
167

http://journals.tubitak.gov.tr/botany/

Turkish Journal of Botany Turk J Bot
(2013) 37: 167-176
© TÜBİTAK
doi:10.3906/bot-1108-23

Spindle irregularities, chromatin transfer, and chromatin stickiness
during male meiosis in Anemone tetrasepala (Ranunculaceae)

Pawan Kumar RANA, Puneet KUMAR and Vijay Kumar SINGHAL*
Department of Botany, Punjabi University, Patiala, 147002, Punjab, India

*	Correspondence: vksinghal53@gmail.com

1. Introduction
All living organisms, irrespective of their complex 
organisation, meiotically reduce their chromosome 
number to generate haploid gametes at the start of 
sexual reproduction, which compensate for fertilisation 
and maintain the diploid chromosome number over 
the generations (Golubovskaya, 1979; Pagliarini, 2000). 
Correct chromosome segregation is required for regular 
cell division and to generate balanced gametes. Meiosis, 
which is a crucial process for sexual reproduction in 
plants, is occasionally affected to a considerable extent 
due to certain mutations (Baker et al., 1976; Kaul & 
Murthy, 1985; Jiang et al., 2009). Sometimes disturbances 
during the meiotic course cause abnormalities in the 
process, which can lead to sterility of gametes as well as 
variation in their genetic constitution. Different types 
of cytological abnormalities during meiosis are known 
to be responsible for producing ‘2n’ and variable-sized 
gametes with different genetic constitution have already 
been reported in several plants growing in the cold desert 
regions of Lahaul-Spiti (Kumar & Singhal, 2008, 2011a, 
2011b, 2012a, 2012b; Kumar et al., 2008a, 2008b, 2010, 
2011, 2012; Singhal & Kumar, 2008a, 2011b; Gupta et al., 
2009), the Pangi Valley (Gupta et al., 2010; Singhal et al., 

2011a, 2011b), and Kinnaur District (Singhal et al., 2008, 
2011a, 2011b; Singhal & Kaur, 2009; Kaur et al., 2010). 
During extensive cytological surveys carried out on the 
plants of the Pangi Valley, we encountered the occurrence 
of abnormalities during male meiosis, pollen sterility, and 
jumbo-sized pollen grains in Anemone tetrasepala Royle.

A.  tetrasepala Royle (family: Ranunculaceae), also 
treated under the genus Anemonastrum (A. tetrasepalum 
(Royle) Holub), is a robust perennial herb with erect hairy 
stems and flowers with 4–5 obovate-oblong sepals that 
look like petals. Basal leaves deeply 5-lobed and heart- or 
kidney-shaped are produced on long stalks. During May–
June it bears 6–15 large sized white flowers in umbels. 
The species is very widely distributed and endemic to the 
Himalayan region, including the Kashmir Himalayas. 
Outside of India, the species is distributed in South and 
West Xizang (China), Afghanistan, and Pakistan between 
altitudes of 2500 m and 3400 m. Thakur et al. (2009) 
suggested that this species can be effectively used in 
landscapes owing to its beautiful white showy flowers and 
propagation through bulbs. 

Except for a few attempts to study this endemic species 
for chromosome counts from the Himalayan region (Jee 
& Kachroo, 1985; Jee et al., 1989), no major investigation 
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has been undertaken. Recently, St. Clair and Howe (2011) 
emphasised that endemic species should be given high 
priority for genetic conservation, which is not possible 
without proper biological knowledge. Thus it is essential 
to carry out detailed studies of different aspects in such 
endemic species. In the present case, A.  tetrasepala, 
an endemic species in the Himalayas, was studied 
cytologically. The objectives of the present research were 
to study the detailed meiotic course, microsporogenesis, 
and effects of meiotic abnormalities encountered during 
different stages of meiosis-I and -II on pollen grain size 
and fertility in the accession collected from the Pangi 
Valley of Chamba District in Himachal Pradesh, India.

