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1. Introduction
The ability of a plant to continue to grow in an extreme 
environment indicates a high degree of salt tolerance 
(Niknam & McComb, 2000). Generally, populations 
of different plant species inhabiting saline habitats are 
well adapted to these habitats, and the extent of their 
adaptation depends on the intensity of selection pressure 
(salinity level) of the habitat (Hameed & Ashraf, 2008). 
The mechanism that enables such plants to thrive on salt-
affected soils is complex and involves many anatomical 
modifications and morphological, physiological, and 
biochemical processes (Jacoby, 1999).

Genus Sporobolus R.Br. (Poaceae) is known for high salt 
tolerance because its many species are known to inhabit 
saline habitats, and they show considerable tolerance 
to high salinity. Examples include Sporobolus airoides 
(Torr.) Torr. (Butler et al., 1974), S. spicatus (Vahl) Kunth 
(Ramadan, 2001), S. arabicus (Khan & Ungar, 2001), S. 
virginicus (L.) Kunth (Bell & O’Leary, 2003), and S. ioclados 
(Trin.) Nees (Gulzar et al., 2005). Sporobolus arabicus 
Boiss. species is a dominant component of vegetation in 
the Salt Range, where a large area of the foothill zone is 
affected by sodium chloride (Qadir et al., 2005).

Increased salt tolerance is needed in crops grown in the 
areas that are affected by salinity or at risk of salinisation 

(Munns et al., 2002), and naturally adapted salt-tolerant 
plants provide excellent material for investigating 
the adaptation mechanisms used to tolerate high 
concentrations of salt (Flowers & Colmer, 2008; Hameed 
et al., 2009). The present study examines the structural 
and physiological adaptations of naturally adapted 
populations of S. arabicus in terms of ionic relations and 
osmoregulation. 

2. Materials and methods
A hydroponic study was conducted to investigate the 
anatomical adaptive components, ionic relations, and 
osmotic adjustment under salt stress of a salt-tolerant 
population of the grass Sporobolus arabicus. 

A population of S. arabicus was collected from the salt-
affected habitat in the Salt Range, Pakistan, near the foothill 
region. The site is greatly impacted by salt deposition as a 
result of salts dissolving from the exposed hills. Another 
population of this grass (control) was collected from 
normal nonsaline habitats within the Faisalabad region.

Plants from both populations were grown in normal 
nonsaline soil for a period of 6 months (earthen pots, 23 
cm) filled with loam and sand in equal quantities. The 
plants were kept under normal sunlight and irrigated 
daily with normal irrigation water until established in the 
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Faisalabad environment. The ramets, each with 3 tillers of 
uniform size, were detached from each plant and grown 
in half-strength Hoagland’s nutrient solution until their 
hydroponic establishment. Fibreglass containers of 25 L in 
capacity were used for hydroponics. The containers were 
aerated with air pumps for about 12 h daily and placed 
under transparent plastic covering to protect them from 
rainfall. The ramets were planted on a Thermopore sheet, 
and after the establishment of plants 5 salt levels were 
maintained for 8 weeks: control (no salinity treatment) 
and 50, 100, 150, and 200 mM of NaCl in Hoagland’s 
nutrient solution. The experiment was arranged in a 
completely randomised design with 2 factors (population 
and salinity level) and 12 replications. Plants were carefully 
uprooted from the hydroponics after the completion of the 
experiment and washed with distilled water for the data 
analysis of physiological parameters: leaf water relations, 
organic osmolytes, and inorganic ionic content, according 
to the methods of Hameed and Ashraf (2008).

Anatomy of root, stem, leaf sheath, and leaf blade 
was studied using the thickest ramet of each replicate. A 
piece 2 cm in length was taken from the leaf base of fully 
expanded leaves for leaf anatomy, from the base of the 
internode of the main tiller for stem and sheath anatomy, 
and from the thickest adventitious root near the root/
shoot junction for root anatomy. Formaldehyde acetic 
alcohol solution (formaldehyde 10%, acetic acid 5%, 
ethanol 50%, and distilled water 35%) was used to fix the 
material for 48 h, and it was subsequently transferred to an 
acetic alcohol solution (acetic acid 25% and ethanol 75%) 
for long-term storage. Free-hand sections were prepared 
by a series of dehydrations in ethanol using the standard 
safranin and fast green double-stained technique (Ruzin, 
1999). Measurements were taken with a light microscope 
(Nikon SE Anti-Mould, Japan) using an ocular micrometer 
calibrated with a stage micrometer. Micrographs of the 
stained sections were taken with a digital camera (Nikon 
FDX-35) on a stereomicroscope (Nikon 104, Japan). Data 
for anatomical characteristics were recorded using all 3 
plants from each replication at random. 
2.1. Statistical analysis
Analysis of variance of the data from each attribute was 
computed using the MSTAT computer program. The least 
significant difference test at a 5% probability level was used 
to test differences among mean values (Steel et al., 1997).

