

Research Article

Turk J Bot 33 (2009) 353-372 © TÜBİTAK doi:10.3906/bot-0812-12

Study of seasonal influences on algal biodiversity in the River Yarqon (central Israel) by bio-indication and canonical correspondence analysis (CCA)

Sophia BARINOVA*, Moti TAVASSI

Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905 ISRAEL

Received: 30.12.2008 Accepted: 24.08.2009

Abstract: In our research conducted in the River Yarqon during 2003-2006, we identified 313 taxa of algae and cyanobacteria belonging to 8 taxonomical divisions. Out of these 313 taxa, 268 taxa (85.6%) were indicators of environmental conditions that characterised the river water as alkaline with medium mineralisation. In the rainy and dry seasons the algal taxonomic compositions were very different, with prevailing diatoms in the winter and cyabobacteria and greens in summer. Bio-indication shows that the taxonomic preference for the self-purification process was more intensive during the rainy season, while the low level of river water in the dry season stressed the algal community. By employing CCA analysis some indicators of highly mineralised water with high pH, anthropogenic pollution, and eutrophication were revealed. CCA analyses also helped to reveal various biosensor species sensitive to the advent of anthropogenic pollution. We therefore conclude that the combination of bioindicational methods with statistics is effective in the determination of the main factors influencing algal diversity. This combination is also helpful in indicating which biosensing species will influence the most important environmental parameters. The obtained results can be used for water quality assessment and in monitoring systems of Israeli and other Mediterranean coastal rivers.

Key words: Algae, biodiversity, ecology, CCA, seasonal, River Yarqon, Israel

Introduction

The algal diversity researched by our investigative team is very much influenced by changes in the environmental parameters of their habitats. We can use this influence in bio-indication methodology, which is widely used in European countries under the EU Framework Directive (Whitton et al., 1991; European Parliament, 2000; Dokulil, 2003; Foerster et al., 2004) as well as in the USA (Winter & Duthie, 2000; Ponader et al., 2007). However, major parameters used in bioindication are individual for each species. Our analysis is based on the taxonomical structure data and presents fluctuations of diversity in respect to seasonal activity of communities. On the other hand, a statistical approach helps us to connect all species diversity in communities with the river environment fluctuation. Therefore, our conclusion is based not only on the species autecology, but also

^{*} E-mail: barinova@research.haifa.ac.il

on the community response to environment change. Moreover, whereas bioindicators can be specified autecologically, the species-biosensors of the major environmental variables are identifiable on the basis of CCA.

Therefore, we decided to study the reaction of the entire algal community present in the River Yarqon to changes in the water parameters affected by seasonal climate change. The main characteristic of Israeli climate is a short rainy season, which lasts from December to March. Therefore, on the one hand, we assumed that water quality before the rainy season represented the sum of influences during the dry season. On the other hand, the water quality at the end of the rainy season represented the sum of influences for the rainy season. In similar climatic conditions and floristic realms diatom algal communities were studied with respect to seasonal influences of environmental factors in Turkey (Aktan & Aykulu, 2005), Lebanon (Squires & Saoud, 1986), and Egypt (El-Awamri et al., 2007).

Our preliminary investigation examined the dynamics of indicator species and abundance of each species at the stations of the River Yarqon (Tavassi et al., 2004).

A possible method to reveal the many influences of species indicators is statistical ordination.

Description of the study site

The River Yargon is the southernmost perennial river in the Coastal Plain of Israel (Bar-Or, 2000) (Figure 1). This lowland river (gradient 0.06%) meanders along 29 km through the Tel-Aviv drains metropolitan region and into the Mediterranean. The Yarqon drainage basin covers an area of approximately 1800 km², with an average annual rainfall of about 600 mm. Based on the degree of perturbation and water quality of the River Yarqon, the basin can be divided into 3 segments (Gafny et al., 2000) (Figure 2): (a) an upper 7.5 km, relatively unperturbed, section with considerably high-water quality (Gasith, 1992) although immigration of pollutants, such as herbicides and nutrients, via the adjacent agriculture area during the rainy period (Ben-Hur et al., 2000) is possible. This unpolluted section ends at the confluence with the Qane tributary, where municipal effluents from a waste-

Figure 1. Israel's coastal rivers (Bar-Or, 2000).

water treatment plant (Kefar-Sava–Hod-Hasharon) enter the River Yarqon; (b) the central section, about 17.5 km, is severely impacted by pollution, mostly from municipal effluents (entering via the Qane tributary and the Ramat-Hasharon oxidation ponds); (c) the lowermost section, about 4 km, is under tidal influence and is therefore variably saline.

In the past 40 years the river has been severely influenced by human action. Fish kills occur along the polluted sections of the river fairly regularly (especially following winter floods) and when pollutants are discharged into the river (i.e. when the operation of waste-water treatment fails). These events attest to the serious ecological state of the River Yarqon. Presently, efforts are being made to rehabilitate the Yarqon and other coastal rivers in Israel (Gafny et al., 2000).

Materials and methods

For our study we collected 81 samples of planktonic and periphytonic algae during the period from August 2003 till February 2006. The samples where collected at 16 designated sampling stations along the River Yarqon (Figure 2).

Figure 2. Study sampling stations along the River Yarqon.

The samples were obtained by scooping up for phytoplankton and by scratching for periphyton and fixing them in 3% formaldehyde. Algae were studied with a dissecting Swift microscope under magnifications of \times 740-1850 and were photographed with the digital camera Inspector 1. Diatoms were prepared with the peroxide technique (Swift, 1967) modified for glass slides (Barinova, 1997).

In parallel with sampling for algae we measured conductivity, total dissolved solids (TDS), and pH with HANNA HI 9813 (Table 1). In addition to our sampling, we used data from chemical analyses regularly performed by the Ministry of Environment of Israel (2006), which are marked with asterisks in Table 1.

The taxonomy of this study mainly follows the systems adopted in the "Süswasserflora von Mitteleuropa" (Ettl, 1978; Komárek & Anagnostidis, 1998, 2005; Krammer & Lange-Bertalot, 1991a, 1991b, 1991c, 1991d; Starmach, 1983) and Green Algae by Mattox and Stewart (1984) with additions for individual taxa (Desikachary, 1959; Ettl & Gartner, 1988; Lenzenweger, 1996; Moshkova & Gollerbach, 1986; Perestenko, 1994).

Density scores were calculated using a 6-score scale (Korde, 1956) (Table 2). Ecological characteristics of the species are summed up in our database (Barinova et al., 2006). Our ecological analysis revealed ecological groups of freshwater algae in respect to pH, salinity, and saprobity as well as temperature, streaming, and oxygenation. Each group was separately assessed according to its significance in bioindication. Species that respond predictably to these variables can be used as bioindicators reflecting the response of aquatic ecosystems to eutrophication, pH levels (acidification), salinity, and organic pollutants.

The distribution in the number of species between the groups under the different indicator systems shows the total range of environmental conditions in the river, on one hand, and the prevailing conditions, on the other. The summit of the trend line corresponds to the optimal conditions in respect to a given variable.

We quantified correlation of species composition and environmental variables using Canonical Correspondence Analysis (CCA) with CANOCO for Windows 4.5 package. Statistical significance of each variable was assessed using the Monte Carlo unrestricted permutation test involving 499 permutations (ter Braak, 1990). The abbreviated names of species are given in Table 3. The CCA biplot represents the overlap of species in relation to a given combination of environmental variables. Arrows represent environmental variables, with the maximal value for each variable located at the tip of the arrow (ter Braak, 1987).

Table 1. Environmental conditions at the River Yarqon stations in August 2003, March 2004, June 2005, and February 2006.Note: ± Standard Deviation; * data from Israeli Ministry of Environment; - no data.

