
Introduction
Nitrogen, often a limiting resource for plant

growth and development, is needed in larger amounts
by plants than any other mineral element because it
is a constituent of macromolecules such as proteins.
The availability of nitrogen is thus a significant
determinant of crop yield (Foyer & Noctor, 2002).
Complicating this for agriculture is the fact that often

less than 50% of nitrogen fertiliser applied is
ultimately utilised by crops, because nitrate ions are
highly mobile and not absorbed by soil colloid
(Allison, 1966). To satisfy the nitrogen demand,
farmers often add nitrogen in large quantities to
maintain an adequate level in the rhizosphere (Zhu et
al., 2005). This excessive use of nitrogen fertiliser has
resulted in undesirable conditions such as the
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Abstract: The effects of 2 nitrate levels, 14 (CK) and 140 mmol L-1 (T), on the leaf gas exchange variables of cucumber
(Cucumis sativus L. cv. Xintaimici) seedlings grown in hydroponic culture were investigated. Photosynthetic light- and
CO2-response curves from CK and T seedlings were determined and used for the analysis of photosynthetic capacity. The
results showed that nitrate stress resulted in a significant reduction of net photosynthesis of T seedlings compared with
CK. At the same time, the apparent quantum yield, light-saturated net photosynthesis, carboxylation efficiency, and CO2-
saturated net photosynthesis in nitrate-stressed cucumbers also decreased significantly with the increase of treatment
time. At 12 days, the apparent quantum yield, light-saturated net photosynthesis, carboxylation efficiency, and CO2-
saturated net photosynthesis in nitrate-stressed cucumbers were 47%, 60%, 64%, and 54% lower than CK, respectively.
The relative effect of stomatal resistance on photosynthesis (S%) in nitrate-stressed cucumber seedlings increased
significantly during the first 8 days and returned to the level of CK thereafter. This evidence indicates that not only
stomatal but also nonstomatal limitations might be involved in the reduction of net photosynthetic rate in nitrate-stressed
seedlings.
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accumulation of nitrate in plants and soil. The large
accumulation of nitrogen in the soil has contaminated
the ground water (Barker & Mills, 1980) and resulted
in secondary soil salinisation in protected farmland
because of a lack of leaching by rainfall and strong
evaporation of soil water (Kitamura et al., 2006).

China has the largest area of protected crops and is
now the leading country in the world for protected
agriculture, including multispan greenhouses, solar
lean-to greenhouses, and plastic tunnels (Jiang & Qu,
2000). However, secondary soil salinisation has
seriously limited sustainable development of
agricultural production in protected farmland of
China (Yu et al., 2005). According to previous studies
(Yu et al., 2005; Ju et al., 2007), accumulation of ions
in protected farmland is greatly different from
ordinary soil salinisation. In protected farmland, the
main cations and anions are Ca2+, K+, and NO3

-, while
Na+ and Cl- are the main forms of ions in ordinary soil
salinisation. 

In the past several years, many studies about salt
stress to plants have been done, but most of them have
focused on NaCl (Zhu, 2002; Debouba et al., 2007;
Munir and Aftab, 2009; Stepien & Johnson, 2009).
There have been few investigations about nitrate stress
in horticultural crops. Cucumber is one of the most
important horticultural crops, and it has been
reported that excessive accumulation of nitrate widely
inhibits the growth and development of cucumber in
protected farmland of China (Lü et al., 2007; Gao et
al., 2008a, 2008b), while the underlying mechanisms
are still not well understood. Photosynthesis is the
fundamental metabolic process and plays a critical
role in plant growth and development. This process is
very sensitive to environmental stresses. Drought
(Lauteri et al., 1997), salt stress (Bongi & Loreto,
1989), and leaf aging (Loreto et al., 1994) all result in
inhibition of photosynthesis because of the reduction
of conductance to CO2 diffusion in the leaf mesophyll
(Delfine et al., 1999). However, little information
about changes of photosynthesis under nitrate stress
exists. Therefore, we studied how excessive nitrate
influenced photosynthesis in the leaves of cucumber
seedlings. Responses of photosynthetic rate in nitrate-
stressed cucumber seedlings to different levels of light
intensity and CO2 concentration were measured
under greenhouse conditions.

