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1. Introduction
Excessive salinity is the most important environmental 
stress factor that greatly affects the growth, nutrition, 
and productivity of many plant species (Sayed, 2003). 
The response of plants to excess salinity is complex and 
involves morphological and developmental changes as 
well as physiological and biochemical processes (Khan et 
al., 2010). Morphologically the most typical symptom of 
saline injury to plants is the reduction of growth (Jaleel et 
al., 2008), which is a consequence of several physiological 
responses including modification of ion balance, water 
status, mineral nutrition, photosynthetic efficiency, carbon 
allocation and utilisation, membrane instability, and 
failure in the maintenance of turgor pressure (Yildirim et 
al., 2006). 

It has been reported that salinity decreases pepper 
and melon yield (Navarro et al., 2002; Bustan et al., 2005). 
While excessive salt exposure reduces tomato fruit size, 
total yield, and photosynthesis and increases blossom 
end rot (Saito et al., 2006), moderate salt stress generally 
improves fruit quality by increasing carotenoids and total 
soluble solids, which are important components of taste 
in tomatoes (sugars, organic acids, and amino acids) (De 
Pascale et al., 2001; Krauss et al., 2006).

Plant phenolics have often been referred to as 
secondary metabolites, and many of these compounds 

play an essential role in the regulation of plant growth 
and development and could be enhanced as powerful 
antioxidants in plant tissues under different stresses, such 
as salinity (Dixon and Palva, 1995). Total phenolic content 
increased with salinity levels in fruits like apple and 
strawberry (Navarro et al., 2006; Keutgen and Pawelzik, 
2008). Recently, Rezazadeh et al. (2012), working with 
artichoke leaves, concluded that moderate saline induced 
the saline tolerance pathway via increasing total phenolic 
and flavonoid compounds.

Nitric oxide (NO) is a bioactive gaseous molecule 
involved in the signalling process within plants and 
plays a central role in a variety of physiological processes 
including germination, senescence, flowering, repining of 
fruits, and response to biotic and abiotic stresses (Leshem, 
2000; Zheng et al., 2010). Wu et al. (2011) reported that 
NO applied during salt exposure significantly attenuated 
salt-induced oxidative damage. Some previous work 
has demonstrated that NO could delay ripening and 
improve the postharvest quality of tomato (Shaoying 
et al., 2005) when applied as short-term fumigation at 
low concentrations. It is suggested that NO might exert 
a profound influence on fruit by inhibiting ethylene 
production (Leshem, 2000). Furthermore, NO treatment 
reduced the degree of disintegration of the cell membrane 
with less electrolyte leakage, which resulted in better 
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retention of the cellular components such as pigments, 
titratable acidity, soluble solids, and free antioxidant 
compounds, particularly ascorbic acid, which the fruits are 
most valued for (Manjunatha et al., 2010).

Tomato is one of the most important horticultural crops 
in the world. In terms of human consumption and health, 
it is a major component of daily meals in many countries 
and constitutes an important source of potassium, vitamins 
E and C, folic acid, and many health beneficial factors like 
carotenoids (lycopene and β-carotene) that have been 
shown to be effective against some cancer cells (Tang et al., 
2008). It is also a good source of polyphenolic compounds, 
such as flavonoids and hydroxycinnamic acids (Bugianesi 
et al., 2004). 

The aim of the present investigation was to study the 
effect of salt stress on tomato fruit quality and assess the 
role of NO (applied exogenously as SNP) in the response 
of tomato fruit to salinity. The changes in some growth 
parameters, carotenoids (β-carotene and lycopene), 
vitamin C, and secondary metabolites including individual 
phenolics compounds, total flavonoids, alkaloids, 
phenolics, and anthocyanins were followed.