3. Results
3.1. Soil physicochemical characteristics
Soil from the S. arabicus-inhabited Salt Range was heavily 
salt-affected (32°76′23.45″N, 72°62′27.58″E; pH 8.12; 
electrical conductivity [ECe], 34.36 dS m–1; Ca2+, 692.18 
mg kg–1; K+, 397.30 mg kg–1; Na+, 5314.62 mg kg–1; Cl–, 
2467.28 mg kg–1); soil from the Faisalabad region was 

normal nonsaline (31°28′25.25″N, 73°12′42.87″E; pH 
7.86; ECe, 1.52 dS m–1; Ca2+, 13.78 mg kg–1; K+, 40.54 mg 
kg–1; Na+, 81.68 mg kg–1; Cl–, 312.20 mg kg–1).
3.2. Growth parameters
Shoot dry weight of the population from Faisalabad 
gradually decreased with increases in external salinity 
levels (Figure 1), but the Salt Range population showed 
stability in this character, and its dry weight even 
increased slightly under 50 mM of NaCl. Root dry 
weight gradually increased up to 100 mM and 150 mM 
of NaCl in the Faisalabad and Salt Range populations, 
respectively. Furthermore, a sharp decrease in dry weight 
in the Faisalabad population and a slight reduction in the 
Salt Range population were observed at the higher salt 
levels (150 and 200 mM of NaCl), although in the latter 
population the root dry weight at 200 mM NaCl was at the 
same level as in the control treatment. 
3.3. Ionic contents
There was a consistent increase in leaf Na+ in both 
populations with increases in the salt level of the rooting 
medium (Figure 1). However, the Faisalabad population 
accumulated significantly higher amounts of Na+ in the 
leaves as compared to the Salt Range population at all 
external salt regimes. There was a sharp decrease in leaf K+ 
in the Faisalabad population with the addition of NaCl to 
the leaf medium. However, in the Salt Range population, 
leaf K+ did not decrease up to 100 mM NaCl, but thereafter 
a slight reduction in leaf K+ was observed at higher salt 
levels (i.e. 150 and 200 mM NaCl). It is also interesting to 
note that at 50 mM NaCl there was a marked increase in 
leaf K+ in the Salt Range population.

Root Na+ increased in both populations with 
increases in external salt levels. However, the extent 
of Na+ accumulation in roots in both populations was 
almost the same. Although root K+ decreased consistently 
with increases in salt levels of the growth medium, the 
Faisalabad population had significantly higher K+ in the 
roots than the Salt Range population. 
3.4. Organic osmolytes
Proline concentrations increased in both populations of 
S. arabicus with increases in salinity levels (Figure 1), but 
the Salt Range population responded more positively to 
increasing salt levels, as it accumulated significantly more 
proline than its counterpart from the Faisalabad region. 

Induction of salt stress resulted in a significant increase 
in total free amino acids in both grass populations (Figure 
1). However, the Salt Range population of S. arabicus 
showed markedly greater accumulation of free amino 
acids in the leaves at all salt levels as compared to the 
Faisalabad population.
3.5. Anatomical modifications
Extensive sclerification was observed in both populations 
in the cortical region below the epidermis (exodermis), but 
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Figure 1. Some morphophysiological characteristics of Sporobolus arabicus ecotypes subjected to salt stress for 60 days (n = 12, 
means ± SE). Means sharing different letters are significant at P < 0.05. The letters indicate differences among concentrations of 
NaCl applications in each habitat.



HAMEED et al. / Turk J Bot

718

this sclerification was significantly higher in the Salt Range 
population, particularly under high salinities (Figures 2 
and 3). In addition, salt stress resulted in the disintegration 
of root cortical parenchyma (aerenchyma formation) in 
both populations (Figure 2). Increased sclerification in 

stems was also recorded in both S. arabicus populations 
(Figure 4). 