Materials and methods
Plants, growth conditions, and experimental design
Cucumber (Cucumis sativus L. cv. Xintaimici,

mid-tolerant to salinity stress) seeds were sterilised
with sodium hypochlorite containing 5% active HOCl
for 5 min and then soaked for 12 h in deionised water
after being washed 5 times. The soaked seeds were
raised in well-washed quartz sand in the greenhouse
of Shandong Agricultural University and irrigated
with tap water. When plants had one fully expanded
leaf, they were removed from the trays and their roots
were washed with tap water to remove the substrate,
and then they were transplanted to hydroponic boxes
(40 cm × 30 cm × 12 cm, 8 plants/box) with a
complete cucumber nutrient solution (pH 6.0-6.5)
containing Ca(NO3)2 3.5 mmol mol-1, KNO3 7 mmol
mol-1, KH2PO4 1 mmol mol-1, MgSO4 2 mmol mol-1,
H3BO3 0.05 mmol mol-1, Na2FeEDTA 0.05 mmol mol-1,
MnSO4 0.01 mmol mol-1, ZnSO4 0.0008 mmol mol-1,
CuSO4 0.0003 mmol mol-1, and (NH4)Mo7O24 0.02
mmol mol-1 (Guo, 2004). The nutrient solutions in all
of the hydroponic boxes were continually aerated with
an electric pump and completely renewed every 4
days. The osmotic potential of the nutrient solution
was measured with a vapour pressure osmometer
(Model No. 5520, Wescor Inc., Logan, UT, USA)
according to the method of Zou (1997). The
experiment was carried out under greenhouse
conditions with an air temperature of 25-30 °C during
the day and 18-25 °C during the night.

When the seedlings had developed 3 fully
expanded leaves, extra nitrate was dissolved in the
nutrient solution directly. The excess nitrate test was
carried out in a completely randomised design with a
split plot arrangement of 3 replications, providing 8
plants per replication. Two treatments were applied
(Table 1): 

(CK) complete nutrient solution (control), and
(T) complete nutrient solution + Ca(NO3)2 31.5

mmol L-1 + KNO3 63 mmol L-1. 
At days 0, 4, 8, and 12 of exposure to treatment,

the second fully expanded leaves, counted from the
top of seedlings, were sampled for the measurement of
photosynthetic light- and CO2-response curves.
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Determination of photosynthetic light-response
curve

Photosynthetic light-response curves were
measured in the greenhouse using the Ciras-II
Portable Photosynthesis System (Ciras-II, PP Systems,
UK). The photosynthetic chamber provided a leaf
area of 2.5 cm2, a leaf temperature of 25 °C, relative
humidity of 90%, leaf-to-air vapour pressure of 200
mbar, and a CO2 concentration of 380 μmol mol-1.
Leaves were given 10 min in the chamber to reach
equilibrium, which was assessed visually by graphing
a strip chart of photosynthesis over time. Light curves
were measured using the instrument’s AutoProgram
function. Measurements were taken at irradiance
levels of 1400, 1200, 1000, 800, 600, 500, 400, 300, 200,
150, 100, and 50 μmol m-2 s-1. A minimum wait time
of 90 s was used at each irradiance level. 

Photosynthetic parameters derived from the light-
response curves were determined according to the
method described before (Richardson & Berlyn,
2002). Net photosynthesis under the highest
irradiance level (1400 μmol m-2 s-1) was taken to be the
light-saturated rate of net photosynthesis. The
apparent quantum yield of photosynthesis was
calculated as the slope of the light-response curve
across the 4 lowest irradiance levels (50, 100, 150, and
200 μmol m-2 s-1). 

Determination of photosynthetic CO2-response
curve

The response of net photosynthesis to intercellular
CO2 concentration was determined in the greenhouse
using the Ciras-II Portable Photosynthesis System
(Ciras-II, PP Systems, UK). The photosynthetic
chamber provided a leaf area of 2.5 cm2, a leaf
temperature of 25 °C, relative humidity of 90%, leaf-
to-air vapour pressure of 200 mbar, and irradiance of
1000 μmol m-2 s-1. Leaves were given 10 min in the

chamber to reach equilibrium. Measurements were
taken at atmospheric CO2 levels of 50, 100, 150, 200,
250, 300, 350, 400, 600, 800, 1000, 1200, 1400, 1600,
and 1800 μmol mol-1. 

