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1. Introduction
The plant kingdom exhibits a varied assortment of 
patterned mineralised structures formed by cells, 
including deposits of calcium oxalate (CaOx), calcium 
carbonate, and silica (Arnott & Pautard, 1970). CaOx 
crystals are by far the most prevalent and widely 
distributed mineral deposits throughout the families 
of higher plants (Arnott & Pautard, 1970; Kuo-Huang 
et al., 2002; Nakata, 2003; Franceschi & Nakata, 2005; 
Kuo-Huang et al., 2007; Mukherjee & Nordenstam, 
2010). Crystals have been observed in virtually all the 
tissues of plants. Certain algae (Pueschel, 2001), lichens 
(Erdman et al., 1977), and fungi (Arnott, 1995) are also 
capable of producing significant quantities of the different 
forms of oxalate, particularly CaOx. In fact, the ability of 
plants to produce these various forms of oxalate may be 
helpful to them in certain phase(s) of their life cycles. In 
contrast, CaOx crystal formation in animals is generally 
considered to be pathological and extracellular. A good 
example of this situation is represented by urinary calculi 
(stones), which are often partly or entirely composed of 
CaOx. Most crystals produced in plants can be classified 
into 1 of 5 categories based on their morphology: crystal 
sand, raphide, druse, styloid, and prismatic (Franceschi 

& Horner, 1980; Katayama et al., 2007; He et al., 2012). 
In whatever tissue the crystals are found, they most 
often accumulate within the vacuoles of specialised cells 
called crystal idioblasts (Franceschi & Nakata, 2005). The 
number and location of crystal idioblasts within the plant 
body also vary among taxa. Extracellular crystals have also 
been reported in some cases (Kuo-Huang et al., 2002). In 
some cases one crystal is formed per vacuole, whereas in 
other cases many crystals are formed within a vacuole. In 
the latter case, each crystal still forms within a membrane-
delineated space, usually termed the crystal chamber, 
forming de novo in the vacuole (Arnott & Pautard, 1970). 
The idioblasts display ultrastructural modifications related 
to crystal precipitation. Crystal idioblasts are commonly 
reported to exhibit characteristic features including an 
enlarged nucleus, specialised plastids, greater amounts 
of endoplasmic reticulum and Golgi complexes, elevated 
levels of rRNA, and unique vacuolar components (Arnott 
& Pautard, 1970; Franceschi & Horner, 1980; Kostman 
& Franceschi, 2000; Franceschi & Nakata, 2005). The 
abundant Golgi complexes in these idioblasts have also 
been found to be involved in transporting a calcium-
binding crystal idioblast specific protein, matrix protein, 
to the vacuole (Kostman & Franceschi, 2000). Ascorbic 
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acid is suggested to be the immediate precursor of oxalic 
acid used for crystal formation (Horner et al., 2000; Keates 
et al., 2000; Franceschi & Nakata, 2005). Crystal idioblasts 
contain the pathway for ascorbate synthesis (Kostman et 
al., 2001; Nakata, 2003), thus making them autonomous for 
oxalic acid production. The morphology and distribution 
of crystals are constant within a species. This indicates that 
their presence, morphology, and distribution in a species 
are under genetic control (Nakata & McConn, 2000; 
Ilarslan et al., 2001; Franceschi & Nakata, 2005).

Although their functional significance in plant 
development remains unclear, various functions have 
been attributed to them, including calcium regulation 
in plant cells (Franceschi, 1989; Kostman & Franceschi, 
2000; Volk et al., 2002), protection against herbivory 
(Molano-Flores, 2001), detoxification of heavy metals or 
oxalic acid (Franceschi & Nakata, 2005), tissue strength, 
light gathering, and reflection (Franceschi & Horner, 1980; 
Kuo-Huang et al., 2007).