2. Materials and methods
2.1. Plant material, growth conditions, and treatments
Tomato seeds (Lycopersicon esculentum Mill. ‘Super Strain 
B’) were obtained from the Agricultural Research Centre, 
Giza, Egypt. They were surface sterilised with 2.5% sodium 
hypochlorite for 10 min, rinsed with distilled water, 
and soaked for 24 h at 25 °C in aerated water. Sodium 
nitroprusside (SNP) was used as NO donor, and NaCl was 
used to apply salt stress. To choose suitable concentrations 
of SNP and NaCl, a preliminary experiment was conducted 
where seeds were allocated at random in petri dishes (15 
cm diameter, 20 seeds per dish) containing filter paper 
moistened with 20 mL of 0, 5, 10, 20, 50, 75, and 100 µM 
SNP; covered by a lid; and incubated at 27 ± 2 °C for 4 
days. Similarly, another group of seeds were tested for 
different concentrations of NaCl: 0, 10, 20, 50, 75, 100, 150, 
and 200 mM. The germination percentage was calculated 
as a standard of radicle emergence, and the specified 
concentration of SNP and NaCl was determined as 100 
mM NaCl and 10 µM of SNP.

Seeds of uniform size were sterilised, as previously 
mentioned, and sown in May in weighed plastic pots (40 × 
33 cm, 5 seeds per pot) filled with a fixed amount of clay soil. 
The pots were irrigated with one-tenth strength Hoagland’s 
solution, and after 30 days the pots were divided into 2 sets; 
one set (control treatment) was irrigated with one-tenth 
strength Hoagland’s solution and the other with one-tenth 
strength Hoagland’s solution containing 100 mM of NaCl 
(salt treatment). The experiment was carried out under 
natural environmental conditions, and the irrigation with 

NaCl was performed once weekly. On day 60 (at the fourth 
or fifth true leaf stage) NO treatment was started, and 100 
mL of 10 μM SNP solutions were applied once weekly by 
spraying the leaves of the control and salt stressed plants 
for 1 month until the plants reached 90 days (flowering 
stage). The tomato fruits were collected after 120 days, used 
for measuring the different growth parameters, and kept 
for all chemical analyses. In summary, the experimental 
design consisted of 4 treatments: 1) control, 2) SNP spray, 
3) salt, and 4) salt + SNP spray and was arranged in a 
randomised, complete block design with 3 replicates.
2.2. Measurements of physiological parameters
2.2.1. Growth parameters 
After 120 days the fruit fresh (FW) and dry weights (DW) 
were determined. The fruit length and diameter were 
measured as described by Adedeji et al. (2006), while 
the volume of the fruit was measured using the water 
displacement method (Rashidi and Seyfi, 2007).  
2.2.2. Na content
Sodium concentration was determined by flame 
photometer (CORN NG 400) following wet digestion of 
oven dried tissue, as described by Chapman and Pratt 
(1982). 
2.2.3. Total alkaloid content 
The total alkaloid contents of tomato fruits were measured 
using the 1,10-phenanthroline method, as described by 
Singh et al. (2004). The reaction mixture contained 1 mL 
of ethanolic extract, 1 mL of 0.025 M FeCl3 in 0.5 M HCl, 
and 1 mL of 0.05 M 1,10-phenanthroline in ethanol and 
was incubated at 70 ± 2 °C. The absorbance was read at 
510 nm, and the total alkaloid content was calculated from 
the standard curve obtained from different concentrations 
of colchicines and expressed as micrograms per gram FW. 
2.2.4. Total flavonoid content
The colorimetric methanolic aluminium chloride method 
was used for total flavonoid estimation (Luximon-Ramma 
et al., 2002). The reaction mixture contained 1.5 mL of 
the acetone plant extract and 1.5 mL of 2% methanolic 
aluminium chloride, and the absorbance was measured 
at 367 nm. Total flavonoid contents were calculated with 
the standard curve of quercetin, and values were expressed 
micrograms per gram FW.
2.2.5. Total phenolic content
Total phenolic contents of tomato fruits were determined 
using the modified Folin–Ciocalteu reagent (McDonald et 
al., 2001). An aliquot of plant extract was added to 1.58 mL 
of distilled water and 100 µL of Folin–Ciocalteu reagent. 
The reaction mixture was shaken and allowed to stand 
for 5 min before the addition of 300 µL of 20% NaCO3. 
After 20 min at 40 °C, the absorbance was measured at 
765 nm against each blank. The content of phenol was 
calculated from the standard curve obtained from different 
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concentrations of gallic acid and expressed as milligrams 
per gram FW. 
2.2.6. Anthocyanin content
Anthocyanin was extracted according to the procedure 
described by Mancinelli et al. (1976). An aliquot of the 
powdered plant material was extracted with methanol 
containing 1% (v/v) HCl, and absorption was determined 
spectrophotometrically at 530 and 657 nm.
2.2.7. Lycopene content
Lycopene was spectrophotometrically estimated according 
to the method of Fish et al. (2002). Approximately 0.3–
0.6 g samples were added to 5 mL of 0.05% (w/v) BHT 
in acetone, 5 mL of ethanol, and 10 mL of hexane. The 
recipient was introduced in ice and stirred on a magnetic 
stirring plate for 15 min. After shaking, 3 mL of deionised 
water were added, and the samples were shaken for 5 min 
on ice. Samples were then left at room temperature for 5 
min to allow the separation of both phases. The absorbance 
of the hexane layer (upper layer) was measured at 503 nm 
blanked with hexane.
2.2.8. High-performance liquid chromatography (HPLC) 
analysis 
2.2.8.1. Ascorbic acid
For estimation of ascorbic acid content (ASA), 1 g of 
frozen fruit tissues was homogenised in 5 mL of ice-cold 
6% m-phosphoric acid (pH 2.8) containing 1 mM EDTA 
(Gossett et al., 1994). The homogenate was centrifuged at 
20,000 × g for 15 min at 4 °C. The supernatant was filtered 
through a 30-µm syringe filter, and 50 µL of the filtrate was 
analyzed using a HPLC system (PerkinElmer series 200 
LC and UV/VIS detector 200 LC, USA) equipped with a 
5-µm column (Spheri-5 RP-18; 220 × 4.6 mm; Brownlee) 
and UV detection at 245 nm with 1.0 mL/min water (pH 
2.2) as the mobile phase, run isocratically (Gahler et al., 
2003).