2. Materials and methods
Materials for male meiotic studies were collected from the 
wild accession during June and July 2010 from the cold 
desert region of the Pangi Valley (Sahali Dhar, 3300 m) 
in Chamba District, Himachal Pradesh, India (latitude 
32°98′N; longitude 76°52′E). Voucher specimens of the 
cytologically studied individuals were deposited in the 
Herbarium, Department of Botany, Punjabi University, 
Patiala (PUN). The floral buds of suitable sizes were fixed 
in Carnoy’s fixative (6 ethanol:3 chloroform:1 glacial 
acetic acid v/v/v) for 24 h and preserved in 70% ethanol 
in a refrigerator. Anthers from the developing buds were 
squashed in 1% acetocarmine and preparations were 
studied for detailed meiotic behaviour in pollen mother 
cells (PMCs) at different stages. In the accession, a total 
of 2400 PMCs were examined for cytological analysis and 
chromosome counts.  Pollen studies were conducted by 
smearing the mature anthers from different flowers in a 
glycerol–acetocarmine mixture (1:1) and aniline blue 
(1%) dye. Five to six hundred pollen grains were analysed 
for pollen fertility and pollen size. Well-filled pollen 
grains with cytoplasm uniformly stained were considered 
fertile, while shrivelled pollen grains with no or lightly 
stained cytoplasm were counted as sterile. Pollen grain 
size was measured using an ocular micrometer. Wherever 
necessary the best slides of chromosome counts, meiotic 
abnormalities, abnormal sporads, and pollen grains were 
photographed with a Nikon Eclipse 80i microscope.

3. Results
The accession studied showed the meiotic chromosome 
number 2n = 14, as confirmed by the presence of 7 very 
large sized bivalents at diakinesis (Figure 1a), metaphase-I 
(M-I) (Figure 1b), and 7:7 chromosome distribution at 
anaphase-I (A-I) (Figure 1c). In spite of the normal bivalent 
formation and regular segregation during A-I, PMCs in 
the accession depicted abnormalities at different meiotic 
stages, which included irregular spindle activity, the 
phenomenon of cytomixis involving neighbouring PMCs 