However, the most commonly proposed function of 
these crystals is that their formation appears to be part of a 
mechanism for removal of excess biologically active calcium 
when other mechanisms have become saturated (Borchert, 
1985, 1986; Franceschi, 1989; Pennisi & McConnell, 2001; 
Volk et al., 2002). For example, crystals in the legume 
Phaseolus vulgaris (Jáuregui-Zùñiga et al., 2005) play 
an important role in regulating levels of bulk calcium. 
Through this mechanism, large amounts of excess calcium 
can be precipitated as a highly insoluble salt of oxalate that 
is no longer osmotically or physiologically active (Zindler- 
Frank et al., 2001). In this way, the low levels of calcium 
required within the cell cytosol can be maintained. The 
precipitation of CaOx is a reversible process, releasing 
calcium during periods when calcium is limiting to growth 
of the plant (Webb, 1999; Volk et al., 2002). The CaOx 
crystals of plant crystal idioblasts represent a relatively 
simple model system for biomineralisation. Therefore, 
it is anticipated that an understanding crystal formation 
in plants will provide important new insights into the 
general area of biomineralisation and will be useful not 
only to biologists interested in how nature manufactures 
mineralised materials, but also to materials scientists 
and engineers who are interested in either harnessing or 
mimicking natural processes to create novel and useful 
ceramic structural materials (Jáuregui-Zúñiga et al., 2003). 

Calcium oxalate crystals could play an important role in 
heavy metal detoxification (Jáuregui-Zùñiga et al., 2005). 
Several studies have shown that plants utilise organic 
acids (e.g., citrate, malate, and/or oxalate) as mechanisms 
enabling them to tolerate various heavy metals (Franceschi 
& Shueren, 1986; Ryan et al., 2001; Mazen, 2004). Some 
plants utilise oxalate to detoxify hazardous metals, such 
as lead (Yang et al., 2000), aluminium (Ma et al., 2001), 

strontium (Franceschi & Schueren, 1986; Zindler-Frank, 
1991), and cadmium (Choi et al., 2001), when present in 
the environment. 

The present study was conducted as a contribution 
to other research efforts made toward understanding the 
biological significance of this important mineralisation 
process in plants. Investigation of some features of this 
process in 2 new model plant species [Corchorus olituros L. 
(Tiliaceae) and Malva parviflora L. (Malvaceae)]

was the aim of this study. These 2 plant species are 
grown in Egypt near roads with heavy traffic. Thus, 
heavy metals are accumulated in these plants. Moreover, 
these plants represent preferred foods for Egyptians. The 
features examined in this study were as follows:

1-	 Occurrence, distribution, and ultrastructural 
description of crystals formed and the leaf tissue cells in 
which these crystals were borne.

2-	 The dynamic relationships between calcium in 
the nutrient growth medium and the formation of CaOx 
crystals.

3-	 Evaluation of the suggestion that CaOx crystals 
may play a role in the detoxification of toxic heavy metals 
by working as sinks for these metals.

2. Materials and methods
2.1. Pretreatment plant growth
Seeds purchased from a local market were allowed to 
germinate seedlings to grow in soil mixture of sand/
clay (2:1) for 8 weeks in a greenhouse at 37/27 °C for C. 
olitorius and 23/13 °C for M. parviflora. During this period 
the plants were watered every other day to maintain soil at 
the field capacity. Every week during the growth period, 
the seedlings were irrigated with 1/4 strength Hoagland 
solution (Arnon & Hoagland, 1940). The soil-growing 
plants were used as a stock source for transplants to be 
recultured for all experiments conducted in this study. 
Whenever needed for an experiment, some healthy plants 
from this stock were very carefully liberated from the soil in 
which they were growing, and the root systems kept almost 
intact were washed thoroughly with tap water before their 
transplantation to a liquid culture, where they were grown 
under various treatments with different factors.
2.2. Treatment with various Ca concentrations
Plants that were grown hydroponically on 1/10 strength 
Hoagland nutrient solution (Arnon and Hoagland, 
1940) for 5 days prior to treatment with various calcium 
concentrations were transferred to fresh new liquid 
cultures. In these new cultures, plants were grown 
on Hoagland nutrient solution in which calcium 
concentration was varied depending on the plant species. 
The Table summarises the different calcium concentrations 
with which each plant species was treated. Calcium 
nitrate (Ca(NO3)2) was used as the source of calcium in 
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the nutrient solution. The nitrate contents of the low and 
deficient calcium solutions were adjusted using NaNO3 
(Wu et al., 2006). Cultures were aerated continuously 
with fish-aquarium air bubblers. Plants in these cultures 
were left to grow at 25 ± 2 °C in a growth chamber at 
irradiance of ~40 µmol/(m2 s) for 16 h each day provided 
by fluorescent tubes and incandescent lamps. Nutrient 
solutions including the mentioned calcium concentrations 
were replaced with fresh ones every other day. Plants were 
grown for 20 days (Franceschi & Schueren, 1986). During 
this period new leaves appeared. They were sampled for 
preparation of leaf clearings used in the determination of 
crystal counts and sizes, and preparation of leaf specimens 
needed for microscopic examination. 

