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1. Introduction
The stresses imposed by temperature have important 
implications for agriculture. Plants differ in their resistance 
to chilling and freezing temperatures (Levitt, 1980). Low 
temperature is one of the most important stress factors 
limiting the growth and productivity of cereals (Janda et 
al., 2003). Freezing is lethal to most cellular organisms. 
Dehydration of the intracellular environment and physical 
damage by ice crystals are major causes of freezing injury 
and death (Levitt, 1980). Cold tolerance is due to the 
capacity to avoid intracellular ice formation, to withstand 
extracellular ice formation, and to decrease peroxidation 
of unsaturated fatty acids in phospholipids (Tasgin et al., 
2003; Xu et al., 2006). Freezing-tolerant plants exhibit 
injury only at temperatures lower than the temperature 
at which extracellular ice formation begins (Antikainen, 
1996). Plants produce several compounds to protect cells 
from fatal intracellular and intercellular ice formation. 
Several different types of overwintering plants accumulate 
sugars, amino acids, and antifreeze compounds, including 
antifreeze proteins in the apoplastic (extracellular) region 

(Atici & Nalbantoglu, 1999, 2003; Yu et al., 2001; Tasgin et 
al., 2003, 2006; Griffith & Yaish, 2004).

 Searches for signal molecules show that stress tolerance 
is an important step in bettering our understanding of 
how plants acclimate to an adverse environment. Some 
studies indicate that salicylic acid (SA) is synthesised 
endogenously and is a hormone-like signal molecule for 
the activation of plant defences (Hayat & Ahmad, 2007). 
The role of SA in plant growth and development, flowering, 
ion uptake, stomatal regulation, and photosynthesis has 
been investigated (Pancheva et al., 1996; Popova et al., 
1997; Uzunova & Popova, 2000). Several studies also 
supported a major role for SA in modulating the plant’s 
response to several abiotic and biotic stresses, such as 
ultraviolet light, drought, salt, temperature, heavy metals, 
and plant pathogenesis (Gaffney et al., 1993; Janda et al., 
1999; Senaratna et al., 2000; Ding et al., 2002; Kang et 
al., 2003; Tasgin et al., 2003, 2006; Ananieva et al., 2004; 
Guo et al., 2007, 2009; Mutlu et al., 2009; Kadioglu et al., 
2011; Saruhan et al., 2012; Mutlu & Atici, 2012). Recent 
studies have reported the effects of SA on cold damage. 
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These studies demonstrated that SA treatment increased 
the chilling tolerance of maize (Janda et al., 1999; Horvath 
et al., 2002), tomato (Ding et al., 2002), banana (Kang et 
al., 2003), winter wheat (Tasgin et al., 2003, 2006), red 
globe grape (Li et al., 2005), mustard (Setia et al., 2006), 
cucumber (Xia et al., 2007), radish (Biao, 2006), grass 
(Wang et al., 2009), and eggplant (Chen et al., 2011). 
However, the molecular events involved in SA signalling 
are not yet fully understood. Therefore, it is important to 
study how SA enhances the cold tolerance of plants. 

In the present study, the effect of exogenous SA on al-
leviating cold damage in 2 barley cultivars differing in cold 
tolerance was investigated by determining the freezing 
injury, ice nucleation activity of apoplastic proteins, and 
lipid peroxidation levels. After SA application, the effect 
time of SA was also determined on these parameters.

2. Materials and methods
2.1. Plant material
Barley seeds (Hordeum vulgare L.), Tokak (tolerant) and 
Akhisar (sensitive), were planted in sand in 15-cm pots. 
They were maintained in a 20/18 °C (day/night) growth 
chamber with a 12-h day length for 7 days to initiate 
germination. After 7 days, SA solution (0.1 and 1 mM) 
was sprayed onto the leaves of certain plants. All the plants 
(both with and without SA treatment) were transferred 
to cold (7/5 °C) on days 7, 14, 21, and 28 for 3 days. The 
leaves were harvested to determine freezing injury (0.1 g), 
ice nucleation activity (7 g), and lipid peroxidation (0.5 g) 
on days 10, 17, 24, and 31.
2.2. Determination of freezing injury
Freezing injuries in the leaves were determined by using a 
freezing bath and an electrical conductivity bridge (Atici 
& Nalbantoglu, 1999). Fresh leaves were cut into 2-cm 
lengths and rinsed in 6 changes of water to remove cellular 
proteins from the cut ends. At the end of each rinsing, the 
removed cellular proteins were measured at a wavelength 
of A280. Next, the leaves (0.1 g) were placed in each of the 
15 tubes and the tubes were positioned in a freezing bath 
(low temperature circulator LTD 6 G, Grant Instruments, 
Cambridge, UK). After equilibration at –1 °C for 30 min, 
the temperature was lowered stepwise by 1 °C intervals 
from –1 to –15 °C. The tubes were allowed to equilibrate at 
each temperature for 15 min. The tubes were then removed 
from the freezing bath one by one at each temperature 
and 4 mL of HPLC-grade water was added to each tube 
containing the frozen leaves. These tubes were stored at 4 
°C for 24 h. The conductivity (ion leakage value) of the 
solution in each tube was measured at room temperature 
with an electrical conductivity bridge. The obtained ion 
leakage value (µS/cm) was used to express freezing injury.