and among the microspores within a sporad, chromosome 
stickiness, and nonsynchronous condensation of 
chromatin material. Moreover, the accession also showed 
the formation of syncyte PMCs. 
3.1. Irregular spindle activity
The majority of the PMCs depicted normal spindle 
formation, which resulted in regular arrangement of 
bivalents at the spindle plate during M-I and segregation 
of chromosomes during A-I/telophase-I (T-I) and A-II/
T-II. However, 17.33% (16.34 ± 1.09, mean ± standard 
deviation) of the observed PMCs showed irregular spindle 
activity, which resulted in PMCs showing the presence of 
a few out of plate bivalents at M-I (18.34%, 20.34 ± 2.71, 
Figure 1d) and the presence of lagging chromosomes 
(16.38%, 9.67 ± 0.93) at A-I/T-I and A-II/T-II (Figure 
1e, 1f). Such PMCs also lack the ability of congregation 
of chromosomes at a single pole and remained scattered 
in the cytoplasm or in small groups (Figure 1g–1i). 
Unoriented chromosomes in these PMCs failed to reach 
the poles and constitute micronuclei during late telophase 
stages and sporad formation (Figure 1j–1l). Irregular 
spindles in these plants are also depicted in the meiocytes, 
which showed multipolar presence of chromosomes 
(8.02%, Figure 1k, 1l). 
3.2. Cytomixis and chromatin transfer
The phenomenon of cytomixis involving chromatin 
transfer among proximate meiocytes was observed in only 
a few anthers within the floral bud and in only a few flower 
buds. In some cases during the earlier prophase stages 
of meiosis-I proximate PMCs are fused directly to form 
syncyte PMCs (Figure 2a, 2b). Although the frequency 
of syncyte PMCs was very low (0.27%, 3.71 ± 0.17), such 
syncyte PMCs were detectable during meiosis due to 
their large size (76.57 μm × 62.89 μm) compared to the 
typical PMCs (60.16 μm × 44.49 μm). After fusion, the 
syncytes behaved like a single large-sized PMC (Figure 
2b). During the tetrad stage intra-microsporal chromatin 
transfer through one or more narrow and broad chromatin 
strands and fusion was observed in 6.86% (11.56 ± 1.24) 
of meiocytes (Figure 2c–2g). Occasionally, due to intra-
microsporal chromatin transfer, the nuclei became fused 
with each other (Figure 2g) and formed a large-sized 
unit with double the chromatin material (Figure 2h). 
Consequently, microspores in the sporads with doubled 
chromatin material and syncyte PMCs yielded large-sized 
microspores, which developed into jumbo-sized pollen 
grains (Figure 2i).
3.3. Chromosome stickiness 
During all the stages of prophase including diakinesis 
meiocytes did not reveal any chromatin stickiness. 
However, PMCs showed chromatin stickiness at M-I 
(35.29%, 29.76 ± 2.39), and the chromosomes appeared 
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Figure 1. Meiotic chromosome number (a-c): a- diakinesis (n = 7), b- metaphase-I (n = 7), c- anaphase-I with 7:7. PMCs showing 
abnormal meiotic course and microsporogenesis (d-l):  d- out of plate bivalents at metaphase-I (arrowed), e- lagging chromosomes 
at anaphase-I (arrowed), f- lagging chromosomes at anaphase-II (arrowed), g-  unoriented and scattered chromosomes at anaphase-I 
(arrowed), h- unoriented and scattered chromosomes at anaphase-II (arrowed), i-  scattered chromosomes (arrowed) in a PMC at 
anaphase-II, j- micronuclei at telophase-I (arrowed),  k- a multipolar PMC with micronuclei (arrowed) and chromatin bridge 
(arrowhead) at telophase-II, l- PMC with 5 poles and micronuclei (arrowed) at telophase-II. Scale bar = 10 μm.
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Figure 2. PMCs showing abnormal meiotic course, microsporogenesis, pollen sterility, and jumbo-sized pollen grains (a-k): a-  direct 
fusion (arrowed) of 2 PMCs at prophase-I stage, b- a large syncyte PMC (arrowhead) and 2 typical PMCs (arrowed), c- narrow intra-
microsporal chromatin material strand (arrowhead) and included micronuclei (arrowed), d- intra-microsporal chromatin material 
transfer by forming narrow strand (arrowed), e- transfer of chromatin material between 2 microspores through broad strand (arrowed), 
f- intra-microsporal chromatin material by 2 narrow strands (arrowed), g- fusion between microspores in a sporad (arrowed), h- a 
large microspore with almost double the chromatin material in a sporad (arrowed), i- apparently fertile stained jumbo-sized (arrowed) 
and typical pollen grains along with unstained sterile pollen grains (arrowhead), j- chromatin clump formed of entire chromosome 
complement, k- sticky chromatin in groups. Scale bar = 10 μm, except for photomicrograph b = 20 μm.
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as a dense chromatin clump almost losing their identity 
(Figures 2j, 2k, 3a–3c). The stickiness in chromatin 
material persisted even during anaphases and telophases, 
causing difficulties in segregation of chromosomes. Due 
to severe chromatin stickiness chromatin bridges of 
different thickness were observed in the PMCs during 
A-I and even telophase stages (5.46%, 4.32 ± 0.96) (Figure 
3a). Such chromatin bridges were also observed between 
the microspores at sporad stages. PMCs were observed 
during later stages of meiosis to undergo degeneration of 
chromatin material, resulting in pyknosis (Figure 3b, 3c). 