The relationship between crystal formation and calcium 
level was tested in 2 sets of experiments. In the first set of 
experiments, the crystal formation criteria were studied in 
the experimental plants that were exposed to increasing 
calcium level in their growth media after they had been 
previously starved of calcium to ensure minimum crystal 
formation. In the other set of experiments, these criteria 
were studied in the experimental plants that were exposed 
to progressively decreasing calcium level in their growth 
media after their previous growth for a long growth period 
in media with saturated calcium level ensuring maximum 
crystal formation.
2.3. Treatment with heavy metals
Plants that were grown hydroponically on 1/10 strength 
Hoagland nutrient solution (Arnon & Hoagland, 1940) for 
5 days prior to treatment with heavy metals were transferred 
to fresh liquid cultures. In these new cultures, plants were 
grown on Hoagland nutrient solution including 6.0 mM 

calcium nitrate in the case of Corchorus olitorius and 
20.0 mM for Malva parviflora. In these media, different 
concentrations of cadmium (as cadmium nitrate), lead 
(as lead acetate), copper (as copper sulphate), and zinc (as 
zinc sulphate) at 0.0, 1.0, 5, 10, 15, 20, 25, 50, and 100 µM 
were added. Cultures were aerated continuously with fish-
aquarium air bubblers. Plants in these cultures were left 
to grow at 25 ± 2 °C in a growth chamber at irradiance of 
~40 µmol/(m2 s) for 16 h each day provided by fluorescent 
tubes and incandescent lamps. 
Nutrient solutions including the mentioned heavy metals 
at the mentioned concentrations were replaced with fresh 
ones every other day. Plants were grown for 20 days. During 
this time period new leaves appeared. They were sampled 
for preparation of leaf clearings used in the determination 
of crystal counts and sizes, and for preparation of leaf 
specimens needed for microscopic examination and for 
heavy metal content in leaf tissues. 
2.4. Microscopic examinations and tissue analysis
2.4.1. Preparation of leaf clearings for light-microscopic 
observation of crystals

Leaves from treated plants were soaked in 70% acetone 
for 12 h at 60 °C until all chlorophyll was extracted. They 
were then dehydrated with acetone, infiltrated with xylene, 
infiltrated with cover bond (American Scientific Products, 
McGraw Park, IL, USA), a xylene miscible resin, and 
permanent slides of whole leaves made. 
2.5. Determination of crystal size and counts per unit 
area
Crystals were counted using an ocular micrometer in an 
area of 0.3 mm2 of unstained cleared leaves. Similarly, 
crystal sizes were determined. A Nikon Optiphot-Pol 
microscope fitted with polarising filters permitting the 
crystals to be easily viewed was used in these examinations. 
Crystal size was determined by measuring length and 
width in the case of C. olitorius and by measuring crystal 
diameter in the case of M. parviflora.
2.6. Light microscopy
Pieces of leaves formed during exposure of plants 
to treatments with heavy metals were fixed in 3% 
glutaraldehyde and 2.5% paraformaldehyde in 50 mM 
PIPES buffer (pH 7.2) for 12 h at 4 °C. The specimens 
were dehydrated with ethanol series. They were then 
infiltrated with Spurr epoxy resin (Spurr, 1969). After that, 
1.5- to 2-g sections were cut with a glass knife using an 
ultramicrotome, stained with Methylene Blue stain, and 
examined and photographed with a Nikon Optiphot-Pol 
microscope using polarising filters.
2.7. Transmission electron microscopy 
Pieces of leaves formed during the experiment were fixed in 
3% glutaraldehyde and 2.5% paraformaldehyde in 50 mM 
PIPES buffer (pH 7.2) for 12 h at 4 °C.  The fixed material 

Table.  Calcium concentrations with which the 2 experimental 
plant species were treated. 
  

