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1. Introduction
Cadmium is one of the most hazardous and ubiquitous 
trace elements present in the soil and is toxic for all 
biological systems (Prashant & Girjesh, 2010; Tran & 
Popova 2013). Its levels have increased in the environment 
due to anthropogenic activities, including the expansion 
of industry and agricultural practices such as waste water 
irrigation, application of sewage sludge, and excessive use 
of fertilisers and pesticides. Cadmium can be easily taken 
up by plant roots and transported to above-ground tissue 
organs (Shamsi et al., 2008; White & Brown, 2010; Dai et al., 
2011, 2012a, 2012b, 2012c, 2013). High concentrations of 
Cd are toxic to plants because they can lead to the inhibition 
of germination and root elongation, leaf chlorosis and 
withering, and reduction of plant biomass (Wang et al., 
2008). Cadmium can also disturb plant metabolic processes 
and lead to root growth retardation, suberisation, damage 
to internal and external root structures, decrease in root 
hydraulic water conductivity, interference with nutrient 
absorption, and translocation. Thus, Cd can lead to nutrient 
imbalance, decrease chlorophyll content, interfere with 
enzymatic activities related to photosynthesis, and decrease 

stomatal openings and conductance (Vandecasteele et al., 
2003; Benavides et al., 2005). 

Phytochelatins (PCs) are well known as the principal 
heavy metal-detoxifying peptides in plants, fungi, and 
microalgae (Grill et al., 1985). Phytochelatins form a 
family of peptides with a structure based on repetitions 
(n = 2–11) of the γ-Glu-Cys dipeptide followed by 
C-terminal glycine. PCs are structurally related to 
glutathione (GSH), which is a substrate for their synthesis 
( Cobbett, 2000a; Clemens, 2006; Dai et al., 2011; Wójcik 
& Tukiendorf, 2011). PCs are enzymatically synthesised 
from the substrate GSH in response to heavy metal 
exposure (Grill, 1985). Furthermore, PCs are synthesised 
enzymatically from reduced GSH. The reaction, catalysed 
by a c-glutamylcysteine dipeptidyl transpeptidase (EC 
2.3.2.15, commonly referred to as phytochelatin synthase), 
is activated by metal ions, especially Cd2+ (Grill et al., 1989). 
Thus, plants can withstand Cd toxicity by maintaining 
high levels of phytochelatin or its precursor, GSH, which 
functions as a heavy metal ligand (Cánovas et al., 2004). 
Upon heavy metal exposure, GSH concentrations drop as 
a consequence of PC biosynthesis initiation. 
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Previous studies indicated that GSH may contribute 
in several other ways to heavy metal tolerance besides its 
involvement in PC biosynthesis. It may sequester toxic 
metal ions in the cytosol, and such complexes may activate 
PC synthase, transfer metal ions to newly synthesised PCs, 
or transport them to the vacuole (May et al., 1998; Xiang 
et al., 2001). Interestingly, recent findings of Wojas et al. 
(2008) suggested that the high ability of PC synthesis in 
transgenic tobacco plants over-expressing an Arabidopsis 
thaliana (L.) Heynh. PC synthase is insufficient to cope with 
the metal load if the antioxidant system is simultaneously 
hampered. 

In the present study, Cd tolerance and accumulation in 
different tissues of grey poplar was investigated. The aim 
of this study was to validate whether a PC-based transport 
mechanism was involved in Cd2+ translocation to the 
roots, bark, wood, and leaves in grey poplar.

2. Materials and methods
2.1. Cultivation of plants and Cd exposure
The experiments were performed in the orchard of the 
Northwest Agriculture and Forestry University, Yangling 
(34°20′N, 108°24′E), P.R. China. Plantlets of Populus 
× canescens (P. tremula × P. alba) were produced by 
micropropagation (Leplé et al., 1992) and cultivated in a 
climate chamber (day/night temperature, 25/18 °C; relative 
air humidity, 50%–60%; light per day, 16 h; photosynthetic 
photon flux, 150 µmol m–2 s–1). The nutrient solution 
included 5 mM Ca(NO3)2·4H2O, 5 mM KNO3, 2 mM 
MgSO4·4H2O, 1 mM KH2PO4, 0.1 mM EDTA-Fe, 461 mM 
H3BO3, 9.11 mM MnCl2·4H2O, 0.321 mM CnSO4·5H2O, 
0.761 mM ZnSO4·7H2O, and 0.51 mM H2MoO4·H2O 
(Leplé et al., 1992). After 4 weeks, the rooted plantlets were 
transferred to an aerated Hoagland nutrient solution in a 
growth room with the same environmental conditions as 
the climate chamber. The nutrient solution was exchanged 
every 3 days. After a 12-week cultivation, the plants were 
treated with 5 CdSO4·7 H2O concentrations of 0 (control), 
10, 30, 50, and 70 µM CdSO4 by adding CdSO4 to the 
nutrient solution.
2.2. Analysis of Cd content
To analyse Cd in different tissues, fine powder (ca. 
100 mg) from roots, stems, and leaves was digested 
in a mixture (7 mL of concentrated HNO3 and 1 mL of 
concentrated HClO4) at 170 °C according to the method 
of Schützendübel et al. (2001). Subsequently, Cd contents 
in extracts were determined by flame atomic absorbance 
spectrometry (Hitachi 180-80, Japan). A standard curve 
was prepared using a series of diluted solutions of a 
commercially available standard (National Criterion 
Solutions, National Analysis Centre, Beijing, China).