2.3. Determination of ice nucleation activity
Apoplastic proteins obtained from barley leaves were used 
to determine ice nucleation activity (Atici & Nalbantoglu, 
1999). Fresh leaves (7 g) were cut into 2-cm lengths, 
and rinsed in 6 changes of water to remove cellular 
proteins from the cut ends. At the end of each rinse, the 
removed cellular proteins were calculated by measuring 
at a wavelength of A280. The leaves were then vacuum-
infiltrated for 30 min in 20 mM ascorbic acid + 20 mM 
CaCl2 solution. The leaves were blotted dry and placed 
vertically in 20-mL syringes. The syringes were placed in 
centrifuge tubes. The apoplastic extract was collected from 
the bottom of the tubes after the leaves were centrifuged 
at 1500 × g for 20 min. Proteins were precipitated from 
the apoplastic extracts by adding 1.5 times the volume of 
ice-cold MeOH containing 1% HOAc and incubating the 
samples overnight at –20 °C. After centrifugation for 20 
min at 3500 × g, the protein pellets were washed with 100% 
ice-cold EtOH and 70% ice-cold EtOH. The dried protein 
pellets in the Eppendorf tubes were dissolved in 1 mL of 
HPLC-grade water and the tubes were then positioned in 
the freezing bath. After equilibration at –1 °C for 30 min, 
the temperature was lowered stepwise by 0.5 °C intervals. 
The tubes were allowed to equilibrate at each temperature 
for 10 min. The tubes were then removed from the freezing 
bath after the apoplastic protein solution in each tube 
had been frozen. The freezing temperature was used as a 
threshold for ice nucleation activity. 
2.4. Determination of lipid peroxidation
The level of lipid peroxidation was measured as 
described by Heath and Packer (1968) with slight 
modifications (Ananieva et al., 2002). In 3 mL of 0.1% 
TCA was homogenised 0.5 g of leaf material, followed 
by centrifugation at 15,000 × g for 30 min at 4 °C. To 0.5 
mL aliquot of the supernatant was added 1 mL of reagent 
(0.5% thiobarbituric acid (TBA) in 20% TCA, w/v). For a 
negative control, 0.5 mL of 0.1% TCA and 1 mL of reagent 
were added. The test-tubes were heated at 95 °C for 30 min 
and then quickly cooled in an ice bath. After cooling and 
centrifugation to give a clear supernatant, the absorbance 
of the supernatant at 532 nm was read and the value for 
the nonspecific absorption at 600 nm was subtracted. The 
level of malondialdehyde (MDA) was estimated by using 
the mmol/L extinction coefficient of 155 mmol/(L cm) 

(Mutlu et al., 2011).
2.5. Statistical analysis
All experiments were performed 3 times and the average 
of the values was used. The data were analysed by analysis 
of variance, and means were compared using Duncan’s 
multiple range test.
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3. Results and discussion
In the present study, for the first time, the time-dependent 
effect of SA on alleviating cold damage in 2 barley varieties 
(tolerant and sensitive) was investigated by determining 
freezing injury, ice nucleation activity, and lipid 
peroxidation levels. To achieve this aim, barley seedlings 
with SA treatments (0.0, 0.1, and 1 mM) were transferred 
to a cold facility (7/5 °C) and the values obtained from 0.1 
and 1 mM SA treatments were compared to values from 
the 0.0 mM SA treatment (cold control).