Sclerification was recorded outside the vascular tissue 
of the leaf sheath in both S. arabicus populations (Figure 
5). However, with increased salinity levels, the Faisalabad 
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Figure 2. Some root and leaf anatomical characteristics of Sporobolus arabicus ecotypes subjected to salt stress for 60 days (n = 
12, means ± SE). Means sharing different letters are significant at P < 0.05. The letters indicate differences among concentrations 
of NaCl applications in each habitat.
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population showed extensive sclerification all over the 
abaxial surface of leaf sheath. The Salt Range population 
also showed intensive sclerification, but this was restricted 
to the epidermis of the abaxial side. 

There was a progressive development of bulliform 
cells on the adaxial leaf surface in both populations with 
increases in salt levels (Figures 2 and 6). These cells were 
relatively broad and flattened at moderate salt levels and 
deeply seated at high salt levels. The density of vesicular 
hairs increased significantly in the Salt Range population 
with increases in external salt levels; however, in the 

Faisalabad population the density only increased up to 100 
mM NaCl (Figures 2 and 6). The Salt Range population also 
showed a significant increase in the density of trichomes 
with increases in salt levels of the growth medium (Figure 
5). 

4. Discussion
Similar studies on the salt tolerance of Salt Range grasses 
that describe the structural and functional features of 
species other than S. arabicus have been published (e.g., 
Hameed & Ashraf, 2008; Hameed et al., 2008, 2009, 
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2010, 2011). In the present study, we have focused on the 
most tolerant among the Salt Range grasses, S. arabicus, 
which has very specific structural characteristics and 
physiological mechanisms for adaptation to high salinity 
levels.

Plant growth measured as shoot or root biomass was 
adversely affected in the Faisalabad population due to salt 
stress, whereas in the Salt Range population this biomass 
increased with the imposition of salt in the rooting 
medium. Stimulation of growth as observed in the Salt 
Range population demonstrates its marked adaptation to 
salt stress, and this is one of the prominent characteristics 
of most halophytes, e.g., Sporobolus virginicus (L.) Kunth 
(Bell & O’Leary, 2003), Arthrocnemum macrostachyum (L.) 
Moq. (Redondo-Gómez et al., 2010), Aeluropus lagopoides 
(L.) Thwaites (Naz et al., 2010), and Chenopodium quinoa 
Willd. (Eisa et al., 2012).

The Salt Range population of S. arabicus accumulated 
lower concentrations of Na+ in its leaves than its counterpart 
from Faisalabad at varying external salt levels, which is a 
feature of salt-tolerant species (Munns, 2002). In most 
plants, increased concentrations of Na+ in the aerial parts 
is generally associated with a concomitant reduction in K+ 
and/or Ca2+ concentrations (Munns & Tester, 2008). Leaf 

and root K+ decreased considerably in both populations, 
but this reduction was more pronounced in the Faisalabad 
population, particularly at higher salt levels. Higher levels 
of leaf K+ and lower Na+ levels in the Salt Range population, 
compared to the Faisalabad ecotype, resulted in a higher 
K+-to-Na+ ratio. Maintenance of a high K+-to-Na+ ratio 
helps plants to thrive well under saline conditions (Ashraf, 
2004).

A variety of organic osmolytes play an important role 
in plant salt tolerance (Touchette, 2007; Flowers & Colmer, 
2008), and salt-tolerant and salt-sensitive plants mostly 
differ in their accumulation of these organic solutes. 
The Salt Range population accumulated significantly 
higher concentrations of osmolytes, particularly free 
amino acids and proline, than its counterpart from the 
Faisalabad region. It is generally known that proline plays 
a considerable role in osmotic adjustment (Yoshiba et 
al., 1997). The higher proline accumulation in the salt-
tolerant population could have been one of the important 
factors in the adaptation of the Salt Range population to 
salinity, as reported in Simmondsia chinensis (Tal et al., 
1979) and Triticum aestivum (Tammam et al., 2008). In 
contrast, Ghars et al. (2008) linked salt tolerance with Na+ 
influx and K+ nutrition, but not proline accumulation, in 
Arabidopsis thaliana.
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Physiological modifications seemed to have played an 
important role in the maintenance of S. arabicus populations 
in the highly saline Salt Range habitat. However, specific 
anatomical modifications may also contribute significantly 
to increased salt tolerance in plants.