3.4. Nonsynchronous condensation of chromatin 
material 
In addition to the above-mentioned meiotic irregularities, 
a few PMCs in the studied plants showed unusual and 
nonsynchronous condensation of chromatin material in 
which some chromosomes showed complete condensation, 
while 1 or 2 chromosomes failed to be condensed. 
Figure 3d depicts a PMC at A-I showing 6:6 condensed 
chromosomes at opposite poles and 2 thread-like partially 
condensed chromosomes present towards the periphery 
of a PMC. The partially condensed chromosomes showed 
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Figure 3. PMCs showing abnormal meiotic course and microsporogenesis (a-g): a- a thick sticky chromatin bridge (arrowhead) 
and protrusion of chromatin material (arrowed), b-chromatin stickiness (arrowhead), and degeneration and pyknosis (arrowed), c- 
degeneration and pyknosis of chromatin material (arrowed), d- 2 chromosomes showing nonsynchronous condensation at anaphase-I 
(arrowed), e- a dyad, f- a triad, g- a polyad with micronuclei (arrowed). Scale bar = 10 μm. 
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lagging at telophases and were not included at the poles 
at later stages, constituting micronuclei at the tetrad stage.
3.5. Microsporogenesis 
As a consequence of anomalous chromosomal 
behaviour during the different stages of meiosis-I and II, 
microsporogenesis was also observed to be abnormal, 
as revealed by the presence of dyads (0.87%, Figure 3e), 
triads (2.74%, Figure  f), polyads with micronuclei (6.83%, 
Figure 3g), and inclusion of micronuclei in microspores 
of sporads (Figure 2c). Consequently some pollen sterility 
(14.62% (12.83 ± 1.45)) and variable-sized pollen grains 
including jumbo pollen grains were recorded (Figure 2i).
3.6. Pollen grain size and fertility	
On the basis of size, the pollen grains in the accession 
were categorised as small (16.87–22.86 μm × 16.62–22.71 
μm), typical (27.01–29.94 μm × 26.80–29.73 μm), and 
large (31.07–37.78 μm × 30.27–35.71 μm). The large 
pollen grains were relatively high in frequency (69.76%) 
compared to the typical (26.25%) and small ones (3.51%). 
Besides these, a few pollen grains (0.47%) were jumbo 
sized (44.34–48.72 μm × 39.01–45.98 μm) (Figure  2i). 
Pollen grain fertility determined through stainability tests 
was also affected considerably and 14.62% of the pollen 
grains were found to be sterile with unstained/or poorly 
stained and shrivelled cytoplasm.

4. Discussion
The chromosome count and detailed cytological analysis 
were conducted in this species for the first time from the 
Pangi Valley; it existed at diploid level with 2n = 14 (based 
on x = 7). The same diploid chromosome number of 2n = 
14 in the species was reported by Jee and Kachroo (1985) 
and Jee et al. (1989) from the Kashmir Himalayas in India 
and from outside of India by Baumberger (1971) and 
Ziman (2006). Furthermore, an intraspecific tetraploid 
cytotype with 2n = 32 (based on x = 8) has also been 
reported from outside of India by Kurita (1958), which 
indicates the existence of intraspecific polyploidy (2x, 4x) 
in the species. 

Aberrant meiotic course as a consequence of irregular 
spindle activity, chromatin transfer among neighbouring 
PMCs, and chromatin stickiness resulting in abnormal 
sporads and reduced pollen fertility has been reported 
in a number of flowering plants (Tilquin et al., 1984; 
Baum et al., 1992; Caetano-Pereira & Pagliarini, 2001; 
Mendes-Bonato et al., 2002; Risso-Pascotto et al., 2005; 
Kumar & Singhal, 2008, 2012a; Kumar et al., 2008a, 
2010, 2011, 2012; Singhal & Kumar, 2008a, 2008b, 2010; 
Singhal et al., 2008, 2009a, 2009b, 2011a, 2011b; Singhal 
& Kaur, 2009; Rai & Kumar, 2010; Gulfishan et al., 2010; 
Himshikha et al., 2010).