Calcium levels Corchorus olitorius Malva parviflora 

0.0 mM + +

0.5 mM + -

1.0 mM + +

4.0 mM + -

5.0 mM - +

6.0 mM + -

7.0 mM + -

10.0 mM - +

15.0 mM - +

20.0 mM - +

25.0 mM - +
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was prepared for transmission electron microscopy by 
postfixation in 1% OsO4 in 25 mM cacodylate buffer for 2 h 
at room temperature, dehydration through ethanol series, 
and embedding in Spurr epoxy resin. For ultrastructural 
studies, the sections were cut with a glass knife, poststained 
with uranyl acetate and lead citrate, and examined (Spurr, 
1969). 
2.8. Determination of heavy metals in plant tissue	
Leaves formed during exposure of plants to treatments 
by heavy metals were thoroughly washed with distilled 
deionised water and oven-dried at 80 °C for 72 h. The dry 
material was then finely ground and the sample for heavy 
metal determination was treated according to Heckman 
et al. (1987). The powder (1 g) was dry-ashed at 500 °C 
for 12 h, dissolved in 4 mL of concentrated HNO3, and 
evaporated to dryness. The residue was then redissolved 
in 10 mL of 3 M HCl, refluxed for 2 h, filtered, and diluted 
to 25 mL with 0.1 M HCl. The determination of heavy 
metals was carried out with a PerkinElmer 2380 atomic 
absorption meter (PerkinElmer, United States). 
2.9. Statistical analysis 
The present study compared the data of treated and 
untreated (control) plants, using the least significant 
difference at 0.05, 0.01, and 0.001 levels. The data were 
analysed using one-way ANOVA, with the Origin program. 

3. Results
3.1. Crystal presence, distribution, description, and 
ultrastructural features of crystal-bearing cells (crystal 
idioblasts)
Results using light, scanning, and transmission electron 
microscopic examination of CaOx crystal formation in the 
2 plants used as experimental models revealed the presence 
of intracellular crystalline deposits. These deposits were of 
prismatic type in the case of C. olitorius (Figure 1) and of 
druse type in the case of M. parviflora (Figure 2).

Regarding the distribution of crystal idioblasts in leaf 
tissues, they were found located essentially around veins 
in C. olitorius and M. parviflora. They were seen in most 
mesophyll cells and in some bundle cells themselves but 
not in the surrounding bundle sheath cells. In the 2 studied 
plants, the crystal idioblast cells were not different in size 
or shape from other noncrystal cells (Figures 3, 4). In the 
2 plants studied, crystals were formed intracellularly in the 
vacuoles enveloped by a membrane. Only a single large 
crystal was seen per crystal idioblastic cell (Figures 5, 6).

Ultrastructurally, some differences were observed 
between crystal idioblasts and noncrystal cells. Obvious 
differences noticed characteristic to crystal idioblasts were 
enlarged nucleus, modified plastids with few grana, and 
absence of starch. The cytoplasm of crystal-containing 
cell looks dense and rich in organelles, membranes, and 
vesicles (Figures 5, 6). 

Figure 1. Scanning electron micrographs of calcium oxalate 
crystals in leaf cells of Corchorus olitorius. (a, b, and c) Crystals 
(pointed to by arrows) are of the prismatic type and are borne 
intracellularly.   

Figure 2. Scanning electron micrographs of CaOx crystals in 
leaf cells of Malva parviflora. (a, b, and c) Crystals (pointed to by 
arrows) are of the druse type and are borne intracellularly.
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Figure 3. (a and b) Polariser and light micrographs showing 
CaOx crystals formed in leaf of Corchorus olitorius. (a) Enlarged 
portion of leaf clearing viewed by polarised light. Crystals (bright 
spots) are seen concentrated around a vein. Enlarged view of 
crystals (pointed to by arrows). Crystals are of the prismatic 
type. (b) Transmitted section by using light microscope shows 
distribution of crystals in the bundle sheath around the vein.