2.2.8.2. β-carotene
β-carotene was extracted by grinding fruit tissues in a 
solution of 100% acetone containing CaCO3 (Jung, 2004). 
The extracts were centrifuged at 16,000 × g for 10 min, and 
20 µL of the resulting supernatants were used for HPLC 
analysis, as described by Gilmore and Yamamoto (1991) 
using the previously mentioned HPLC system. Solvent 
A (acetonitrile, methanol, Tris-HCl buffer 0.1 M, pH 8.0, 
72:8:3) was run isocratically from 0 to 4 min followed by 
a 2.5 min linear gradient to 100% solvent B (methanol, 
hexane, 4:1) at a flow rate of 2 mL/min. The detector 
was set at 440 nm for the integration of peak areas after 
calibration with the external standard.
2.2.8.3. Individual phenolic compounds
The individual phenolic compounds were extracted in 80% 
methanol, as described by Szaufer-Hajdrych et al. (2008), 
and 20 μL were immediately injected by analytic sample 
injector using the same HPLC system described above. The 
mobile phase consisted of the following linear gradient: 
5% methanol, 95% water (pH 2.6) and 80% methanol, 20% 
water (pH 2.2). The flow rate was 1 mL/min, and the UV 
detector was set at 290 nm for the integration of peak areas 
after calibration with the external standard (Garcia-Salas 
et al., 2010).
2.2.9. Statistical analysis
Each experiment was repeated at least 3 times. Values were 
expressed as means ± standard deviation (SD). The data 
of all experiments were analyzed using least significant 
differences (LSD) at a level of P ≤ 0.05, according to Steel 
and Torrie (1980).

3. Results 
In the present investigation NaCl significantly decreased 
fruit fresh and dry biomass, length, diameter, and volume 
(Table 1). The decrease in the fresh and dry biomass was 
about 73.5% and 52% of the control values. Exogenous 
application of SNP shifted off, to some extent, the 
inhibitory effect of salinity on various growth parameters 
of tomato fruit (Table 1). 

Table 1. Effect of exogenously sprayed SNP (10 µM) on some quality parameters of tomato fruits (length, diameter, volume, fresh and 
dry weights) grown under 100 mM NaCl. Values are the means of 3 independent replicates ± SD; means followed by different letters are 
significantly different at P ≤ 0.05 according to least significant difference (LSD).