Proper chromosome segregation is ensured through 
extensive chromosome reorganisation and the formation 
of a single and transient spindle during mitosis and 
meiosis (Caetano-Pereira & Pagliarini, 2001). Spindles 
that are bipolar in nature differ in their structure in 
different organisms; however, their basic function is to 
attach at specific sites called kinetochore and separate the 
chromosomes/chromatids at anaphases (Wadsworth et al., 
2011). Before the chromosomes move to and line up at the 
equatorial plate it is necessary that spindle fibres attach 
to centromeres (Qu & Vorsa, 1999), which indicates that 
the function of spindle fibres is to arrange chromosomes 
on the equatorial plate and gather them in one group at 
M-I (Qu & Vorsa, 1999). Generally, irregular spindles are 
divided into 4 types: multipolar, monopolar, radial, and 
apolar (Shamina et al., 2003). According to the findings 
reported by Shamina et al. (2000a, 2003) multipolar 
spindles have 3 or more poles, and so chromosomes are 
randomly distributed at metaphase and then distributed 
into 3 or more directions at anaphase and, in the case of 
monopolar spindles, there exists only 1 spindle. In radial 
spindles ends are located at the cell periphery and near 
the equator (Shamina et al., 2000a), while apolar spindles 
have only a set of randomly oriented fibres (Shamina et 
al., 2000b; Seriukova et al., 2003). Formation of a bipolar 
spindle is essential for viable gamete production and their 
balanced genetic constitution. Irregular spindle activity 
may result in random unorientation of chromosomes in the 
PMCs and consequent sub-grouping of the chromosomes 
that function independently. A number of mutants (dv, 
ms28, ms43, and ms17) are reported to cause failure of 
spindle activity, which affects chromosome segregation 
(Golubovskaya & Distanova, 1986) or orientation of 2 
spindles relative to each other (Golubovskaya & Sitnikova, 
1980) or functional and structural disturbances of the 
spindle apparatus (Staiger & Cande, 1990). Recent research 
on Arabidopsis thaliana has shown that specific proteins 
(Multipolar Spindle 1) are involved in spindle organisation 
in meiocytes (Jiang et al., 2009). d’Erfurth et al. (2008) have 
isolated and characterised the AtPS1 (Arabidopsis thaliana 
Parallel Spindle 1) gene, which is involved in controlling 
the diploid (2n) gamete formation in Arabidopsis thaliana 
due to irregular spindle activity at male meiosis-II.  In the 
present study, in spite of the presence of normal spindle 
activity in the majority of the PMCs, in 17.33% of the 
cases irregular spindle formation was noted. Presence 
of multipolar meiocytes, micronuclei in sporads, and 
reduced pollen fertility are the general consequence of 
this irregularity. In the individual studied here, irregular 
spindle activity also resulted in dyads, triads, polyads, and 
micronuclei in sporads during microsporogenesis and 
variable-sized pollen grains and reduced fertility in pollen 
grains. 
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The phenomenon of cytomixis, which involved the 
direct fusion among proximate meiocytes, resulted in 
the formation of syncyte PMCs. The syncyte PMCs were 
distinguishable because of their giant size compared to the 
typical ones. Further, these syncytes progressed normally 
through the meiotic course and yielded jumbo-sized 
pollen grains that were surely of unreduced nature in 
their genetic constitution. Similar observations regarding 
the formation of syncyte PMCs following the fusion of 
2 or more PMCs (or nuclei) during the early prophase 
stages of the first meiotic division were made by Kim 
et al. (2009) and Singhal et al. (2011b). Interestingly, 
the chromatin transfer had also been observed to occur 
among microspores of the sporads. During this process 2 
or 3 units either fuse directly or the chromatin material is 
first transferred from 1 microspore unit to another unit 
of a sporad and then fusion occurs between these units 
to give rise to 1 giant unit, which ultimately gives rise to 
jumbo-sized pollen grains. Similar intra-microsporal 
chromatin transfer within a sporad has also been recorded 
in Clematis flammula (Kumar et al., 2008b), C. orientalis 
(Kumar et al., 2010), Ranunculus hirtellus (Kumar & 
Singhal, 2010b), and pepper (Pozzobon et al., 2011). The 
exact cytological status of such jumbo-sized pollen grains 
produced in the presently studied species could not be 
ascertained herein but their ‘2n’ status is clearly depicted 
from their size as increasing DNA content may in turn 
influence pollen diameter (Pundir et al., 1983; Dessauw, 
1988; Jansen & Den Nijs, 1990; Tenkouano et al., 1998; 
Oselebe et al., 2006; Ssebuliba et al., 2008). Since these 
‘2n’ pollen grains are well stained/fertile, their role in the 
origin of intraspecific polyploids in the species could not 
be ruled out. It is possible that such apparently fertile ‘2n’ 
pollen grains originating from syncytes might play a role 
in the origin of intraspecific polyploids in the species as 
has been advocated earlier in the evolution of intraspecific 
polyploids in Chrysanthemum (Kim et al., 2009), Lindelofia 
longiflora (Singhal et al., 2011b), and Ranunculus laetus 
(Kumar & Singhal, 2012a). In this paper we report for the 
first time the formation of syncytes and the occurrence of 
intra-microsporal chromatin transfer within a sporad and 
consequently jumbo-sized pollen grains in the species.