Net photosynthesis values were plotted against the
respective intercellular CO2 concentrations to
produce a response curve. Photosynthetic parameters
derived from the CO2-response curve data were
determined according to the method described before
(Harrison et al., 2001; Habermann et al., 2003). Net
photosynthesis under the highest intercellular CO2
level was taken to be the CO2-saturated rate of net
photosynthesis. Net photosynthesis and
corresponding intercellular CO2 values for the linear
portion of the response curve were subjected to linear
regression analysis in order to determine the
carboxylation efficiency of net photosynthesis. 

The relative effect of stomatal resistance on
photosynthesis (S%) was estimated by the following
equation (Farquhar & Sharkey, 1982):

S% = [(ACi – ACa)/ACi] × 100,
where ACa represented the net photosynthesis at an
atmospheric CO2 concentration of 350 μmol mol-1

and ACi was the net photosynthesis when the
intercellular CO2 concentration was set at 350 μmol
mol-1 (Table 2).
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Table 1. Nitrate concentration and osmotic potential of nutrient solution.

Osmotic potential Osmotic potential
Treatment Ca(NO3)2 KNO3 NO3

- before treatment after treatment for
(mmol L-1) (mmol L-1) (mmol L-1) (MPa) 3 days (MPa)

CK 3.5 7 14 -0.256 -0.218
T 35 70 140 -0.570 -0.567

Table 2. Corresponding atmospheric CO2 concentration.

Atmospheric CO2 concentration (μmol mol-1)

CK T

Day 0 456 457
Day 4 450 490
Day 8 444 455
Day 12 475 459 



Statistical Analysis
Data were analysed with Origin Program (Version

8.0, OriginLab Corporation, MA, USA) and presented
as means of 3 replicates ± standard errors. 

Results and discussion
Figure 1 and Figure 2 show changes of

photosynthetic light- and CO2-response curves in the
leaves of cucumber seedlings under nitrate stress.
Across the whole treatment course, nitrate stress
resulted in a significant reduction of net photosynthesis
of T seedlings compared with CK seedling. The
lowered net photosynthesis of nitrate-stress seedlings is
probably related to low water potential around the
rhizosphere (Table 1), which may block the water
absorbance of roots and induce the closure of stomata
(Terzi et al., 2010). At a lower light intensity, increasing

irradiance resulted in a proportional increase in
photosynthesis for both treatments (Figure 1),
indicating that photosynthesis was limited by the
amount of available light. The initial slope of the light-
response curve based on absorbed light (quantum
yield) describes the efficiency with which light is
converted into fixed carbon. When the light-response
curve is based on incident light, the leaf ’s absorbance
also determines the quantum yield; this initial slope is
called the apparent quantum yield of photosynthesis
for the leaves (Lambers et al., 2008). In CK seedlings,
this value was 0.0384 μmol CO2 mol-1 quanta at day
0, 0.0374 μmol CO2 mol-1 quanta at day 4, 0.0328
μmol CO2 mol-1 quanta at day 8, and 0.0339 μmol CO2
μmol-1 quanta at day 12, whereas it was 0.0356, 0.0235,
0.0204, and 0.0179 μmol CO2 μmol-1 quanta in T
seedlings (Figure 3). These values correspond to the
respective quantum yields of 26.0, 26.7, 30.5, and 29.5
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Figure 1. Photosynthetic light-response curve for leaves of cucumber seedlings grown in nutrient solution containing 14 (CK) and 140
mmol L-1 (T) nitrate at days 0 (A), 4 (B), 8 (C), and 12 (D) after treatment, respectively. Vertical bars represent the standard
errors (n = 3).



μmol quanta μmol-1 CO2 in the leaves of CK seedlings,
and 20.1, 42.6, 49.0, and 56.0 μmol quanta μmol-1 CO2
in the leaves of T seedlings. These results suggest that
the Calvin cycle efficiency, in terms of utilisation of
ATP and NADPH, is lowered in nitrate-stressed leaves
with the increase of treatment time. At higher light
intensity, the photosynthetic response to irradiance
started to level off and reached a saturation plateau
(Figure 1). The light saturation point in CK seedlings
was 600-800 μmol m-2 s-1, whereas it significantly
decreased to 400-500 μmol m-2 s-1 for T seedlings at the
end of the treatment course (Figure 1), indicating that
factors such as electron transport reaction, Rubisco
activity, and metabolism of triose phosphates had
become more limiting in plants treated with 140 mmol
L-1 of nitrate. Moreover, the light-saturated CO2
assimilation rate of seedlings treated with 140 mmol L-

1 of nitrate significantly decreased with the increase of

treatment time (Figure 1). At day 12, the light-saturated
CO2 assimilation rate was 60% lower in T seedlings
than CK seedlings.