Figure 4. (a and b) Polariser and light micrographs showing 
CaOx crystals formed in leaf of Malva  parviflora. (a) Enlarged 
portion of leaf clearing viewed by polarised light. Crystals (bright 
spots) are seen concentrated around a vein. Enlarged view of 
crystals (pointed to by arrows). Crystals are of the druse type. (b) 
Transmitted section by using light microscope shows distribution 
of crystals in the bundle sheath around the vein.

Figure 5. (a and b) Transmission electron micrograph of 
Corchorus olitorius leaf section showing the fine structure of the 
crystal bearing-cell. The white rectangle in the centre of the cell 
is the hole (crystal chamber) left after crystal drop during tissue 
preparation. Abbreviations: S = starch, P = plastid, C = crystal, 
CC = crystal chamber.

Figure 6. (a and b) Transmission electron micrograph of Malva 
parviflora leaf section showing the fine structure of the crystal 
bearing-cell. The white rectangle in the centre of the cell is the hole 
(crystal chamber) left after crystal drop during tissue preparation. 
Abbreviations: S = starch, P = plastid, C = crystal, CC = crystal 
chamber.
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3.2. Dependence of crystal formation on calcium level
Two criteria were employed to assess the crystal formation 
process: crystal abundance (number of crystals per unit area 
of leaf tissue) and crystal size (length and width in the case of 
C. olitorius or crystal diameter in the case of M. parviflora). 
Generally, in all plants studied, crystal formation expressed 
by these criteria was found to highly significantly (P < 0.001) 
increase with the increase in calcium level in growth media 
and decrease with its decrease. With regard to calcium’s 
effect on crystal size, the effects were highly significant (P 
< 0.001) in the case of C. olitorius but with nearly no effect 
on the crystal size in the case of M. parviflora. The inductive 

effect of calcium on crystal formation was found to take 
place up to a certain calcium saturation level, after which no 
further effect or a negative effect took place. The saturated 
calcium effect was dependent on the plant species tested. For 
example, the saturated calcium levels were 6 mM in the case 
of C. olitorius and 20 mM in the case of M. parviflora. Any 
further increase in calcium concentrations in the growth 
medium beyond the mentioned saturation level led to a 
reduction in crystal formation in the case of C. olitorius. 
On the other hand, in the case of M. parviflora, the crystal 
formation process stayed unaffected by any further increase 
in calcium level (Figures 7–10). 

Figure 7. Effect of calcium concentration (0.0 (control), 0.5, 1.0, 4.0, 6.0, and 7.0 mM) in the growth media on the number of crystal 
idioblasts (a), crystal length (b), and crystal width (c) in leaf tissues of C. olitorius. In this experiment, plants were grown on the same 
mentioned calcium concentrations during the whole period of the experiment. Data are the means ± SD of 10 repetitions. Asterisks 
indicate significant differences between the treatments and the control: *significant at P < 0.05; **significant at P < 0.01; ***significant 
at P < 0.001.

Figure 8. Effect of calcium concentration (0.0 (control), 1.0, 5.0, 10.0, 15.0, 20.0, and 25.0 mM) in the growth media on the number 
of crystal idioblasts (a) and crystal diameter (b) in leaf tissues of M. parviflora. In this experiment, plants were grown on the same 
mentioned calcium concentrations during the whole period of the experiment. Data are the means ± SD of 10 repetitions. Asterisks 
indicate significant differences between the treatments and the control: *significant at P < 0.05; **significant at P < 0.01; ***significant 
at P < 0.001.
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3.3. Heavy metal accumulation in plant leaf tissues
Results in this regard revealed that, overall, accumulation 
of Cd, Pb, Cu, and Zn in leaf tissues of the 2 plant species 
tested in this study significantly exceeded the levels of these 
metals present in untreated plants. The content of each of 
these metals in leaf tissues progressively increased with 
the gradual elevation in concentrations of these metals in 
growth medium. This increase was highly significant (P < 
0.001) in the case of Cd and Pb in the 2 plants, while the 
increase in Cu and Zn was not significant in M. parviflora. 
Therefore, the levels of metal concentrations in the leaf 
tissues were dependent on plant species and type of metal 
(Figures 11, 12). 