At the root level, development of aerenchyma with 
increases in salt levels is a unique feature. It is a typical 
characteristic of waterlogged plants (Cheng & Chou, 
1997). Colmer and Flowers (2008) reported aerenchyma 
formation in halophytes. Increased aerenchyma in both 
populations may facilitate water and ion uptake through 
the roots, as reported in maize by Van der Weele et al. 
(1996).

In the Salt Range population, extensive sclerification 
below the root epidermis seemed to be critical to the 
physiological drought caused by salt stress. This is 
important for controlling the uptake and radial flow of 
water and solutes through the roots (Lux et al., 2004). 
Salt-induced sclerification in other plant species has also 
been reported, e.g., Spartina alterniflora Loisel. (Walsh, 
1990) and Imperata cylindrica (L.) P.Beauv. (Hameed et al., 
2009). In the Faisalabad population, sclerification was also 
recorded in the cortical region, but to a relatively lesser 
extent. In addition to cortical parenchyma, a double-
layered epidermis may play a vital role in nutrient and 

water transport through the roots in this species, which 
is a characteristic feature of salt-tolerant species (Ristic & 
Jenks, 2002). The epidermis was more developed under 
high salinities in this grass species, but especially in the 
Salt Range population.

At the stem level, succulence in terms of stem area 
is perhaps the most affected mechanism for the survival 
of S. arabicus under high salinities. Both populations 
showed increased stem area with increases in salt levels. 
In contrast, the Salt Range population had sclerification 
inside the epidermis of the stem, which may provide 
protection against water loss (Makbul et al., 2011).

Succulence in terms of leaf thickness seems to be 
the most important adaptive mechanism at the leaf 
level (Karlsons et al., 2011). The Faisalabad population 
was more responsive to salt stress, because a significant 
increase (more than 2-fold) in leaf midrib was recorded 
with the imposition of salt in the external medium. 
Leaf succulence is an unusual and rare phenomenon in 
monocots (Flowers & Colmer, 2008), but Hameed et al. 
(2009) reported distinct succulence in the leaves of a salt-
tolerant grass, Imperata cylindrica. On the other hand, the 
Salt Range population originally had thicker leaves than 
the Faisalabad population, but, in fact, increasing salinity 
levels had a negligible impact on leaf succulence. 
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Salt excretion through vesicular hairs is an important 
mechanism of salt tolerance in salt-excretory species (Naz 
et al., 2009). There are many reports of toxic Na+ excretion 
in highly salt-tolerant species via salt glands, e.g., in 
Sporobolus spicatus (Ramadan, 2001), S. virginicus (Bell & 
O’Leary, 2003), and Cynodon spp. (Marcum and Pessarakli, 
2006). Salt stress induced the development of vesicular 
hairs in both populations of S. arabicus, but their density 
increased much more in the Salt Range population. At 
moderate salinities, trichome development was induced in 
both populations in addition to vesicular hairs. Adebooye 

et al. (2012), in contrast, reported no change or reduced 
trichome density in Trichosanthes cucumerina under 
salinity stress.

At lower salinities the dumping of toxic ions is perhaps 
the major mechanism, as was indicated by leaf and stem 
succulence. More cortical parenchyma with larger cells 
(and, hence, larger vacuoles) may provide more space 
for storing toxic ions. Since the Salt Range population 
originally had succulent leaves, it may have spent its energy 
on growth and biomass production. In contrast, it was 
apparent that the Faisalabad population may have spent 
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more energy on tissue development than leaf succulence; 
for this reason, the decline in its biomass production under 
salt stress was greater. 

The second mechanism is the excretion of toxic 
ions from the leaf surface. At moderate salt levels, both 
populations showed trichome development, which is 
vital for preventing water loss through leaf surfaces, i.e. 
desiccation tolerance due to physiological drought caused 
by salt stress. At high salinities, the mechanism shifted to 
salt excretion, and this was more pronounced in the Salt 
Range population.

In conclusion, the Salt Range population performed 
better than its counterpart from the Faisalabad region 
by maintaining turgor potential, accumulating lower 
amounts of Na+ and Cl– and higher amounts of organic 
osmolytes in the leaves, and expressing more sclerification 
in roots, more succulence in the stem and leaves, and 
more development of vesicular hairs. Both mechanisms, 
succulence and excretion, were more developed in the Salt 
Range population, and this may have been the premier 
reason for its higher survival and growth rates in high-
saline environments.
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