The values of intercellular CO2 concentration (Ci)
in the leaves of nitrate-stressed cucumbers (T) were
lower than CK at day 4, but higher than CK at days 8
and 12 (Figure 2). However, the calculation of Ci may
not be reliable when CO2 and water vapour fluxes are
low, as occurred in T seedlings due to low water
potential in the root medium (Table 1). For the
calculation of Ci, the formula (Ci = Ca – Pn (ra′ + rs′))
was used. In this formula, Ca is the atmospheric CO2
concentration, Pn is the rate of net photosynthesis,
and ra′ and rs′ represent the diffusion resistance of the
boundary layer and stomata for CO2. The ra′ is usually
determined from the rate of evaporation of moist filter
paper (Gaastra, 1959). The rs′ is estimated from the
transpiration rate. The cuticular transpiration is
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Figure 2. Net photosynthesis (An) versus intercellular CO2 concentration (Ci) for the leaves of cucumber seedlings grown in nutrient
solution containing 14 (CK) and 140 mmol L-1 (T) nitrate at days 0 (A), 4 (B), 8 (C), and 12 (D) after treatment, respectively.
Vertical bars represent the standard errors (n = 3). 



usually neglected, and the value of diffusion leaf
resistance (r′) is then substituted for ra′ in this formula
(Hák & Nátr, 1984). In case the cuticular transpiration
represents a significant constituent of total
transpiration (e.g. under drought stress), neglecting it
may cause Ci to be overestimated and thus mask some
stomatal effects on the photosynthetic reduction
(Cornic, 2000). In order to determine the effects of
stomatal resistance on photosynthesis, S% has been
investigated in the nitrate-stressed (T) cucumber
seedlings, as well. The values of S% in the leaves of T
seedlings significantly increased during the first 8
days, and then returned to the level of CK (Figure 4),
indicating that the substrate for photosynthetic
activity was not restricted under long-term nitrate
stress. Therefore, the factor that may be involved in
the reduction of the net photosynthetic rate in nitrate-
stressed seedlings are not only stomatal limitations
but also some photochemical and biochemical factors.

The CO2-response curves from CK and T seedlings
were submitted to logarithmic regression (Figure 2).
The linear portions of the CO2-response curves from
both treatments were compared (Figure 2), and the
carboxylation efficiency of nitrate-stressed seedlings

significantly decreased with the increase of treatment
time (Figure 5). Electron transport took place through
electron and proton transport chains in the
photosynthetic membrane (Zeng et al., 2008). The
decrease of water content in the leaves of nitrate-
stressed cucumber seedlings could affect the rate of
electron transport, since water was the provider of the
electron transport chains (Gao, 2008b). A low rate of
electron transport would significantly limit
photosynthetic phosphorylation and the synthesis of
NADPH, and then the regeneration of RuBP was
limited (Harley, 1992). As a result, the carboxylation
efficiency of T seedlings decreased by 64% with
respect to CK at day 12. The significant decrease of
carboxylation efficiency indicates that higher
photorespiration may act in the seedlings treated with
140 mol L-1 of nitrate. The photorespiration may be a
protective mechanism by which plants can avoid
photoinhibition, mainly in C3 plants (Hall & Rao,
1994), produce intercellular CO2 (maintaining Rubisco
activity), and consume strong oxidants like H2O2 by
action of catalases (Lüttge et al., 1996). In addition,
CO2-saturated net photosynthesis of seedlings treated
with 140 mmol L-1 of nitrate significantly decreased
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Figure 3. Apparent quantum yield for the leaves of cucumber
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with the increase of treatment time (Figure 2). At day
12, CO2-saturated net photosynthesis was 54% lower
in T seedlings than CK seedlings.

All of these results of lower leaf gas exchange rates,
coupled with the affected photosynthetic metabolism
in nitrate-stressed cucumber seedlings, lead us to
think that one of nitrate stress’ mechanisms of action
is occurring. Large amounts of nitrate accumulated in
the soil result in low water potential, which blocks the
water absorbance of roots and results in a lack of water
supply to the mesophyll, thus influencing the stomatal
opening and the photosynthetic biochemical
reactions.
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