2.3. Determination of glutathione
Extraction and measurement of GSH was carried 
out according to the method of Griffith (1980). The 
different tissue materials were homogenised in 5% (m/v) 
sulphosalicylic acid, and the homogenate was centrifuged 
at 10,000 × g for 10 min. A volume of 1 mL of supernatant 
was neutralised using 0.5 mL of potassium phosphate 
buffer (pH 7.5). Change in absorbance at 412 nm was 
measured (E = 4.2 mM−1 cm−1).
2.4. Determination of PC content
Plant material frozen in liquid nitrogen was extracted in 
5% sulphosalicylic acid and 6 mM diethylenetriamine-
pentaacetic acid by the method of Zhang (2005). The 
homogenate was centrifuged at 10,000 × g and 4 °C for 
10 min to remove cellular debris and precipitated proteins. 
Total nonprotein thiols in the supernatant were then 
quantitated spectrophotometrically with Ellman’s reagent 
at 412 nm by the method of Zhang et al. (2005).
2.5. Statistical analysis
The experiment had a completely randomised design with 
6 replicates per treatment for each time point. Data were 
subjected to analysis of variance (ANOVA) to examine the 
effect of time, treatment, and clone. Statistical analysis was 
conducted using CoStat 6.2 (CoHort Software, CA, USA). 
Separation of means was performed by LSD test at α = 0.05 
significance level.

3. Results 
3.1. Cadmium accumulation
In the roots, bark, wood, and leaves, the amount of Cd 
increased with the increase in Cd concentrations in the 
growing medium and time of exposure (Table 1). For 
almost all Cd treatments the Cd concentration per gram 
of plant dry weight was higher in roots (5- to 19-fold) 
compared to the control. Taking into account the leaf, bark, 
wood, and root biomass, the amount of Cd was higher in 
leaves (1- to 5-fold), bark (3- to 10-fold), and wood (3- 
to 5-fold), compared to the control. Taken together, the 
exposure of Populus × canescens to 10, 30, 50, and 70 µM 
CdSO4 led to significant increases in Cd concentrations as 
follows: roots > wood > bark > leaves. 
3.2. Biomass accumulation
To analyse the toxic effects of Cd on plant growth, the root, 
bark, wood, and leaf biomass was recorded (Table 2). Plant 
growth decreased with increases in Cd concentration 
after 28 days of treatment. The leaves showed the highest 
biomass, followed by roots, wood, and bark.
3.3. Effect on PC synthesis and accumulation
The concentrations of PCs and GSH in roots, bark, 
wood, and leaves of plants exposed to different Cd 
treatments are shown in Table 3. Increasing intracellular 
Cd concentrations induced the accumulation of PCs. 
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PCs were detected after 28 days of Cd exposure and 
increased with Cd concentrations and exposure time 
(Table 3). The increasing concentrations of Cd caused a 
continuous decrease in GSH contents, while PC levels 
remained high. Furthermore, the roots showed the 
highest PC concentrations, followed by bark, wood, and 
leaves. In roots, Cd hypertolerance was due to a reduction 
in the uptake of metals and promotion of chelation and 
sequestration.

4. Discussion
It has been reported that Populus × canescens root is able 
to accumulate Cd in a time- and dose-dependent manner 
(Dai et al., 2012a). Restricted transport of Cd from root 
to shoot (bark and wood) is often accompanied by a 
higher Cd tolerance. Conversely, it seems that enhanced 
translocation may be the reason for increasing sensitivity. 
In the present study, we also found that the highest growth 
inhibition and the most distinct Cd toxicity symptoms 

Table 1. Cd content of Populus × canescens grown with 0 (control), 10, 30, 50, and 70 µM Cd for 28 days. Values are 
means of 6 replicates ± standard deviation. ** and * represent significant differences at α = 0.01 and 0.05, respectively.

Organ
Cadmium concentration (µM L–1)

0 10 30 50 70

Leaves 4.8 ± 0.9** 7.8 ± 1.2** 10.8 ± 1.4** 14.7 ± 1.6** 26.7 ± 1.7**

Bark 6.9 ± 0.8** 22.1 ± 1.3** 55.1 ± 1.6** 65.3 ± 1.5** 74.5 ± 1.8** 

Stem 1.8 ± 0.3** 6.1 ± 0.5** 6.8 ± 0.6** 7.6 ± 0.7* 9.2 ± 0.6**

Roots 225.6 ± 8.4* 1136.2 ± 52.1* 1461.6 ± 61.2* 2060.1 ± 46.6** 4461.8 ± 58.3**

Table 2. Leaf dry weight (LDW), bark dry weight (BDW), wood dry weight (WDW), and root dry weight (RDW) of 
Populus × canescens grown with 0 (control), 10, 30, 50, and 70 µM CdSO4 for 28 days. Values are means ± standard error 
(n = 6). The g unit represents dry mass. ANOVA α values for the primary effects and interactions of metal × origin (M 
× O) are provided.