3.4. Effects of heavy metals on crystal abundance and size
In these experiments, plants were treated with various 
metal concentrations while growth media contained 
the optimum Ca concentrations suitable for crystal 
formation for each plant species. Generally speaking, 
the presence of the 4 heavy metals tested in this study 
led to reductions in crystal formation in leaf tissues 
of the 2 plant species used. The effect was obvious on 
crystal number as well as on crystal size. The extent 
of this effect was dependent on plant species, type of 
metal, and concentration. For example, while the effect 
of each of these metals was obvious on both crystal 
number and size in the case of C. olitorius, it was only 
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Figure 12. Contents of (a) Cd, (b) Pb, (c) Cu, and (d) Zn in the leaf tissues of M. parviflora plants after 15 days of exposure to different 
concentrations (0 (control), 1, 5, 10, 15, 20, 25, and 50 µM) of each of these heavy metals in the growth media. Data are the means ± SD 
of 10 repetitions. Asterisks indicate significant differences between the treatments and the control: *significant at P < 0.05; **significant 
at P < 0.01; ***significant at P < 0.001.

evident on crystal number in M. parviflora, while there 
was no effect on crystal size in this plant. In the case of 
Cd and Pb, the reduction was highly significant (P < 
0.001) in crystal number with gradual increases in the 
concentrations of both metals in both plants. However, 

the reduction in crystal size was highly significant (P < 
0.001) in all concentrations of 2 metals in C. olitorius but 
it was highly significant only in higher concentrations 
in M. parviflora (Figures 13–16). In the case of Cu, the 
reduction in crystal number was highly significant in 
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Figure 13. Effect of cadmium concentration (0.0 (control), 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, and 100 µM) in the growth media on 
the number of crystal idioblasts (a), crystal length (b) and crystal width (c) in leaf tissues of C. olitorius. Data are the means ± SD of 10 
repetitions. Asterisks indicate significant differences between the treatments and the control: *significant at P < 0.05; **significant at P < 
0.01; ***significant at P < 0.001.

0

100

200

300

400

500

600

0 1 5 10 15 20 25 50 100

N
um

be
r o

f c
ry

sta
l i

di
ob

la
sts

un
it 

ar
ea

 
(0

.3 
m

m
2  )

(a)

***
***

***

*****

*** ***
0

5

10

15

20

25

0 1 5 10 15 20 25 50 100

Cr
ys

ta
l l

en
gt

h 
(µ

m
)

***
***

************

(b)

******

0
2
4
6
8

10
12
14
16
18

0 1 5 10 15 20 25 50 100
Cadmium concentration (µM) in growth medium

Cr
ys

ta
l w

id
th

 (µ
m

)
(c)

***
*********************

0

5

10

15

20

25

0 1 5 15 20 25 50 100

Cr
ys

ta
l l

en
gt

h 
(µ

m
) 

******
******

******

(b)

0

5

10

15

20

25

0 1 5 15 20 25 50 100

Cr
ys

ta
l l

en
gt

h 
(µ

m
) 

******
******

******

(c)

0

100

200
300

400

500

600

0 1 5 15 20 25 50 100

N
um

be
r o

f c
ry

sta
l i

di
ob

las
ts/

un
it 

ar
ea

 
0.3

 m
m

2   )
(

******

******
******

***

(a)

Lead concentration (µM) in growth medium
Figure 14. Effect of lead concentration (0.0 (control), 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, and 100 µM) in the growth media on the 
number of crystal idioblasts (a), crystal length (b), and crystal width (c) in leaf tissues of C. olitorius. Data are the means ± SD of 10 
repetitions. Asterisks indicate significant differences between the treatments and the control: *significant at P < 0.05; **significant at P < 
0.01; ***significant at P < 0.001.