Parameter	Year	1	2	3	4	5	6	7	10	Shela	11	Qane	12	13	14	15
pН	2003	7.9 ±0.4	-	7.8 ±0.0	-	7.9 ±0.1	8.3 ±0.1	7.8 ±0.0	7.9 ±0.0	-	-	7.8 ±0.0	-	7.5 ±0.0	8.6 ±0.0	-
	2004	7.4 ±0.0	-	-	7.4 ±0.0	-	7.8 ±0.0	7.8 ±0.1	7.8 ±0.0	7.6 ±0.0	7.9 ±0.0	7.7 ±0.0	7.7 ±0.3	-	7.2 ±0.0	7.3 ±0.0
	2005	-	-	7.7 ±0.0	7.9 ±0.2	-	-	7.8 ±0.0	-	-	7.7 ±0.0	7.9 ±0.0	-	7.5 ±0.0	7.8 ±0.0	7.4 ±0.0
	2006	-	7.4 ±0.0	-	7.7 ±0.0	-	7.9 ±0.0	-	-	7.7 ±0.0	7.7 ±0.3	7.6 ±0.0	8 ±0.0	-	-	7 ±0.4
Temperature, °C	2004	22 ±0.0	-	22 ±0.0	16 ±0.0	-	20 ±4.2	19.1 ±3.4	19 ±1.4	17.3 ±3.2	20.3 ±0.4	20 ±0.0	17.5 ±2.1	-	15 ±0.0	20.5 ±0.7
	2005	-	28 ±0.0	31 ±0.0	29.5 ±1.7	-	-	27 ±1.0	27 ±0.0	-	25.5 ±0.5	-	-	25 ±0.0	26 ±0.0	26 ±0.0
	2006	-	19 ±0.0	-	20.5 ±0.0	-	18 ±0.0	-	-	16 ±0.0	21.5 ±0.7	19 ±0.0	14 ±0.0	-	-	22.5 ±3.5
E ms/cm	2003	10.3 ±0.1	-	9.2 ±0.0	-	1.6 ±0.0	1.5 ±0.0	1.5 ±0.0	1.5 ±0.0	-	-	1.9 ±0.0	-	1.2 ±0.0	1.4 ±0.0	-
	2004	10.4 ±0.0	-	-	1.4 ±0.0	-	1.4 ±0.0	1.2 ±0.2	1.6 ±0.0	4.2 ±0.0	1.6 ±0.0	1.7 ±0.0	0.8 ±0.0	-	1.1 ±0.0	1.2 ±0.0
	2005	-	-	8.7 ±0.0	1.7 ±0.2	-	-	1.6 ±0.0	-	-	1.6 ±0.0	1.6 ±0.0	-	1.3 ±0.0	1.1 ±0.0	1.1 ±0.0
	2006	-	1.4 ±0.0	-	1.2 ±0.0	-	1.5 ±0.0	-	-	4.1 ±0.0	1.4 ±0.3	1.7 ±0.0	0.9 ±0.0	-	-	1.1 ±0.2
TDS mg/L	2003	-	-	-	-	1176.3 ±2.9	1119.5 ±35.2	1113 ±0.0	1122 ±0.0	-	-	1434 ±0.0	-	842 ±0.0	1007 ±0.0	-
	2004	-	-	-	1010 ±0.0	-	995 ±0.0	921.3 ±127.0	1163 ±0.0	-	1200 ±0.0	1265 ±0.0	599 ±16.4	-	768 ±0.0	850 ±0.0
	2005	-	-	-	1228 ±168.6	-	-	1202 ±0.0	-	-	1204 ±0.0	1137 ±0.0	-	910 ±0.0	783 ±0.0	774 ±0.0
	2006	-	1010 ±0.0	-	902 ±0.0	-	1068 ±0.0	-	-	-	1002.5 ±279.3	1260 ±0.0	614 ±0.0	-	-	766.5 ±118.1
Nitrates, mg N/L	2003	-	1.5 ±0.05	15.3 ±5.1	0.2 ±0.16	0.8 ±0.54	2.3 ±0.15	12.7 ±0.64	2.6 ±0.0	-	2.9 ±0.2	-	1.3 ±0.4	15.3 ±0.82	-	1 ±0.0.0
	2004	-	1.7 ±0.17	12.4 ±0.6	1.6 ±0.05	2 ±0.11	6.5 ±0.9	6.3 ±0.42	4.2 ±0.5	1.3 ±0.0	0.2 ±0.16	-	1.85 ±0.09	-	0.4 ±0.24	1.8 ±0.2
	2006	-	1.6 ±0.05	-	-	-	1.3 ±0.19	-	-	-	0.8 ±0.26	-	15.3 ±0.82	-	-	2.4 ±0.15

Parameter	Year	1	2	3	4	5	6	7	10	Shela	11	Qane	12	13	14	15
*Dissolved Oxygen,	2003	-	-	4	-	-	6	2	2	-	5.3	-	2	-	-	4
mg/L	2004	-	-	1.5	-	-	5	37	2.3	10.5	6	-	4.8	-	-	5.3
	2005	-	61	-	59	-	-	17	9.5	-	20	-	-	17	184	84
*E. coli, no/mL	2003	-	-	-	-	-	160	1400	21000	-	790000	-	90	-	-	220
	2004	-	-	1000	-	-	4400	6800	90000	10	110000	-	10	-	-	180
	2005	-	140	-	9	-	-	21	1.4	-	1800	-	-	0.8	8.2	0.6
*BOD, mg/L	2003	-	-	5.4	-	-	15	12.6	4.9	-	18.9	-	0.9	-	-	6.9
	2004	-	-	18	-	-	14.7	9.8	10	1.4	15.3	-	5.4	-	-	11.7
	2005	-	14.4	-	22.2	-	-	25.8	11.4	-	11.4	-	-	2.2	3.2	1.6
*NH4 , mg/l	2003	-	-	1.4	-	-	2.2	5.3	20	-	20.1	-	0.05	-	-	0.05
	2004	-	-	21.2	-	-	19.1	23	22.3	44.7	33	-	0.05	-	-	0.05
	2005	-	3.9	-	10.7	-	-	17.8	24.3	-	28	-	-	0.005	0.005	0.005
*Tot N, mg/L	2003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2004	-	-	33.1	-	-	33.1	29.4	47.5	1.3	38.3	-	1.7	-	-	1.3
	2005	-	-	-	18	-	-	24.1	35	-	31.8	-	-	0.005	0.01	0.01
*Tot P, mg/L	2003	-	-	3.2	-	-	4.1	5.6	7.3	-	9.5	-	0.2	-	-	0.2
	2004	-	-	5.1	-	-	5.6	5.5	7.93	0.2	7.2	-	0.2	-	-	0.2
	2005	-	2.3	-	4.3	-	-	5.6	6.6	-	7.4	-	-	0.01	0.001	0.001
*Turbidity, NTU	2003	-	-	15.3	-	-	26.4	23.5	7.7	-	13.7	-	20	-	-	30.9
	2005	-	15	-	30.5	-	-	31.5	34.5	-	11	-	-	8	17	9.8
*TSS 105, mg/L	2003	-	-	46	-	-	41	57	10	-	29	-	35	-	-	38
	2004	-	-	104	-	-	74	55	19	5	28	-	21	-	-	41
	2005	-	11	-	68	-	-	77	22	-	8	-	-	17	127	15

 Table 1. (Continued).

 Note: ± Standard Deviation; * data from Israeli Ministry of Environment; - no data.

Table 2. Species frequencies according to the 6-scores scale (Korde, 1956).

Score	Visual estimate	Cell numbers per slide
1	Occasional	1-5
2	Rare	10-15
3	Common	25-30
4	Frequent	1 cell over a slide transect
5	Very frequent	Several cells over a slide transect
6	Abundant	One or more cells in each field of view

Results and discussion

Physical-chemical variables

The values of temperature, pH, conductivity, mineralization, and concentration of nitrates (N- NO_3), which we measured in the site, as well as additional chemical data of the Ministry of Environment (marked with asterisk) from the sites along the River Yarqon are presented in Table 1.

The conductivity values at the central section were higher than in the upper section, which could be related to the municipal effluents entering via the Qane tributary. In addition, the conductivity values at the lower section were much higher than those along the whole river; this could be related to the tidal influence. However, the conductivity value at Station 3 (head of the lower section) was much higher (9.17 mS/cm) during the dry season in comparison to the rainy season (3.33 mS/cm). The pH values did not vary significantly between the 2 periods and along the entire river. There also was no significant temperature variance along the entire river.

Algal species abundance

As was preliminarily studied (Tavassi et al., 2004), in the River Yarqon communities till 2004, we revealed 247 taxa of algae and cyanobacteria. We prolonged this investigation and therefore during the period of 2003-2006 we identified 313 taxa of algae and cyanobacteria belonging to 8 taxonomical divisions. Eighty-one samples of plankton and periphyton were collected at 16 stations along the River Yarqon (Table 3). Out of this diversity, 268 taxa (85.6% of taxa) were indicators of environmental conditions such as habitats, temperature, streaming and oxygenation, saprobity, halobity, and acidification (Tavassi et al., 2004). More than two-thirds of the entire diversity (196) was seasonally dependent.

Table 3. Diversity and abundance of algal species (6-scores scale by Korde, 1956) in the River Yarqon in 2003-2006. The abbreviation name given for each species in column Code.