Treatment Fresh weight
g fruit–1

Dry weight
g fruit–1

Fruit length
cm

Fruit diameter
cm

Fruit volume
cm3

Hoagland’s 26.95 ± 2.7b 2.12 ± 0.166a 3.3 ± 0.285b 3.8 ± 0.22 b 14.5 ± 1.22b

SNP only 53.52 ± 4.98a 2.63 ± 0.207a 5.0 ± 0.56a 6.0 ± 0.55a 57.0 ± 4.85a

Salt only 7.14 ± 0.81c 1.02 ± 0.087b 2.2 ± 0.12c 2.2 ± 0.16 b 5.0 ± 0.41c

Salt + SNP 20.84 ± 1.99b 2.2 ± 0.14a 3.0 ± 0.22b 3.3 ± 0.21 b 18.0 ± 0.103b
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3.1. ASA content
Salt stress in SNP-treated and untreated plants significantly 
increased ASA content of tomato fruit (1.97- and 7.09-
fold, respectively) compared to their controls (Table 2). 
3.2. Na content
Salt stress also resulted in an increase in the Na content in 
both SNP-treated and untreated plants. However, spraying 
salinised tomato with SNP decreased the Na+ accumulation 
in fruit tissues by 63.5% compared to salinised plants 
(Table 2).
3.3. Lycopene and β-carotene
Under the prevailing experimental conditions, salinity 
decreased β-carotene and lycopene contents of tomato 
fruits by about 94% and 64.5%, respectively (Table 2). 
SNP treatment alone resulted in a significant increase in 
lycopene content, and that was associated with a significant 
decrease in β-carotene, while it has almost no effect under 
salt stress.
3.4. Total flavonoid, alkaloid, phenolic, and anthocyanin 
contents 
There was a significant increase in the total phenolic, 
flavonoid, and alkaloid contents of tomato fruits under 

salinity conditions by about 16.5%, 93.5%, and 97.7%, 
respectively, compared to the control (Table 3). Under the 
prevailing experimental conditions, salinity decreased the 
anthocyanin content, while SNP treatment significantly 
increased it. Data in Table 3 also demonstrate that 
spraying the salinised tomato plants with SNP resulted in 
a significant increase in total phenolic content, while the 
total alkaloids remain almost constant when compared to 
unsprayed plants.
3.5. Individual phenolic compounds
Under the prevailing experimental conditions, salinity 
increased some individual phenolic acids such as 
the protocatechuic, vanillic, chlorogenic, ferulic, and 
sinapic acids of SNP-treated or untreated tomato fruits. 
Conversely, coumaric and cinnamic acids were markedly 
decreased (Table 4). These results suggest that salinity 
enhances the biosynthesis of these acids at the expense of 
their precursors (cinnamic and coumaric). 
For example, chlorogenic acid increased by about 55% in 
salt stressed tomato fruit, while cinnamic acid decreased by 
about 23%. SNP had an inductive effect on some phenolic 
acids, such as ferulic, chlorogenic, and protocatechuic.

Table 2. Effect of exogenously sprayed SNP (10 µM) on the Na, ASA, lycopene, and β-carotene contents of tomato fruits 
grown under 100 mM NaCl. Values are the means of 3 independent replicates ± SD; means followed by different letters 
are significantly different at P ≤ 0.05 according to least significant difference (LSD).

Treatment Na content
mmol g–1 FW

ASA
µg g–1 FW

Lycopene
mg g–1 FW

β-carotene
µg g–1 FW

Hoagland’s 1.80 ± 0.109b 11.19 ± 1.095b 16.91 ± 1.42b 1.89 ± 0.109 a

SNP only 1.73 ± 0.098b 23.72 ± 3.07c 35.57 ± 3.07 a 0.57 ± 0.032b

Salt only 9.87 ± 1.06a 79.41 ± 6.88 a 5.99 ± 0.69c 0.117 ± 0.01c

Salt + SNP 3.60 ± 0.36c 46.8 ± 5.03d 6.89 ± 0.711c 0.197 ± 0.011c

Table 3. Effect of exogenously sprayed SNP (10 μM) on the total phenolic, alkaloid, flavonoid, and anthocyanin contents 
of tomato fruits grown under 100 mM NaCl. Values are the means of 3 independent replicates ± SD; means followed by 
different letters are significantly different at P ≤ 0.05 according to least significant difference (LSD).