both plants at all its concentrations except at the level 
of 20 mM concentration in M. parviflora as there was 
a significant (P < 0.01) increase in crystal number at 
this level. With regard to its effect on crystal size, the 
reduction in crystal size was highly significant in all its 
concentrations in C. olitorius but in M. parviflora there 
was no effect (Figures 17, 18). In the case of Zn, the 

reduction in crystal number with a gradual increase in 
its concentration was highly significant in both plants 
but more obvious in M. parviflora. With regard to its 
effect on crystal size, there was a highly significant 
reduction in crystal size in both plants. However, the 
reduction in crystal size was significant only at 15 and 
20 μM levels (P < 0.05) in M. parviflora (Figures 19, 20). 
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Figure 15. Effect of copper concentration (0.0 (control), 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, and 100 µM) in the growth media on the 
number of crystal idioblasts (a), crystal length (b), and crystal width (c) of leaf tissues of C. olitorius. Data are the means ± SD of 10 
repetitions. Asterisks indicate significant differences between the treatments and the control: *significant at P < 0.05; **significant at P < 
0.01; ***significant at P < 0.001.
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Figure 16. Effect of zinc concentration (0.0 (control), 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, and 100 µM) in the growth media on the 
number of crystal idioblasts (a), crystal length (b), and crystal width (c) in leaf tissues of C. olitorius. Data are the means ± SD of 10 
repetitions. Asterisks indicate significant differences between the treatments and the control: *significant at P < 0.05; **significant at P < 
0.01; ***significant at P < 0.001.

4. Discussion
Calcium oxalate (CaOx) crystals are found at all taxonomic 
levels in photosynthetic organisms, from small algae to 
higher plants (Franceschi & Nakata, 2005; Meric, 2009). 
The crystals are formed from endogenously synthesised 
oxalic acid and Ca taken from the environment, and 
they are produced and accumulated in species-specific 
morphologies.

Results using light, scanning, and transmission electron 
microscopic examination of CaOx crystal formation in 
the 2 plants revealed the presence of crystalline deposits. 
These deposits were of prismatic type in C. olitorius and of 
druse type in M. parviflora (Figures 1, 2). Regarding the 
distribution of crystal idioblasts in leaf tissues, they were 
located essentially around veins in C. olitorius (Figure 3) 
and M. parviflora (Figure 4). Thus, the constancy of crystal 
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Figure 17. Effect of cadmium concentration (0.0 (control), 1.0, 
5.0, 10.0, 15.0, 20.0, 25.0, and 50.0 µM) in the growth media 
on the number of crystal idioblasts (a) and crystal diameter (b) 
in leaf tissues of M. parviflora. Data are the means ± SD of 10 
repetitions. Asterisks indicate significant differences between the 
treatments and the control: *significant at P < 0.05; **significant 
at P < 0.01; ***significant at P < 0.001.

Figure 18. Effect of lead concentration (0.0 (control), 1.0, 5.0, 
10.0, 15.0, 20.0, 25.0, and 50.0 µM) in the growth media on the 
number of crystal idioblasts (a) and crystal diameter (b) in leaf 
tissues of M. parviflora. Data are the means ± SD of 10 repetitions. 
Asterisks indicate significant differences between the treatments 
and the control: *significant at P < 0.05; **significant at P < 0.01; 
***significant at P < 0.001.
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Figure 19. Effect of copper concentration (0.0 (control), 1.0, 5.0, 
10.0, 15.0, 20.0, 25.0 and 50.0 µM) in the growth media on the 
number of crystal idioblasts (a) and crystal diameter (b) in leaf 
tissues of M. parviflora. Data are the means ± SD of 10 repetitions. 
Asterisks indicate significant differences between the treatments 
and the control: *significant at P < 0.05; **significant at P < 0.01; 
***significant at P < 0.001.

Figure 20. Effect of zinc concentration (0.0 (control), 1.0, 5.0, 
10.0, 15.0, 20.0, 25.0, and 50.0 µM) in the growth media on the 
number of crystal idioblasts (a) and crystal diameter (b) in leaf 
tissues of M. parviflora. Data are the means ± SD of 10 repetitions. 
Asterisks indicate significant differences between the treatments 
and the control: *significant at P < 0.05; **significant at P < 0.01; 
***significant at P < 0.001.