No.	Code	Taxa	2003	2004	2005	2006
		Cyanoprokaryota				
1	ANO01Y	Anabaena pseudoscillatoria Bory de Saint-Vincent	0	0	1	0
2	AN001Y	Anabaena sp.	2-3	1	0	0
3	APF01Y	Aphanizomenon flos-aquae (L.) Ralfs ex Born et Flah.	4	0	0	0
4	ACD01Y	Aphanocapsa delicatissima W. et G.S. West	0	0	2	0
5	ACG01T	Aphanocapsa grevillei (Hassal) Rabenh.	2	0	3	1
6	ACPH1Y	Aphanocapsa holsatica (Lemm.) Cronb. et Kom.	0	0	0	3
7	ACP01Y	Aphanocapsa sp.	0	0	1-6	0
8	ATCA1Y	Aphanothece caldariorum Richter	1	0	0	0
9	ATC01Y	Aphanothece clathrata W. et G.S. West	5	3-4	0	0
10	ATS01Y	Aphanothece stagnina (Spreng.) A. Br.	2	0	0	0
11	CAT01Y	Arthrospira fusiformis (Voronichin) Kom. et Lund.	0	0	1 - 2	0
12	CHRD1Y	Calothrix sp.	0	0	5	0
13	CHRT1Y	Chroococcus dispersus (Keissler) Lemm.	1	0	1	0
14	CTG01Y	Chroococcus turgidus (Kütz.) Näg.	0	1	0	0
15	MIA01Y	Coleofasciculus chthonoplastes (Thur. ex Gom.) Siegesmund, J.R. Hohans. & Friedl	3	0	2	0
16	GCR01Y	Cyanothrix gardneri f. anabaeniformis Kisselev	0	3	0	0
17	GCC01Y	Geitlerinema amphibium (Ag.) Anagn.	0	2-4	0	5
18	LTS01Y	Gloeocapsa rupicola Kütz.	0	0	4-5	0
19	LIA01Y	Gloeocapsopsis crepidinum (Thur.) Geitl. ex Kom.	1-6	1-6	1	2
20	LYA01Y	Heteroleibleinia kuetzingii (Schmidle) Compère	0	6	6	0
21	ANC01Y	Komvophoron constrictum (Szafer) Anagn. & Kom.	0	1	0	0
22	LYE01Y	Leptochaete stagnalis Hansg.	3	0	0	6
23	LYK01Y	Limnothrix guttulata (Van Goor) Umezaki et M. Watanabe	0	0	1-6	0
24	LYL01Y	Limnothrix meffertae Anagn.	0	1-6	1	0
25	LY001Y	<i>Lyngbya aestuarii</i> (Mert.) Liebm. ex Gom.	0	0	2-6	0

Table 3. (Continued).

No.	Code	Taxa	2003	2004	2005	2006
26	MRG01Y	<i>Lyngbya</i> sp.	0	0	1	0
27	MRM01Y	<i>Merismopedia glauca</i> (Ehrb.) Näg.	0	0	1-6	0
28	MRT01Y	Merismopedia minima Beck	1–2	2	5	0
29	MCC01Y	Merismopedia tenuissima Lemm.	3	0	0	0
30	MII01Y	Microcystis aeruginosa (Kütz.) Kütz.	2	0	0	0
31	MIW01Y	Microcystis ichthyoblable Kütz.	2-4	3	0	0
32	OSA01Y	Microcystis wesenbergii (Kom.) Kom.	5	1-6	0	0
33	OSGU1Y	<i>Oscillatoria amoena</i> (Kütz.) Gom.	1-2	0	1 - 3	0
34	OSAI1Y	<i>Oscillatoria limosa</i> Ag. ex Gom.	0	1-2	0	0
35	OSAM1Y	Oscillatoria princeps Vauch. ex Gom.	0	0	1 - 2	0
36	OSAN1Y	Oscillatoria tenuis Ag.	0	0	6	0
37	OSA02Y	Oscillatoria sp.	3–5	0	0	0
38	OSB01Y	Phormidium aerugineo-coeruleum (Gom.) Anag. et Kom.	2	1–6	1-6	1
39	OSG01Y	Phormidium ambiguum Gom.	0	1	0	0
40	OSL01Y	Phormidium animale (Ag. ex Gom.) Anag. et Kom.	0	0	6	0
41	OSP01Y	Phormidium autumnale (Ag.) Trevisan ex Gom.	0	4-6	1-3	0
42	OS001Y	Phormidium breve (Kütz. ex Gom.) Anag. et Kom.	2-3	1–6	1 - 2	0
43	OST01Y	Phormidium granulatum (Gardner) Anag.	5	4	0	0
44	PRAU1Y	Phormidium uncinatum Gom. ex Gom.	1-2	4-6	1-3	1
45	PRA01Y	Phormidium sp.	0	6	0	0
46	PR001Y	Planktolyngbya limnetica (Lemm.) KomLegn. et Cronb.	3	1	2	0
47	PRU01Y	<i>Planktolyngbya regularis</i> KomLegn. et Tavera	2-4	1–6	0	0
48	PLR01Y	<i>Planktothrix agardhii</i> (Gom.) Anag. et Kom.	3-5	1	0	0
49	PCC01Y	<i>Planktothrix isothrix</i> (Skuja) Kom. et Komarkova	0	3-6	0	3
50	PSS01Y	Pleurocapsa crepidinum Collins	0	1	0	0
51	RDL01Y	Pseudocapsa sphaerica (Proshkina-Lavrenko) Kováčik	3	0	0	0
52	RIH01Y	Rhabdoderma lineare Schmidle et Lauterborn	6	0	0	0
53	SZP01Y	<i>Rivularia haematites</i> (De Candolle) Born. et Flah.	2	0	0	0
54	SWA01Y	<i>Schizothrix pulvinata</i> Kütz. ex Gom.	0	0	1	0
55	SWL01Y	Snowella atomus Kom. et Hindak	1	0	0	0
56	SPM01Y	Snowella lacustris (Chod.) Kom. et Hindak	1	1-6	1-2	0
57	SPP01Y	<i>Spirulina major</i> Kütz. ex Gom.	0	0	1	0
58	SYS01Y	Synechocystis salina Wislouch	6	2	6	0
		Bacillariophyta		0		0
59	ABIOTY	Achnanthes brevipes var. intermedia (Kutz.) Cl.	2	0	0	0
60	AC001Y	Achnanthes coarctata (Breb.) Grun.	0	1-6	0	0
61	AC008A	Achnanthidium exiguum var. heterovalvum (Krasske) Czarn.	1-4	1-3	0	0
62	AC9961	Achnanthidium minutissimum (Kutz.) Czarn.	1	1-4	1-2	0
63	AC160A	Achnanthidium thermale Rabenh.	1-4	0	0	0
64	AMC01Y	Amphora coffeaeformis (Ag.) Kutz.	1-4	1-2	1-5	3
65	AMD01Y	Amphora delicatissima Krasske	0	0	1	0
66	AMO01Y	Amphora ovalis (Kütz.) Kütz.	2	1-3	0	0
67	AMP01Y	Amphora pediculus (Kütz.) Grun. ex Schmidt	1	1 - 4	0	2
68	AM004A	Amphora veneta Kütz.	0	1-3	0	0
69	AN009A	Anomoeoneis sphaerophora (Kütz.) Pfitz.	0	0	1	0
70	AUL01Y	Aulacoseira granulata (Ehrb.) Sim.	2-3	1	0	0
71	XXG989	Aulacoseira italica (Ehrb.) Sim.	2	1	0	0
72	BAP01Y	Bacillaria paxillifera (O.F. Müll.) Hendey	2	2-6	1-3	0
73	AVI01Y	Brachysira vitrea (Grun.) Ross	0	1	0	0
74	CLA01Y	Caloneis amphisbaena (Bory) Cl.	1	2	0	1
75	CLB01Y	Caloneis bacillum (Grun.) Cl.	0	1	0	0

