 1989). They observed significant
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increases in leaf RNase activity under salt or water stress.
These results support the hypothesis that salt and water
stress always induces increased RNase activity (Vieira da
Silva, 1970; Lauriere, 1983; Rouxel et al., 1989). It was
suggested that there was a correlation between salt
stress tolerance and increased RNase activity (Rouxel et
al., 1989). In contrast, the differences in enzyme
behaviour in response to salt stress vary depending upon
the time of seedling development and in the space
according to plant organ (Rouxel et al., 1989).

The 2 enzymes, RNase A and RNase T, responded
differently to the combination of NaCl stress with CaSO4

in the studied plants. RNase A increased and RNase T
decreased in B. vulgaris; however, in the other studied
plants the activity of both enzymes decreased. This may

indicate little importance of CaSO4 addition on the activity
of RNase A and RNase T under NaCl stress conditions.

In general, the obtained reduction in nucleic acids by
salinity in both B. vulgaris and A. hortensis was
accompanied by a reduction in the activities of the
enzymes (DNase I, endonuclease, RNase A and RNase T).
This indicated a general inhibitory effect of salinity due to
the great sensitivity of the 2 species to salinity. In the
other species, the increase in nucleic acid content at low
salinity levels was accompanied by an increase in the
activity of the studied nucleolytic enzymes. This may
indicate different degrees of salinity tolerance in the
studied species. The response to the combination of
CaSO4 at different NaCl levels showed that it was
dependent on the plant species. 

E. E. M. ABO-KASSEM
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