Chromosome stickiness was another abnormality 
observed during the meiotic course. Chromosome 
stickiness in the species involved either a few 
chromosomes of the complement or in some cases 
the entire complement. In severe cases of chromatin 
stickiness, the lack of chromosome separation provoked 
the formation of a single chromatin clump. Depending 
on the intensity of chromosome stickiness, pollen fertility 
may be partially or totally affected. Dewitte et al. (2010) 
in Begonia and Singhal and Kumar (2008a, 2010) in 
Meconopsis aculeata suggested that the chromosome 

stickiness has an important role in nuclear restitution 
as the chromatin stickiness prevents the separation of 
chromosomes during the anaphases and telophases. Such 
severe cases of chromatin stickiness resulted in restitution 
nuclei and yielded unreduced gametes. The phenomenon 
of chromatin stickiness has been reported in a number of 
plant species, and genetic and environmental factors and 
several other agents have been stated to cause chromosome 
stickiness. Sticky chromosomes may result due to changes 
in specific nonhistone proteins, as has been postulated 
by Gaulden (1987). In the present case, occurrence of 
chromosome stickiness seems to be associated with the 
phenomenon of cytomixis, as has been suggested in the 
case of Meconopsis aculeata (Singhal & Kumar, 2008a), 
Caltha palustris (Kumar & Singhal, 2008), and Clematis 
orientalis (Kumar et al., 2010). 

In the regular course of meiosis, the chromosomes are 
usually condensed equally and uniformly (Bauchan et al., 
1987), but in the present study 1 pair of chromosomes was 
found to be partially condensed at A-I, while the other 6 
pairs of chromosomes were normally condensed. In the 
successive meiotic stages these remained as laggards and 
finally constituted micronuclei during the tetrad stages 
and yielded small sterile pollen grains. Such differential 
condensation of chromatin material had also been 
reported in Lolium (Jain, 1957), Avena (Holden & Mota, 
1956), and Agropyron cristatum (Bauchan et al., 1987). Jain 
(1957) and Holden and Mota (1956) were of the opinion 
that nonsynchronous condensation of chromatin material 
is due to the lack of nucleolar activity, which might be 
associated with synthesis of chromosomes. 

It has been demonstrated in several studies that meiosis 
is the most sensitive stage in the life cycle of plants and is 
primarily influenced by various genetic and environmental 
factors (Ahmad et al., 1984; Saini, 1997; Viccini & Carvalho, 
2002; Sun et al., 2004; Bajpai & Singh, 2006; Rezaei et al., 
2010). In the present case, the origin of various meiotic 
abnormalities seems to be due to low temperature stress 
conditions in the area where temperature falls 5–10 °C 
in May–June when the species enters the flowering stage. 
Such low temperature conditions might have affected 
various events of male meiosis, especially at the pre-
meiotic stage, as suggested by Singhal et al. (2011b). 
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