Table	3.	(Continued).
-------	----	------------	----

No.	Code	Таха	2003	2004	2005	2006
76	SWCHYA	Caloneis hyalina Hust.	0	1	0	0
77	CLP01Y	Caloneis permagna (Bailey) Cl.	0	0	1	0
78	CCP01Y	Cocconeis placentula Ehrb.	1	1	1	4
79	CRA01Y	Craticula accomoda (Hust.) D.G. Mann	1-6	1	0	0
80	CRC01Y	Craticula cuspidata (Kütz.) D.G. Mann	0	1-6	0	0
81	NAH01Y	Craticula halophila (Grun. in V. H.) D.G. Mann	0	1	0	0
82	FRPUIY	Ctenophora pulchella (Ralfs ex Kütz.) D.M. Williams & Round	0	1	0	0
83	CYM01Y	Cyclotella meneghiniana Kütz.	1	1 - 4	1 - 4	0
84	MCTS1Y	Cymatopleura librile (Ehrb.) Pant.	0	1-2	1	2
85	CM006A	Cymbella cistula (Ehrb. in Hemprich & Ehrb.) Kirchn. var. cistula	0	1	1	0
86	CM00GR	Cymbella gracilis (Ehrb.) Kütz.	1	0	0	0
87	CM009A	Cymbella naviculiformis (Auersw.) Cl.	0	1	0	0
88	CMTU1Y	<i>Cymbella tumida</i> (Bréb.) Grun. in V. H.	1	2-4	1	0
89	CM109A	Cymbella tumidula Grun.	0	0	1-2	0
90	DP009A	Diploneis elliptica (Kütz.) Cl.	3	1	0	0
91	DPS01Y	Diploneis subovalis Cl.	0	0	3	4
92	CM031A	Encyonema minutum (Hilse in Rabenh.) Mann in Round et al.	3	1	0	0
93	ENO01Y	Entomoneis alata (Ehrb.) Ehrb.	0	1	0	0
94	ENP01Y	Entomoneis paludosa (W. Sm.) Reim. var. paludosa	0	1	0	0
95	ENPS1Y	Entomoneis paludosa var. subsalina (Cl.) Kram.	0	4	0	0
96	EP001Y	Eunotia pectinalis (Kütz.) Rabenh.	0	1	0	0
97	FP001Y	Fallacia pyomaea (Kütz.) Stikle et D.G. Mann	0	1-4	1-3	2
98	FS001Y	Fallacia subhamulata (Grun, in V.H.) D.G. Mann	0	2	1	0
99	SDV01Y	Fragilaria vaucheriae var. capitellata (Grup.) R. Ross	0	1	0	0
100	FU001A	Frustulia vulgaris (Thw.) De Toni	0	1	0	0
101	NAI01Y	<i>Geissleria ignota</i> (Krasske) Lange-Bertalot et Metzeltin	0	1	0	0
102	GO020A	Gomphonema affine Kütz	2	1-3	0	0
103	GOA01Y	Gomphonema angustatum (Kütz.) Rabenh	3-4	3-4	0	0
104	GOU01Y	Gomphonema augur Ehrb.	0	1	0	0
105	GO029A	Gomphonema clavatum Ehrb	0	3	0	0
106	GO004A	Gomphonema gracile Ehrb	1	1-3	1-2	0
107	GO013A	Gomphonema parvulum (Kütz.) Kütz	1-5	1-6	1-6	1
108	GO023A	Gomphonema truncatum Ehrb	1	1-3	2	0
100	GO073A	Gomphonema vibrio var. intricatum (Kütz.) Playfair	0	2	0	0
110	GOE01Y	Gomphonemotsis exigua (Kütz.) Medlin	0	1	0	0
111	GY005A	Gvrosigma acuminatum (Kütz.) Rabenh	0	1-2	1-3	0
112	HAD01Y	Hantzschia ambhilepta (Grun) Lange-Bertalot	0	1	0	0
112	HA001A	Hantzschia amphiorys (Fhrb.) Grun	0	1	1	1
114	HAV01V	Hantzschia virgata (Roper) Grun	3	1	0	0
115	LUC01V	Intracisente virgune (Roper) Grun.	0	1_3	0	0
115	NA747A	Luticola comportiona (Bleisch) D.C. Mann	0	1-5	0	0
117	NACD1V	Luticola monita (Hust) D.C. Mann	0	1	0	0
117	I IIM01V	Luticola mutica (Filitz.) D.G. Mann	0	1	0	0
110	LUMUTI	Luticola muticateis (VH) D.C. Mann	0	1	0	0
119	LUSUI I NAMVIV	Luticola multicopsis (V.H.) D. G. Mann	0	2	0	0
120	NAMVII MCCO1V	Luticola ventricosa (Kutz.) D.G. Mann	0	1	0	0
121	ME015A	Iviusiogioiu smithii 111w. ex vv. 5111.	1	1	0	0
122	MEU15A	iviewsiru varians Ag.	1	2-6	2-3	3
123	NAU37A	Navicuia angusta Grun.	0		U	U
124	NAE01Y	Navicula erifuga Lange-Bertalot	3	1-6	U	0
125	NA011A	Navicula exigua Greg.	0	0	2-6	1

Table 3. (Continued).

No.	Code	Taxa	2003	2004	2005	2006
126	NAG01Y	Navicula gregaria Donk.	0	1-6	0	0
127	NA009A	Navicula lanceolata (Ag.) Ehrb.	0	1	0	0
128	NAM01Y	Navicula menisculus Schum.	1 - 4	2-3	0	0
129	NAP01Y	Navicula pseudonivalis Bock	0	1	0	0
130	NAR01Y	Navicula recens (Lange-Bertalot) Lange-Bertalot	0	0	1-3	0
131	NA650A	Navicula schroeteri Meister	0	6	0	0
132	NA001Y	Navicula sp.	0	1-3	0	0
133	NA054A	Navicula veneta Kütz.	0	1 - 5	1-3	0
134	NAV01Y	Navicula viridula (Kütz.) Ehrb.	0	2-3	2	0
135	NI042A	Nitzschia acicularis (Kütz.) W. Sm.	1 - 2	2-6	1 - 5	1
136	NIA01Y	Nitzschia amphibia Grun.	2-6	1 - 4	0	0
137	NI028A	Nitzschia capitellata Hust.	1-6	1-5	0	0
138	NICL1Y	Nitzschia clausii Hantzsch	1-6	0	0	0
139	NI083A	Nitzschia constricta (Kütz.) Ralfs	0	1-6	0	1-5
140	NID01Y	Nitzschia dippelii Grun.	0	1	0	0
141	NI018A	Nitzschia dubia W. Sm.	0	1-2	0	0
142	NIFI1Y	Nitzschia filiformis (W. Sm.) Hust. var. filiformis	1	1 - 4	1	0
143	NIFI2Y	Nitzschia filiformis var. conferta (Richt.) Lange-Bertalot	0	1	0	0
144	NI002A	Nitzschia fonticola (Grun.) Grun.	4	1-3	3	0
145	NI008A	Nitzschia frustulum (Kütz.) Grun.	6	1-3	0	6
146	NI017A	Nitzschia gracilis Hantzsch	0	0	3	0
147	TYL01Y	Nitzschia levidensis (W. Smith) Grun.	0	1	0	0
148	NI031A	Nitzschia linearis (Ag.) W. Sm.	0	1-6	0	0
149	NIR01Y	Nitzschia lorenziana var. incerta Grun.	0	1	1	0
150	NIM01Y	Nitzschia macilenta Greg.	1	0	0	0
151	NIMC1Y	Nitzschia microcethala Grun.	1	1-5	0	0
152	NI036A	Nitzschia obtusa W. Sm.	0	1-3	0	0
153	NI009A	Nitzschia palea (Kütz.) W. Sm.	2-3	1-6	1-5	0
154	NIC01Y	Nitzschia punctata (W. Smith) Grun.	0	1-3	2	1
155	NISC1Y	Nitzschia scalpelliformis (Grun.) Grun.	0	1-3	0	0
156	NIS01Y	Nitzschia sigma (Kütz.) W. Sm.	1	1-5	3	0
157	NISL1Y	Nitzschia solita Hust.	0	1-4	0	0
158	NI9999	Nitzschia sp.	1-2	0	3	1
159	TYG01Y	Nitzschia tryblionella Hantzsch	1	1-5	1	0
160	NI184A	Nitzschia umbonata (Ehrb.) Lange-Bertalot	0	1-3	2-4	0
161	NI049A	Nitzschia vermicularis (Kütz.) Hantzsch	0	1-3	0	2-6
162	NIV01Y	Nitzschia vitrea G. Norm.	0	1	0	0
163	PI047A	Pinnularia intermedia (Lagerst.) Cl.	1	0	0	0
164	PI9999	Pinnularia sp.	0	1	0	0
165	XXG975	Planothidium delicatulum (Kütz.) Round et Bukhtivarova	3-6	0	0	0
166	AH001Y	Planothidium havnaldii (Schaar, emend. Cl.) Haw et Kelly	0	1	0	0
167	AL001Y	Planothidium lanceolatum (Bréb. ex Kütz.) Lange-Bertalot	1	1	0	0
168	PL050A	Pleurosioma salinarum (Grun) Grun	5	1-2	0	0
169	RC002A	Rhoicosphenia abhreviata (Ag.) Lange-Bertalot	2	0	1	0
170	RHPG1Y	Rhotalodia gibba (Fbrb.) O Müll	0	0	2	0
171	SEL P1Y	Sellaphora pupula (Kütz) Mereschkowsky	1-5	1-5	1_3	0
172	NA650A	Sellaphora stroemii (Hust) H. Kobavasi	0	2	0	0
173	SA A01V	Stauroneis anceps Fhrh	0	2 1	0	0
174	SA003A	Stauroneis smithii Grun	0	1	0	0
175	ERP01V	Staurosizella pinnata (Ehrh.) Williams et Pound	0	1	0	2
1/3	1 1/1 01 1		U	1	U	2

Table 3. (Continued).