Freezing injury values in the leaves are presented in 
Figure 1. For simple quantitative comparisons, the highest 
freezing injury values obtained from the groups (days 10, 
17, and 24) of plants without SA treatment (cold control) 
were identified as 100% freezing injury. The average values 
of % freezing injuries in plants without SA treatment were 
calculated using values between a temperature giving at 
least 50% injury and –15 °C (Table). The average values 
of % freezing injuries in plants with SA treatment were 
calculated by using values between a temperature giving at 
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Figure 1. Freezing injury % values in barley leaves with SA treatment transferred to cold conditions (a: 10-day, b: 17-day, c: 24-day for 
Tokak and d: 10-day, e: 17-day, f: 24-day for Akhisar). Each value in the graph shows the average of 3 experiments.
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least 50% injury without SA treatment and –15 °C (Table). 
The average value(s) in Tokak were decreased by 39% 
on day 10 and 12% on day 17 by 0.1 mM SA and were 
increased by 19% on day 17 by 1 mM SA (Table and Figure 
1). The average values in Akhisar were decreased by 18% at 
both days 10 and 17 by 0.1 mM SA, and 14% and 11% on 
days 10 and 17 by 1 mM SA, respectively (Table; Figure 1). 
Neither of the SA treatments changed their average values 
on day 24 (Table; Figure 1) or day 31 (unpublished data) 
in the varieties. The results are consistent with previous 
studies in which SA treatment increased resistance to 
chilling or cold injury in maize (Janda et al., 1999), tomato 
(Ding et al., 2002), banana (Kang et al., 2003), winter 
wheat (Tasgin et al., 2003), red globe grape (Li et al., 2005), 
mustard (Setia et al., 2006), cucumber (Xia et al., 2007), 
radish (Biao, 2006), and grass (Wang et al., 2009). It can be 
seen from the results that 1 mM SA treatment increased 
freezing injury on day 17 in the variety with cold tolerance 
(Tokak), while it decreased on days 10 and 17 in the 
sensitive variety (Akhisar). Therefore, it is concluded that 
1 mM SA presents different effects in the 2 barley varieties. 
However, 0.1 mM SA treatment has a greater effect on 
alleviating cold damage by decreasing the freezing injury 
in both barley varieties. Our study also shows that the 
effect of SA on freezing injury can last for at least for 10 
days after the application.

The ice nucleation activity values of apoplastic proteins 
extracted from the leaves are presented in Figure 2. An 
increase in the ice nucleation activity value expresses a 
decrease in the freezing temperature. The value(s) in Tokak 
increased by 1.7, 0.8, and 1.4 °C with 0.1 mM SA treatment 
on days 10, 24, and 31, respectively, and increased by 0.9 °C 

with 1 mM SA treatment on day 31 (Figure 2). The value(s) 
in Akhisar increased by 2 °C with 1 mM SA treatment on 
day 10 and decreased by 1 °C with 0.1 mM SA treatment 
on day 17 and 1.5 °C with 0.1 and 1 mM SA treatments on 
day 31 (Figure 2). It can be seen from the results that 0.1 
mM SA treatment increased ice nucleation activity on days 
10, 24, and 31 in the variety with cold tolerance (Tokak), 
while it decreased on days 17 and 31 in the sensitive variety 
(Akhisar). It is concluded that 0.1 mM SA shows different 
effects in the 2 barley varieties and has a greater effect on 
alleviating cold damage by increasing the ice nucleation 
activity in Tokak. This result is consistent with our previous 
study in which SA treatment caused a significant increase 
in the ice nucleation activity in winter wheat leaves under 
cold conditions (Tasgin et al., 2003). The present study 
also shows that SA can be effective for at least 24 days at 
a decreasing freezing temperature by regulating apoplastic 
proteins in the leaves after the application. It was reported 
that apoplastic proteins including antioxidant enzymes 
and antifreeze proteins were highly correlated with frost 
tolerance in winter oat, rye, and wheat (Livingston & 
Henson, 1998; Yu et al., 2001; Tasgin et al., 2006). Therefore, 
SA can increase freezing tolerance in barley leaves by 
affecting apoplastic antifreeze proteins.