Cd treatment LDW (mg g–1) BDW (mg g–1) WDW (mg g–1) RDW (mg g–1)

0 µM 2.33 ± 0.18* 0.67 ± 0.06* 1.3 ± 0.06* 1.55 ± 0.08*

10 µM 2.17 ± 0.58* 0.60 ± 0.17* 1.23 ± 0.31* 1.47 ± 0.34*

30 µM 2.05 ± 0.43* 0.55 ± 0.12* 1.19 ± 0.25* 1.37 ± 0.29*

50 µM 1.82 ± 0.34* 0.51 ± 0.09* 0.94 ± 0.17* 1.21 ± 0.17*

70 µM 1.49 ± 0.18* 0.43 ± 0.06* 0.87 ± 0.06* 1.16 ± 0.08*

Biomass
Primary effects Interactions

Metal Origin M × O

ANOVA α values

Leaves 0.000 0.000 0.009

Bark 0.000 0.000 0.002

Wood 0.000 0.000 0.000

Roots 0.000 0.000 0.003

Total 0.000 0.000 0.000
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were apparent when the Cd concentration was higher in 
the root compared to the shoot (bark and wood) (Table 
1). Similar results were also obtained by Cd-tolerant and 
Cd-sensitive ecotypes of Arabidopsis thaliana (Wójcik 
& Tukiendorf, 2004). The maximal accumulation of 
Cd was reached after 28 days of 70 µM Cd treatment, 
irrespective of the concentration applied. Most of the Cd 
accumulated in different tissues was bound to a thiol-
rich fraction with a molecular weight close to that of the 
PCs. This result suggested that PCs may constitute the 
principal mechanism in heavy metal sequestration, as in 
Arabidopsis thaliana (Cobbett, 2000b). Plant tolerance 
of heavy metals is often related to transport processes, 
which permit compartmentalisation of heavy metals and 
prevent their accumulation in the cytoplasm (Brune et 
al., 1995; Pal & Ral, 2010; Wójcik & Tukiendorf, 2011). 
The role of GSH and PCs in Cd detoxification and 
tolerance was well characterised in Populus × canescens 

with an altered level of GSH or PC synthesis. The GSH 
level alters in response to different types of biotic and 
abiotic stresses. It has been suggested that GSH may act 
both as a stress sensor and as a part of a very compact 
signal transduction system (Xiang et al., 2001; Maughan 
& Foyer, 2006; Szalai et al., 2009). 

In conclusion, our results confirmed our earlier finding 
that Populus × canescens roots were more resistant to Cd 
due to an efficient Cd detoxification system. Furthermore, 
our results suggested that PCs can be used for long-term 
Cd toxicity. Our studies reveal a tolerating mechanism in 
poplar to Cd and will provide a solid foundation for poplar 
breeding in Cd-contaminated soil.

Acknowledgements 
We would like to acknowledge the financial support of the 
948 Project of the State Forestry Administration of China 
(2008-4-33 and 2013JK0724).

Table 3. Changes in GSH and PC concentrations in Populus × canescens after 28 days at 0 (control), 10, 30, 50 and 70 µM CdSO4 
exposure. Each point represents the mean of 6 biological replicates ± standard error. ANOVA α values for the primary effects and 
interactions of metal × origin (M × O) are provided.

Organ
Cd treatment (µM)

0 10 30 50 70

GSH nmol g–1 FW

Leaves 48.8 ± 3.3** 43.1 ± 2.6 41.6 ± 2.2 34.5 ± 2.1 33.3 ± 1.3

Bark 36.6 ± 2.3* 33.6 ± 2.5 32.2 ± 1.8 31.0 ± 1.7 28.3 ± 1.5

Stem 30.6 ± 2.8* 29.0 ± 2.1 26.7 ± 1.6 25.2 ± 1.4 22.9 ± 1.2 

Roots 28.8 ± 2.6* 27.3 ± 2.5 26.1 ± 2.1 25.1 ± 1.1 23.0 ± 1.3

PCs µmol g–1 FW

Leaves 16.7 ± 11.7 44.4 ± 12.2 48.1 ± 10.8 54.6 ± 7.5 76.9 ± 14.9 

Bark 180.7 ± 3.7 198.8 ± 4.4 214.9 ± 6.9 227.5 ± 4.1 321.2 ± 5.6

Stem 15.3 ± 2.9 26.3 ± 2.7 40.1 ± 3.9 48.8 ± 4.0 56.6 ± 4.9

Roots 23.8 ± 2.3 53.2 ± 3.6 68.1 ± 4.1 72.8 ± 4.3 98.5 ± 4.6 

Primary effects Interactions

Metal Organ M × O

ANOVA α values

Leaves 0.000 0.001 0.001

Bark 0.000 0.001 0.002

Wood 0.000 0.000 0.001

Roots 0.000 0.005 0.003
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