No.	Code	Taxa	2003	2004	2005	2006
176	STH01Y	Stephanodiscus hantzschii Grun. in Cl. et Grun.	0	1	0	0
177	SU001A	Surirella angusta Kütz.	0	1 - 4	0	0
178	SUV01Y	<i>Surirella ovalis</i> Bréb.	1	1-6	0	0
179	SUT01Y	Surirella tenera var. nervosa A. Schmidt	0	0	1-3	0
180	TBF01Y	Tabularia fasciculata (C. Ag.) Williams & Round	1	5	2-3	0
181	NI020A	<i>Tryblionella acuminata</i> W. Sm.	0	1-3	0	0
182	TYH01Y	<i>Tryblionella hungarica</i> (Grun.) Frenquelli	0	1	1-3	0
183	NIL01Y	Tryblionella littoralis (Grun.) D.G. Mann	1	0	0	0
184	FRU01Y	Ulnaria ulna (Nitzsch) P. Compère	1–3	1–6	2–6	0
		Chrysophyta				
185	CHSI1Y	Chrysocrinus irregularis Pasch.	0	0	6	0
186	SYA01Y	Epipyxis aurea (Chodat) Hilliard	2	0	0	0
187	LGT01Y	Lagynion triangulare (Stokes) Pasch.	3	0	0	0
		Euglenophyta				
188	EUE01Y	<i>Amblyophis viridis</i> Ehrb.	0	0	1-6	0
189	ASS01Y	Astasia sagittifera Skuja	0	1	0	0
190	COLC1Y	Colacium cyclopicola (Gicklhorn) Bourr.	2-5	2-3	1-6	0
191	COLP1Y	Colacium parasiticum (Sokolov) HubPest.	1	0	0	0
192	PHA01Y	<i>Cryptoglena skujae</i> Marin & Melkonian	0	0	1-2	0
193	EUA01Y	<i>Euglena acus</i> Ehrb. var. <i>acus</i>	1	1 - 4	1 - 2	0
194	EUAA1Y	<i>Euglena acus</i> var. <i>angularis</i> Johnson	0	1	0	0
195	EUD01Y	<i>Euglena deses</i> Ehrb.	4	1 - 5	1 - 5	1
196	EUF01Y	Euglena fundoversata Johnson	0	0	1 - 4	0
197	EUL01Y	Euglena limnophila Lemm.	0	0	0	0
198	EUM01Y	Euglena minima Fr.	0	0	1 - 4	2
199	EUO01Y	Euglena oxyuris Schmarda f. oxyuris	2-3	1 - 4	1-6	0
200	EUOS1Y	Euglena oxyuris f. skvortzovii (Popowa) Popowa	0	1	0	0
201	EUP01Y	Euglena proxima Dang.	0	0	1 - 5	0
202	EU001Y	Euglena sp.	0	1-2	1	0
203	EUSP1Y	Euglena spathirhyncha Skuja	0	0	2	0
204	EUS02Y	Euglena srinagari (Bathia) HubPest.	0	1	0	0
205	EUT01Y	<i>Euglena texta</i> (Duj.) Hubn.	1	1 - 2	1	1
206	EUTR1Y	Euglena tripteris (Duj.) Klebs	0	0	1	0
207	EUV01Y	<i>Euglena viridis</i> Ehrb.	0	1-6	0	0
208	LEF01Y	Lepocinclis fusiformis (Carter) Lemm. emend. Conr.	0	4-5	0	0
209	LEM01Y	Lepocinclis marssonii Lemm. emend. Conr.	0	4	0	0
210	LEO01Y	Lepocinclis ovum (Ehrb.) Lemm.	1-3	1-6	0	1
211	PHAL1Y	Phacus alatus Klebs	3	0	1-3	0
212	PHB01Y	Phacus brevicaudatus (Klebs) Lemm.	3	1 - 2	3-4	0
213	PHO01Y	Phacus circulatus Pochmann	0	0	1 - 2	0
214	PHC01Y	Phacus curvicauda Swir.	3-4	5	0	0
215	PHG01Y	Phacus granum Drez.	0	0	3	0
216	PHH01Y	Phacus hispidulus (Eichwald) Lemm.	1	0	0	0
217	PHL01Y	Phacus longicauda var. insecta Koczw.	3-5	0	0	0
218	PHL02Y	Phacus longicauda (Ehrb.) Duj. var. longicauda	1 - 4	0	0	0
219	PHS01Y	Phacus oscillans Klebs	0	0	0	1
220	PHP01Y	Phacus pleuronectens (Ehrb.) Duj.	2	1	1 - 4	0
221	PHPY1Y	Phacus pyrum (Ehrb.) Stein	0	1	1	0
222	PHL03Y	Phacus tortus (Lemmermann) Skvortsov	1-3	1	1	0
223	PHT01Y	Phacus turgidulus Pochmann	0	1	0	0

Table 3. (Continued).

No.	Code	Taxa	2003	2004	2005	2006
224	SRP01Y	Strombomonas planctonica (Wolosz.) Popova	1	1	0	0
225	SRS01Y	Strombomonas subcurvata (Proshkina-Lavrenko) Defl.	0	3	0	0
226	TRA01Y	Trachelomonas aspera Da Cuncha	0	1	0	0
227	TRH01Y	Trachelomonas hispida (Perty) F. Stein ex Defl.	0	1	1	0
228	TRS01Y	Trachelomonas spiralis Playf.	0	1	0	0
229	VA001Y	Xanthophyta Vaucheria sp.	0	0	3	0
230	PE001Y	Dinophyta <i>Peridinium</i> sp.	0	0	1–2	0
		Chlorophyta				
231	ACH01Y	Actinastrum hantzschii Lagerh. var. hantzschii	0	0	2-4	0
232	ACHS1Y	Actinastrum hantzschii var. subtile Wolosz.	0	0	2	0
233	BOB01Y	Botryococcus braunii Kutz.	1	4	0	0
234	CRT01Y	Carteria sp.	0	0	1	0
235	COR01Y	Characium ornithocephalum A. Br.	1	0	0	0
236	CHM01Y	Chlamydomonas sp.	0	1-4	1	1
237	CHMPIY	Chlamydopodium pluricoccum (Korsch.) Ettl et Kom.	0	0	3-6	3
238	CHLMIY	Chlorangium minus (Korsch.) Ettl	1	3	0	0
239	CHC01Y	Chlorococcum sp.	0	1-3	2	6
240	CLAGIY	Cladophora glomerata (L.) Kutz.	0	2-6	2-6	6
241	CLADIY	Cladophora sp.	1-5	1	0	0
242	CLSAIY	Closterium acerosum (Schrank) Ehrb. ex Rais	1	0	0	0
243	CLSEIY	Closterium enrenbergii Menegn. ex Kalis	0	0	1-3	0
244	CLSKII	Closterium reclimarginalum Scott et Prescott	2	0	1	0
245	CLS011 COEA1V	Coolactrum sp.	1	0	1	0
240	COEMIN	Coelastrum astrotaeum De-Not.	1	0	2 6	0
247	COES1V	Coelastrum microporum Nag.	1	0	2-0	0
248	COMPIN	Coeusirum spruericum Nag.	0	0	1-0	0
249	COUPII	Coleochaeta puluineta A. Proup	1-2	0	0	0
250		Coleochaete puivinaia A. Braun	0	1	0	2
251	CODULI CSD01V	Coreochuele sp.	0	1	0	0
252	CS001V	Cosmarium punctuturum Breb.	1	1	0	0
255	CSAR1V	Cosmantum sp.	1	1	0	0
255	CT001V	Cruciania tatrapadia (Kirchn) W at C.S. West	0	0	1	0
255	C 4001V	Crucigenia letrapeau (Kreini.) W. et G.S. West	0	0	1	0
250	CI001V	Crucigeniella irregularis (Wille) Tearenko et D.M. John	1	0	0	0
258	CRE01Y	Crucigeniella rectangularis (Näg) Kom	1	0	1_4	0
259	DFA01Y	Desmodesmus armatus (R. Chod.) Hegew var. armatus	1	1_2	1-4	0
260	DEA02Y	Desmodesmus armatus var hicaudatus (Roll) Hegew	1-2	0	1-6	0
261	DER021 DEB01Y	Desmodesmus hrasiliensis (Bohlin) Hegew	1	0	0	0
262	DEC01Y	Desmodesmus communis (Hegew) Hegew	1-2	1-2	1	0
263	DECG1Y	Desmodesmus costato-granulatus (Skuja) Hegew	2	0	0	0
264	DEI01Y	Desmodesmus insignis (W. et G. S. West) Hegew	0	0	1	0
265	DEIT1Y	Desmodesmus intermedius (R. Chod.) Hegew	1	0	0	0
266	DEL01Y	Desmodesmus lefevrii (Defl.) An, Friedl. et Hegew.	2	0	0	0
267	DEM01Y	Desmodesmus maximus (W. et G.S. West) Hegew.	1	1	1	0