Lipid peroxidation values in the leaves are presented 
in Figure 3. Malondialdehyde (MDA) is a product of 
peroxidation of unsaturated fatty acids in phospholipids and 
is responsible for cell membrane damage (Xu et al., 2006; 
Mutlu et al., 2011; Baloğlu et al., 2012; Sekmen et al., 2012). 
The values in Tokak decreased by 21%, 15%, and 10% with 
0.1 mM SA treatment and 18%, 16%, and 13% with 1 mM 
SA treatment on days 10, 24, and 31, respectively (Figure 
3). The values in Akhisar decreased by 11%, 22%, 13%, and 
10% with 0.1 mM SA treatment on all days and 13%, 12%, 
and 20% with 1 mM SA treatment on days 10, 17, and 24, 
respectively (Figure 3). It can be seen that 0.1 and 1 mM SA 
treatments can have an effect on alleviating cold damage by 
decreasing the lipid peroxidation level in both varieties. The 
results are consistent with previous studies in which SA pre-
treatment decreased the MDA content in red globe grape 
(Li et al., 2005), Gerbera jamesonii Adlam (Lan et al., 2005), 
radish (Biao, 2006), cucumber (Xia et al., 2007), maize 
(Ping & Rui, 2007), orange (Huang et al., 2008), and grass 
(Wang et al., 2009) under chilling or cold stress. Our study 
also shows that the effect of SA on the lipid peroxidation 
level can be for at least 24 days (with the exception of 1 
mM SA for 31 days in Akhisar) after the application. Some 
recent studies indicated that low storage temperature and 
exogenous SA can reduce lipid peroxidation by regulating 
the antioxidant system during storage of navel oranges 
(Huang et al., 2008), watermelon (Yang et al., 2008), and 
bamboo (Luo et al., 2011). Therefore, our results show that 
SA treatment may provide a useful means of maintaining 

Table. Average values of % freezing injuries at barley leaves with 
SA treatment transferred to cold conditions. Values in a column 
followed by the same letter are not significantly different at P < 
0.05 level as determined by Duncan’s multiple range test.

SA (mM) Tokak Akhisar

10-day
0.0 87 bc 97 ab

0.1
1.0

53 d
85 c

80 dc
84 c

17-day
0.0 96 b 93 b

0.1
1.0

85 c
114 a

76 d
83 dc

24-day
0.0 93 bc 98 ab

0.1
1.0

90 bc
91 bc

102 a
95 ab
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beneficial antioxidant activity before a plant is exposed to 
cold conditions.

4. Conclusion
The present study shows that SA treatment may play a 
positive role in alleviating cold damage by decreasing 
freezing injury, increasing ice nucleation activity, and 
decreasing lipid peroxidation in 2 barley cultivars differing 
in cold tolerance. It was also found that the tolerant variety 
is more protected by 0.1 mM SA treatment for at least 
24 days. Our results can contribute to research related to 

diminishing cold damage in agriculture applications. In 
addition, it is concluded that endogenous SA produced 
in barley may be involved in alleviating cold damage. 
However, the effect of cold stress on the endogenous 
SA content and the role of endogenous SA during the 
development of cold tolerance are still unknown and 
require further research.

Acknowledgements
This work was supported by TÜBİTAK Grant No: TBAG- 
(106T582).

a 
a 

a a 

b 

a 

b 

b 

a 
a 

ab 

b 

–12

–10

–8

–6

–4

–2

0
10 17 24 31

a

Ic
e n

uc
le

at
on

 ac
tv

ty
 (°

C)

T me (days) 

a 

b 

a 

b 
a 

a a 
a 

b 

ab 

a a 

–12

–10

–8

–6

–4

–2

0
10 17 24 31

0.0 mM 0.1 mM 1 mM

b

Ic
e n

uc
le

at
on

 ac
tv

ty
 (°

C)

0

2

4

6

8

10

12

14

16

18

20

10 17 24 31

b
nm

ol
 M

D
A

 g
–1

 FW

a 
b 

a 

b 

a 

b 

a 

b 

b 
c 

b 

a 

Time (days)

a a 

a 
a 

b 

a b 

b 

b 

a 
b 

c 

0

2

4

6

8

10

12

14

16

18

20

10 17 24 31

0.0 mM 0.1 mM 1 mMa

nm
ol

 M
D

A
 g

–1
 FW

 

Figure 2. Ice nucleation activities of apoplastic proteins extracted 
from barley leaves with SA treatment transferred to cold 
conditions. (a: Tokak and b: Akhisar). Values in a group followed 
by the same letter are not significantly different at P < 0.05 level 
as determined by Duncan’s multiple range test. Bars are the mean 
± SE.

Figure 3. Lipid peroxidation levels in barley leaves with SA 
treatment transferred to cold conditions. (a: Tokak and b: 
Akhisar). Values in a group followed by the same letter are not 
significantly different at P < 0.05 level as determined by Duncan’s 
multiple range test. Bars are the mean ± SE.
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