type and distribution may be considered a taxonomic 
character for classification of species (Franceschi & 
Nakata, 2005; He et al., 2012). The crystal pattern is also 

often stable within a genus (Lersten & Horner, 2000). 
Ultrastructurally, some differences were observed between 
crystal idioblast and noncrystal cells (Figures 5, 6). An 
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enlargement of the nucleus and nucleolus is one of the 
first changes observed in developing crystal idioblasts 
(Horner & Whitmoyer, 1972; Rakován et al., 1973). The 
cytoplasm of a young idioblast is often very dense and rich 
in organelles and vesicles (Rakován et al., 1973). Plastids 
are often smaller than those in surrounding cells and have 
few grana (Horner & Whitmoyer, 1972). Invaginations of 
the plasmalemma, which produce structures analogous 
to the plasmalemmasomes, were described (Horner & 
Whitmoyer, 1972). The overall appearance of the young 
crystal idioblasts suggests a highly active cell. At maturity, 
most crystal idioblasts are probably still living cells. A thin 
layer of cytoplasm can usually still be seen around the 
periphery of the cell.

In the present study, there was a positive and dynamic 
relationship between crystal formation by the 2 studied 
plant species and calcium concentration in their growth 
media (Figures 7–10). This is in agreement with previous 
findings in other plants (Borchert, 1985, 1986; Jáuregui-
Zùñiga et al., 2005).  

Studies in support of this hypothesis have shown, 
using a variety of plants, that the size and number of CaOx 
crystals are responsive to changes in the concentration of 
calcium in the plant environment (Webb, 1999). Several 
reports (Ilarslan et al., 2001; Pennisi & McConnell, 2001; 
Zindler-Frank et al., 2001; Monje & Baran, 2002; Morrow 
& Dute, 2002; Volk et al., 2002) support a role for CaOx 
formation in calcium regulation. Two of these reports 
examined whether crystals of different morphologies 
had varying sensitivities to fluctuations in calcium 
concentrations (Volk et al., 2002). Using the raphide 
and druse accumulating aquatic plant Pistia stratiotes, 
Volk et al. (2002) proposed that druse and raphide 
crystal formation serve different but related functions. 
The authors presented evidence indicating that raphide 
(needle-shaped) crystal formation may serve a dual 
function of calcium regulation and plant defence, while 
druse (globular) crystal formation is strictly involved 
in calcium regulation (Volk et al., 2002). Druse crystal 
formation was found to be dynamic and responsive to 
fluctuations in calcium levels. When calcium levels were 

high, druse crystal size and number rapidly increased. 
When calcium was limited, druse crystal size and 
number decreased, presumably freeing up the calcium 
for utilisation by the plant. The disappearance of crystals 
in tissues under conditions of calcium deficiency and 
active growth has been reported in a number of plants 
(Arnott & Pautard, 1970; Webb, 1999; Mazen et al., 2003). 

In our study, there was progressive accumulation of the 
heavy metals used in the leaf tissues of the plants studied 
(Figures 11, 12). This is in agreement with Bishehkolaei et 
al. (2011), who observed the accumulation of chromium 
in the cortical root cells of Ocimum basilicum. Moreover, 
addition of heavy metals to the nutrient medium decreased 
the number of crystals in the plants studied (Figures 13–
20). This is not surprising because the toxicity of each of 
these metals interferes with the biological mechanisms 
mediating crystal formation. It is well known that heavy 
metals toxicate protein synthesis and function. This is in 
agreement with the study by Jáuregui-Zùñiga et al. (2005), 
who reported that addition of heavy metals to the nutrient 
medium decreased the number of crystals in the leaves of 
Phaseolus vulgaris. 

5. Conclusion 	
The data in this work indicated that ultrastructural analyses 
have demonstrated that this biomineralisation process is 
not a simple random physical–chemical precipitation of 
endogenously synthesised oxalic acid and environmentally 
derived Ca. Instead, crystals are formed in specific 
shapes and sizes. Furthermore, it was found that there 
was a positive and dynamic relationship between crystal 
formation by the 2 plant species studied and calcium 
concentration in their growth media, thus suggesting its 
biological role in calcium regulation. Moreover, addition 
of heavy metals to the nutrient medium decreased the 
number of crystals. Energy dispersive X-ray spectrometry 
did not detect the inclusion of heavy metals inside the CaOx 
crystals. Therefore, our study suggests that CaOx crystals 
do not play a major role in heavy metal detoxification in C. 
olitorius and M. parviflora but do play an important role in 
bulk calcium regulation.
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