Tabl	le 3.	(Continu	ied).
------	-------	----------	-------

No.	Code	Taxa	2003	2004	2005	2006
268	DEO01Y	Desmodesmus opoliensis (P. Richt.) Hegew.	2-4	0	1 - 4	0
269	DEP01Y	Desmodesmus protuberans (Fritsch et Rich) Hegew.	1	0	1-2	0
270	DE001Y	Desmodesmus sp.	0	1	0	0
271	DES01Y	Desmodesmus spinosus (K. Biswas) Hegew.	1	0	2	0
272	DICP1Y	Dictyosphaerium pulchellum Wood	1	1 - 4	1 - 4	1
273	DIML1Y	Dimorphococcus lunatus A. Br.	0	1	0	0
274	ENT01Y	Enteromorpha torta (Mert.) Reinb.	0	0	0	1
275	EUDE1Y	<i>Eudorina elegans</i> Ehrb.	1-6	1-3	1	0
276	FT001Y	Franceia tenuispina Korsch.	1	0	0	0
277	GR001Y	Golenkinia radiata Chod.	0	1	0	0
278	HYC01Y	Hyaloraphidium contortum var. tenuissimum Korsch.	3	0	0	0
279	CHHS1Y	Klebsormidium subtile (Kütz.) Tracanna	0	2	0	0
280	LA001Y	Lagerheimia sp.	0	1	0	0
281	MP001Y	Micractinium pusillum Fres.	2-6	1-3	3	0
282	MSA01Y	Microspora amoena var. gracilis (Wille) De Toni	0	0	1-2	0
283	MOA01Y	Monoraphidium arcuatum (Korsch.)Hind.	0	0	1-2	0
284	MOG01Y	Monoraphidium griffithii (Berk.) KomLegn.	1 - 4	6	1-3	1
285	MOI01Y	Monoraphidium irregulare (G.M. Smith) KomLegn.	0	4	1-3	0
286	MOK01Y	Monoraphidium komarkovae Nygaard	0	0	1-2	0
287	MOM01Y	Monoraphidium minutum (Näg.) KomLegn.	1	0	1	0
288	MU001Y	Mougeotia sp.	0	1	1-3	1
289	NW001Y	Nephrochlamys willeana (Printz) Korsch.	0	1	0	0
290	OE001Y	Oedogonium sp.	2	1-6	2-6	1
291	OOC01Y	Oocystis submarina Lagerh.	1	1	2-4	1
292	PAM01Y	Pandorina morum (O.F. Müll.) Bory	0	1-2	2-3	0
293	PDB01Y	Pediastrum boryanum (Turp.) Menegh.	1-2	0	0	0
294	PDD01Y	Pediastrum duplex Meyen	1-6	0	2-4	0
295	PDS01Y	Pediastrum simplex Meyen	2	2	0	0
296	RCC01Y	Raphidocelis contorta (Schmidle) Marvan et al.	1	0	0	0
297	RCS01Y	Raphidocelis sigmoidea Hind.	2	1	0	0
298	RCSU1Y	Raphidocelis subcapitata (Korsch.) Nygaard et al.	1	1	0	0
299	RHZ01Y	Rhizoclonium hieroglyphicum (Ag.) Kütz.	4-6	4	1-6	0
300	SA001Y	Scenedesmus acuminatus (Lagerh.) Chod.	1-3	0	1-2	0
301	SAC01Y	Scenedesmus acutus Meven ex Ralfs	4	0	1-3	0
302	SF001Y	Scenedesmus falcatus Chodat	1-2	0	1	0
303	SO001Y	Scenedesmus obtusus Meven	1-2	1	1	0
304	SP001Y	Scenedesmus parvus (G.M. Smith) Bourr	0	0	1	0
305	SDS01Y	Schroederia setigera (Schroed.) Lemm	0	1	0	0
306	SPG01Y	Spirogyra sp	0	1-6	4-6	0
307	SCT01Y	Stigeoclonium tenue (Ag.) Kütz	0	1-5	1-6	° 6
308	STYE1Y	Stylosphaeridium epiphyticum (Korsch) Korsch	3	0	0	0
309	TTE01Y	Tetrastrum elegans Playf	0	1	0	0
310	TTT01Y	Tetrastrum triacanthum Korsch	1	0	0	0
311	UXT01V	Ulathrir tenuissima Kiitz	2	0	0	0
312	URC01V	Uronema confervicola Lagerh	1	1_3	1_4	1
512	010011	oronemu conjervitom Lagerit.	1	1-5	1-4	
		Rhodophyta				
313	AU001Y	Audouinella pygmaea (Kütz.) Weber-van Bosse	0	1	0	0

In Figure 3 we can see the taxonomical distribution of all algal species diversity as opposed to the diversity of the seasonal indicators. The 2 distributions are very similar with a dominant diatom group.

Figure 3. Taxonomical diversity from the River Yarqon and season indicators diversity.

In Figure 4 we can see the divisional distribution of 110 taxa, which was presented during all seasons. These algae belong to 4 taxonomical divisions with significant dominance of the diatoms division.

Figure 4. Taxonomical diversity of algae and cyanobacteria present in the River Yarqon during the entire period of study.

Out of the 85 seasonal indicating taxa, the cyanobacteria and diatoms were the most abundant (Figure 5); the next were green algae and euglenoids. Remarkably, this group included Chrysophyta species, even though they were only slightly evident in the entire diversity.

Figure 5. Taxonomical diversity of most abundant algae and cyanobacteria present in the River Yarqon as seasonal indicators.

We revealed the diversity of dominant species that were abundant in both dry and rainy seasons (Figure 6), and it can be seen that the species composition is not similar. Among the most abundant 54 taxa in the dry season, the cyanobacteria prevailed and the green algae followed. The winter communities were dominated by 49 taxa, mostly the diatoms; cyanobacteria and green algae followed. The Chrysophyta dominant species appeared only in the summer community.

The environmental factors, such as current and light, mostly impact on the community structure and colonization patterns of diatoms in streams (McIntire, 1968; Stevenson, 1983). In the lotic habitats of Turkey and Egypt, salinity is strongly increased and algal species diversity decreased during the dry season (Aktan & Aykulu, 2005; El-Awamri et al., 2007). On one hand, in the Turkish rivers species diversity is

Figure 6. Taxonomical diversity of dominant species abundant in all dry or wet seasons.

considered higher in communities in stable environments than in disturbed ones. On the other hand, in some seasons, the effect of nutrients carried by wastewater has caused certain species to increase substantially, thus reducing the species diversity (Aktan & Aykulu, 2005).

The effect of early spring was more significant in determining diatom community structure than the habitat differences between the upper Damour and el-Hamam rivers or the upper and lower Damour sites in Lebanon (Squires & Saoud, 1986). Summer environmental conditions in the River Damour in Lebanon resulted in floras as distinctive characteristics. Habitat differences between the upper and lower River Damour became significant when the salinity began to increase in the estuary (Squires & Saoud, 1986).

In the River Yarqon communities the dominant algal species that survived both dry and rainy seasons are presented in Table 4. We can see that their ecological preferences are opposite. Therefore, these species can be used as indicators for the collective seasonal influences. During the dry season, the dominant species were the green chlorococcoid algae; they survive in planktonic-benthic habitats and prefer fresh, low streaming, and middle polluted water with medium contents of organic matter and neutral amplitude of pH.

Diatoms are the dominant species in the rainy season only. They are typical periphytonic algae surviving by attaching themselves to hard substrates in more alkali and saline water. Their presence usually indicates increases in organic matter pollution. This quality helps us to conclude that the water in the River Yarqon flows slower during the dry season. As a result, the algal community experiences stress. Another conclusion that can be made is that, although the drift of organically polluted saline water in the River Yarqon is much stronger in the rainy season in comparison to the dry season, the self-purification processes are more intensive as well. Therefore, algae are more likely to survive in the periphyton during the winter season as their photosynthetic activity is sufficient for the self-purification of the River Yarqon.

CCA Analysis

The algal species diversity in the River Yarqon is larger during the dry season (222 taxa) than during the wet season (207 taxa), as can be seen in the species diversity analysis results. The dominance tendency shows overall resemblance between the present communities and does not reveal any major influencing factors or typical species. For this reason, in order to reveal major influencing factors and typical species, we decided to use a statistical method, implementing a factorial analysis.

Table 4.Ecological parameters (Barinova et al., 2006) and abundance of algal species (6-scores scale, Korde, 1956) that may serve as
seasonal indicators in the River Yarqon.

Taxon	2003	2005	2004	2006	Season	Hab	Reo	Sal	pН	D	Sap	IS
Coelastrum microporum	1	2-6			Summer	P-B	st-str	i	ind		b	2.1
Pediastrum duplex	1-6	2-4			Summer	Р	st-str	i	ind		o-a	1.8
Desmodesmus armatus var. bicaudatus	1-2	1-6			Summer	P-B	st-str				b	2.0
Nitzschia constricta			1-6	1-5	Winter	В		mh	alf	es	b	2.2
Nitzschia vermicularis			1-3	2-6	Winter	В		i	alf		0	1.3

Note: Hab – habitat (B – benthic; P – planktonic; P-B – planktonic-benthic); Reo – streaming and oxygenation (st-str – low streaming water); Sal – halobity (salinity) degree (i – oligohalobes-indifferent, mh – mesohalobes); pH – pH degree (alf – alkaliphiles, ind – indifferents); D – degree of saprobity on the Watanabe's (Watanabe et al., 1986) (es - eurysaprobes); Sap – degree of saprobity on the Pantle-Buck's (Pantle & Buck, 1955; Sládeček, 1986) (o – oligosaprobes, o-a – oligo-alfamesosaprobes, b – betamesosaprobes); IS – species-specific Index of saprobity on the Sládeček (Sládeček, 1986; Barinova et al., 2006).

The main advantages of this analysis are (1) a reduction in the number of variables and (2) determination of the structure of relations between the different variables. The CCA ordination method was chosen for its ability to reveal influences of a collection of variables on many species' communities.

CCA analysis was performed on the basis of chemical data (Table 1) and revealed diversity (Table 3). To the available parameters, we added the number of species in each community.

The connection between the algal community and the environmental variables for the rainy season in the River Yarqon according to 2004 data is presented in Figure 7. From this biplot, we can conclude that all the salinity and nutrient variables have similar influence on the biotic community. Algal species, such as *Aphanothece clathrata* (cyanobacteria) and *Phacus brevicaudatus* (euglenoids) (bottom circle in Figure 7), prefer highly mineralized water with high pH. Indicators of anthropogenic pollution and

eutrophication (marked by the right circle) are Phormidium autumnale, Limnothrix meffertae (cyanobacteria), Navicula schroeteri, Luticola cohnii, Tabularia fasciculata (diatoms), and Phacus curvicauda (euglenoids). As biosensors for the beginning of anthropogenic stress we revealed species that prefer low concentrations of the influencing factors. Biosensor species in respect to anthropogenic pollution and eutrophication are Mougeotia sp., Chlorococcum sp. (greens), and Amphora pediculus (diatom) (the lower left circle). Biosensor species in respect to high mineralization, high pH, and high biodestruction processes are Cymbella tumida, Bacillaria paxillifera, Amphora veneta, Navicula (diatoms), viridula and Spirulina major (cyanobacteria) (the upper left circle).

The connection between the algal community and environmental variables for the dry season in the River Yarqon, according to 2005 data, is presented in Figure 8. From this biplot we can conclude that all analysing variables also have a similar influence on the biotic community. Algal species that prefer highly mineralised water are *Phacus brevicaudatus* (euglenoids), *Phormidium animale*, and *Spirulina major* (cyanobacteria) (lower left circle). These species are also indicators of water rich in organic matter (Barinova et al., 2006). The indicator species

Figure 8. Biplot of environmental variables and species scores under CCA of the River Yarqon as constructed for the dry season data. Full names of species are presented in Table 3. Correlations presented in Appendix.

show the connection between anthropogenic pollution and high mineralisation. In the upper left circle, we marked a few species that can indicate anthropogenic pollution and eutrophication during the dry season. However, the relationship between species ecological properties and anthropogenic variables is not clear.

As biosensor species in respect to anthropogenic pollution, eutrophication, and high biodestruction processes in the dry season communities, we revealed *Cladophora glomerata* (green), *Nitzschia sigma*, *Navicula viridula*, *Diploneis subovalis*, *Bacillaria paxillifera* (diatoms), *Limnothrix meffertae*, and *Synechocystis salina* (cyanobacteria) (lower right circle). As biosensor species, with respect to high mineralisation, *Pandorina morum*, *Chlamydomonas* sp. (greens), and *Nitzschia gracilis* (diatom) (upper right circle) were revealed.

The results of CCA analysis for all algal communities during the rainy and dry seasons are shown in Figure 9. As can be seen, all the environmental variables were grouped into one quadrant of the biplot. Increases in these variables show anthropogenic influence. We found specific reactions of algal diversity to environmental parameters in winter and summer. We intended to investigate which species will react to specific parameters influenced by both summer and winter. The biplot specifies cyanobacteria Planktolyngbya limnetica and Phormidium animale, euglenoids Euglena oxyuris, Phacus brevicaudatus, and Lepocinclis fusiformis, and greens Desmodesmus armatus (top circle) to be indicators of highly mineralised water with high pH, anthropogenic pollution, and eutrophication. Most of these species are marked in our database as indicators of highsalinity and high-organic matter concentration (Barinova et al., 2006).

As seen on the River Darmur in Lebanon (Squires & Saoud, 1986), a diatom community may be most sensitive to environmental change or perturbation, and differential distribution and density patterns of rare taxa are usually good, reliable indicators of environmental changes. On the other hand, the wide tolerance limits of many of the diatoms that grow in lotic habitats such as the River Damour help them resist extinction in stressed conditions. For these taxa,

relative numbers become an important indicator, and they may be more sensitive to environmental change than more abundant species.

In the River Yarqon communities the biosensor species with respect to high mineralization, high pH, high biodestruction processes, anthropogenic pollution, and eutrophication are mostly diatoms and not abundant, e.g. *Aphanocapsa grevillei*, *Synechocystis salina* (cyanobacteria), *Stephanodiscus hantzschii*, *Diploneis subovalis*, and *Nitzschia gracilis* (diatoms) (Figure 9, lower circle).

CCA analysis enabled us therefore to reveal a few green algae, diatoms, and cyanobacteria species that can be used as indicators for higher salinity and anthropogenic pollution of the River Yarqon. This correlates with the autecology of these species (Table 5). CCA analysis enabled us to reveal biosensor species with respect to the beginning of anthropogenic pollution of the River Yarqon. We are looking at biosensor species as sensitive to small concentrations of substances in contrast to the species-indicators that depend on a high concentration of substances in the water. It is possible to reveal biosensor species with the CCA analysis, as we can see in the River Yarqon communities.

Figure 9. Biplot of environmental variables and species scores under CCA of the River Yarqon as constructed according to data collected in all seasons. Full names of species are presented in Table 3. Correlations presented in Appendix.

Table 5. Ecological parameters and abundance of algae (6-scores scale, Korde, 1956) that may serve as biosensor and bioindicator species for the River Yarqon.

Species	2004	2005	Bio- sensor	Bio- indi- cator	Hab	Reo	Т	Hal	рН	Sap	IS
Amphora pediculus	1-4		+		В	st	temp	i	alf	a-b	
Amphora veneta	1-3		+		В		-	i	alf	a-p	
Aphanocapsa grevillei		3	+		В		temp	hb	acf	o-b	1.4
Aphanothece clathrata	3-4			+	Р			hl		b	1.7
Bacillaria paxillifera	2-6	1-3	+		P-B			mh	ind	a-b	2.8
Cymbella tumida	2-4	1	+		В		temp	i	alf	0	
Desmodesmus armatus	1-2	1-3		+	P-B	st-str				o-a	1.9
Euglena oxyuris	1-4	1-6		+	P-B	st-str		mh	ind	b-a	2.5
Lepocinclis fusiformis	4-5			+	Р	st-str	eterm	i	ind	b	2.0
Limnothrix meffertae	1-6	1		+	В	st		mh			
Luticola cohnii	1-3			+	В			i	ind	0	
Planktolyngbya limnetica	2			+	P-B	st-str		hl		o-b	1.5
Mougeotia sp.	1	1-3	+		В						1.0
Navicula schroeteri	6			+	В			i	alf		
Navicula viridula	2-3	2	+		В			hl	alf	а	2.8
Tabularia fasciculata	5	2-3		+	P-B			mh			
Nitzschia gracilis		3	+		P-B		temp	i	ind	O-X	0.6
Phormidium animale		6		+	P-B	str				0	1.1
Pandorina morum	1-2	2-3	+		Р	st		i		b	2.0
Phacus brevicaudatus	1-2	3-4		+	Р	st-str	eterm	hl		b	2.0
Phacus curvicauda	5			+	P-B	st		i	ind		
Phormidium autumnale	4-6	1-3		+	В	st-str				b	1.95

Note: Hab – habitat (B – benthic; P – planktonic; P-B – planktonic-benthic); Reo – streaming and oxygenation (st - standing water, st-str – low streaming water); T – temperature (temp – temperate, eterm - eurythermic); Sal – halobity (salinity) degree (hb – halophobes, i – oligohalobes-indifferent, hl – halophiles, mh – mesohalobes); pH – pH degree (acf – acidophles, alf – alkaliphiles, ind – indifferents); Sap – degree of saprobity on the Pantle-Buck's (Pantle & Buck, 1955; Sládeček, 1986) (o – oligosaprobes, o-a – oligo-alfamesosaprobes, o-b – oligo-betamesosaprobes, o-x – oligo-xenosaprobes, b – betamesosaprobes, b-a – beta-alfamesosaprobes, a – alfa-betamesosaprobes, a-p – alfa-polysaprobes); IS – species-specific Index of saprobity on the Sládeček (Sládeček, 1986; Barinova et al., 2006).

Conclusion

In our research of the River Yarqon during 2003-2006, we recognised 313 taxa of algae and cyanobacteria belonging to 8 taxonomical divisions. Out of this diversity, 268 taxa (85.6% of taxa) were indicators of environmental conditions that can characterise the river water as alkaline with medium mineralisation.

The algal taxonomic compositions in the rainy and dry seasons are quite different, with the diatoms' group diversity being much richer in winter, whilst the greens and cyanobacteria are more diverse in summer. Although the diversity of the algae that survived in all seasons was low, the diatoms still prevailed. Among seasonal indicators, the dominant groups were diatoms in the winter and greens and cyanobacteria in the summer. The taxonomical distribution of indicators in the seasonal communities yielded similar reactions. This distribution reflects the taxonomic preferences for the self-purification processes for each season.

During the rainy season, the self-purification processes are more intensive and photosynthetic activity of the algae is sufficient for the selfpurification of the River Yarqon. In contrast, the low level of river water in the dry season stresses the algal community such as in similar conditions in the rivers in Turkey, Lebanon, and Egypt.

According to CCA analysis, we revealed algal species that can serve as indicators in respect to higher salinity and organic pollution. There are characteristic indicators of species diversity for each of the seasons. They belonged mostly to cyanobacteria and euglenoids. For the typical river in the Eastern Mediterranean, CCA analysis revealed biosensor species with respect to anthropogenic pollution of the River Yarqon, which belonged mostly to diatoms. We can therefore conclude that the combination of bioindicational methods with statistics is an effective means in the determination of the main factors influencing algal diversity. This approach is also

References

- Aktan Y & Aykulu G (2005). Colonisation of epipelic diatoms on the littoral sediments of İzmit Bay. *Turk J Bot* 29: 83-94.
- Barinova SS (1997). Morphology of connective spines in diatom algae of the genus *Aulacoseira* Thwaites. *Paleontological J* 31(2): 239-245.
- Barinova SS, Medvedeva LA & Anissimova OV (2006). *Diversity of algal indicators in environmental assessment*. Tel Aviv: Pilies Studio (In Russian).
- Bar-Or Y (2000). Restoration of the rivers in Israel's coastal plain. Water Air & Soil Pollut 123: 311-321.
- Ben-Hur M, Porat L & Mingelgrin U (2000). The influence of dissolved organic matter on microelement contamination concentration at Yarqon water, and their change with the time and space. Institute of Soil, Water and Environmental Sciences The Agricultural Research Organization. Annual report submitted to environment department of Israel (In Hebrew).
- Desikachary TV (1959). *Cyanophyta*. New Delhi: Indian Council of Agricultural Research.
- Dokulil MT (2003). Algae as ecological bioindicators. In: Market BA, Breure AM & Zechmeistter HG. *Bioindicators and Biomonitors*, pp. 285-327. Oxford: Elsevier.
- El-Awamri AA, Shaaban AEM & Saleh AI (2007). Floristic Study on Benthic Diatoms of the Groundwater Seepages at Kobri Elkobba (Cairo, Egypt). *J Appl Sci Res* 3(12): 1809-1818.
- Ettl H (1978). Xanthophyceae. Süßwasserflora von Mitteleuropa 3. New York: Fischer.
- Ettl H & Gartner G (1988). Chlorophyta II. Tetrasporales, Chlorococcales, Gloeodendrales. Süßwasserflora von Mitteleuropa 10. Stuttgart & New York: Fischer.
- European Parliament (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for community action in the field of water policy, pp. 1-72. OJL 327.

helpful in specifying indicators (for the high levels of environmental parameter) and biosensors (for the low levels of environmental parameter) for the most important environmental parameters.

These results can be used for water-quality assessment and monitoring systems in Israeli and other Mediterranean coastal rivers.

Acknowledgements

This work has been partially funded by the Israel Ministry of Absorption.

- Foerster J, Gutowski A & Schaumburg J (2004). Defining types of running waters in Germany using benthic algae: A prerequisite for monitoring according to the Water Framework Directive. J Appl Phyc 16: 407-418.
- Gafny S, Goren M & Gasith A (2000). Habitat condition and fish assemblage structure in a coastal Mediterranean stream (Yarqon, Israel) receiving domestic effluent. *Hydrobiologia* 422/423: 319-330.
- Gasith A (1992). Conservation and management of the coastal streams of Israel: An assessment of stream status and prospects for rehabilitation. In.: *River conservation and management*, pp. 51-64. Toronto: John Wiley & Sons.
- Komárek J & Anagnostidis K (1998). *Cyanoprokaryota 1. Chroococcales.* Süßwasserflora von Mitteleuropa 19/1. Jena & Stuttgart: Fisher.
- Komárek J & Anagnostidis K (2005). Cyanoprokaryota 2. Teil Oscillatoriales. Süßwasserflora von Mitteleuropa 19/2. München: Elsevier.
- Korde NV (1956). The methods of biological studies for the bottom deposits of lakes (the field methods of biological analysis). In: *Freshwater Life in USSR 4(1)*, pp. 383-413. Moscow: Rus Acad Sci Press (In Russian).
- Krammer K & Lange-Bertalot H (1991a). Bacillariophyceae. 3. Centrales, Fragilariaceae, Eunotiaceae. Süßwasserflora von Mitteleuropa 2/3. Stuttgart & Jena: Fischer.
- Krammer K & Lange-Bertalot H (1991b). Bacillariophyceae. 4. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema Gesammtliteraturverzeichnis 1-4. Süßwasserflora von Mitteleuropa 2/4. Stuttgart & Jena: Fischer.
- Krammer K & Lange-Bertalot H (1991c). *Bacillariophyceae. 1. Naviculaceae.* Süßwasserflora von Mitteleuropa 2/1. Jena, Stuttgart, Lübeck & Ulm: Fischer.

- Krammer K & Lange-Bertalot H (1991d). Bacillariophyceae. 2. Bacillariaceae, Epithemiaceae, Surirellaceae. Süßwasserflora von Mitteleuropa 2/2. Jena, Stuttgart, Lübeck & Ulm: Fischer.
- Lenzenweger R (1996). Desmidiaceenflora von Österreich. 1. *Bibl Phyc* 101: 1-162.
- McIntire CD (1968). Structural characteristics of benthic algal communities in laboratory streams. *Ecol* 49: 520-537.
- Mattox KR & Stewart RD (1984). Classification on the green algae: a concept based on comparative cytology. In: Irvine DEG & John DM (eds.) *Systematics of the Green Algae*, Systematics Assoc, Spec Vol 27: 29-72. London: Acad Press.
- Ministry of Environment of Israel (2006) sviva@gov.il
- Moshkova NA & Gollerbach MM (1986). *Green Algae. Chlorophyta: Ulotrichophyceae (1), Ulotrichales.* Guide to Freshwater Algae of the USSR, 10. Leningrad: Nauka Press (In Russian).
- Pantle E & Buck H (1955). Die biologische Uberwachung der Gewasser und die Darstellung der Ergebnisse. *Gas- und Wasserfach* 96(18): 1-604.
- Perestenko LP (1994). *Red algae of the Far-Eastern seas of Russia*. St. Petersburg: Olga Press.
- Ponader KC, Charles DF & Belton TJ (2007). Diatom-based TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. *Ecological Indicators* 7: 79-93.
- Sládeček V (1986). Diatoms as indicators of organic pollution. *Acta Hydrochim Hydrobiol* 14: 555-566.
- Squires LE & Saoud NS (1986). Effects of water quality and season on diatom community structure in the Damour River, Lebanon. *Hydrobiologia* 133: 127-141.

- Starmach K (1983). Euglenophyta Eugleniny. Flora slodkowodna Polski, 3. Warszawa & Krakow: Panstwowe Wydawnictwo Naukowe.
- Stevenson RJ (1983). Effects of current and conditions simulating autogenically changing microhabitats on benthic diatom immigration. *Ecol* 64: 1514-1524.
- Swift E (1967). Cleaning diatom frustules with ultraviolet radiation and peroxide. *Phycol* 6: 161-163.
- Tavassi M, Barinova SS, Anissimova OV, Nevo E & Wasser SP (2004). Algal indicators of environment in the Nahal (River) Yarqon basin, central Israel. *Int J Algae* 6(4): 355-382.
- ter Braak CJF (1987). The analysis of vegetation-environment relationships by canonical correspondence analysis. *Vegetatio* 69: 69-77.
- ter Braak CJF (1990). Interpreting canonical correlation analysis through biplots of structural correlations and weights. *Psychometrica* 55: 519-531.
- Watanabe T, Asai K & Houki A (1986). Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage - Diatom Assemblage Index (DAIpo). *Sci Tot Envir* 55: 209-218.
- Winter JG & Duthie HC (2000). Epilithic diatoms as indicators of stream total N and total P concentration. J N Am Benthol Soc 19: 32-49.
- Whitton BA, Roth E & Friedrich G (eds.) (1991). Use of algae for monitoring rivers. Institut für Botanik, Innsbruck: Univ Press.

Appendix. Correlations for CCA analysis of the River Yarqon communities and environmental variables.

CCA for wet season.

Axes	1	2	3	4	Total inertia
Eigenvalues	0.493	0.439	0.409	0.386	3.594
Species-environment correlations	0.993	0.999	0.991	0.988	
Cumulative percentage variance					
of species data	13.7	25.9	37.3	48.0	
of species-environment relation	20.7	39.1	56.3	72.5	
Sum of all eigenvalues	3.594				
Sum of all canonical eigenvalues	2.383				

Test of significance of first canonical axis

Eigenvalue	0.493
F-ratio	0.477
P-value	0.5440
Test of significance of all c	anonical axes
Trace	2.383
F-ratio	0.984
P-value	0.5020

CCA for dry season.

Axes	1	2	3	4	Total inertia
Eigenvalues	0.839	0.660	0.578	0.544	3.746
Species-environment correlations	1.000	0.995	1.000	0.997	
Cumulative percentage variance					
of species data	22.4	40.0	55.5	70.0	
of species-environment relation	26.7	47.7	66.1	83.4	
Sum of all eigenvalues	3.746				
Sum of all canonical eigenvalues	3.143				

Test of significance of first canonical axis

Eigenvalue	0.839
F-ratio	0.289
P-value	0.0220
Test of significance of all canonical axes	
Trace	3.143
F-ratio	1.042
P-value	0.1180

CCA for dry and wet seasons.

1	2	3	4	Total inertia
0.677	0.507	0.420	0.402	6.771
0.988	0.974	0.991	0.984	
10.0	17.5	23.7	29.6	
25.4	44.4	60.2	75.2	
6.771				
2.667				
	1 0.677 0.988 10.0 25.4 6.771 2.667	1 2 0.677 0.507 0.988 0.974 10.0 17.5 25.4 44.4 6.771 2.667	1 2 3 0.677 0.507 0.420 0.988 0.974 0.991 10.0 17.5 23.7 25.4 44.4 60.2 6.771 2.667	1 2 3 4 0.677 0.507 0.420 0.402 0.988 0.974 0.991 0.984 10.0 17.5 23.7 29.6 25.4 44.4 60.2 75.2 6.771 2.667

Test of significance of first canonical axis

Eigenvalue	0.677
F-ratio	1.111
P-value	0.0020
Test of significance of all canonical axes	
Trace	2.667
F-ratio	1.083
P-value	0.0640