Treatment Total phenolics
mg g–1 FW

Total alkaloids
µg g–1 FW

Total flavonoids
µg g–1 FW

Anthocyanin
mg g–1 DW

Hoagland’s 37.9 ± 2.96b 4.296 ± 0.28b 0.062 ± 0.001b 0.060 ± 0.013b

SNP only 22.53 ± 2.07b 3.528 ± 0.36b 0.036 ± 0.0025b
0.070 ± 0.008ab

Salt only 44.166 ± 3.69ab
8.496 ± 0.84a 0.120 ± 0.0085a 0.040 ± 0.013b

Salt + SNP 51.96 ± 5.22a
8.244 ± 0.92a 0.040 ± 0.013b 0.104 ± 0.092a
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4. Discussion
4.1. Growth parameters 
In the present study, NaCl significantly decreased fruit 
fresh and dry biomass and several other growth and quality 
parameters (Table 1). Similar results were also reported for 
tomato (İnal, 2002; Rahman et al., 2006; Saeed and Ahmad, 
2009) and strawberry (Khayyat et al., 2007) grown in 
saline soil. In contrast, several authors reported that fruit 
dry weight significantly increased under saline conditions 
in a number of horticultural crop species including tomato 
(Krauss et al., 2006; Gautier et al., 2010) and cucumber 
(Chartzoulakis, 1992). Exogenous application of SNP has 
shifted off to some extent the inhibitory effect of salinity 
on various growth parameters of tomato fruit. This may 
be explained by the role of SNP in protecting plasma 
membrane integrity. In a previous work in our lab it was 
demonstrated that NO could act as an antioxidant signal 
counteracting arsenic and salt stress in mung bean and 
tomato plants, respectively, by reducing reactive oxygen 
species content and enhancing some antioxidant enzyme 
activities (Ismail, 2012; Amany et al., 2013). Kausar et al. 
(2013) reported that NO application played a protective 
role against salt-induced oxidative damage in Triticum 
aestivum by effectively scavenging reactive oxygen species 
through increased activities of antioxidant enzymes.
4.2. ASA content 
Under the prevailing experimental conditions, increased 
concentrations of ASA in tomato fruits grown under saline 
conditions was in agreement with data reported for other 
tomato varieties grown under similar conditions (De 
Pascale et al., 2001; Dumas et al., 2003; Dorais et al., 2008). 
In contrast, Fanasca et al. (2007) recorded a decrease in 
ASA content of tomato fruits grown under salinity. Navarro 
et al. (2006) reported also that salinity decreased the ASA 
content of pepper fruits, and this effect was dependent 
on the maturity stage. However, the contradictory results 
reported on the impact of salinity on ascorbic acid content 
in tomato fruit might be related to genetic differences in 
sensitivity to salinity stress, differences in the intensity of 

salinity applied to the plant, and interactions with other 
factors like ripening stage (Dumas et al., 2003). In addition, 
the possibility for a plant to limit salt accumulation within 
its tissues triggers differences in the intensity of salinity 
stress perceived by the plant. Furthermore, it is well 
known that ascorbic acid is an important component of 
several fruits (tomato, pepper, and strawberry) that reacts 
with singlet oxygen and other free radicals and suppresses 
peroxidation (Dorais et al., 2008). 
4.3. Na content
Salt stress significantly increased the sodium content 
of tomato fruit (Table 2). In agreement with these data, 
several authors reported that salt stress induced the 
accumulation of Na+ in tomato fruit, and this may also 
result in an enhancement of oxidative parameters (Gautier 
et al., 2010). Thus, the increased ASA content recorded 
under salt stress might be linked to the key role of ascorbic 
acid as a non-enzymatic system and a strong antioxidant 
in response to the salinity-induced oxidative damage. 
Spraying salinised tomato with SNP decreased the Na+ 
accumulation in fruit tissues, and this indicates that SNP 
may protect plasma membrane integrity against the lipo-
oxygenative processes. 
4.4. Lycopene and β-carotene
Among several horticultural crops, tomato has been 
reported to be the predominant source of carotenoids, 
which play an important role in fruit colouring (Dorais et 
al., 2008). In addition, lycopene and β-carotene are widely 
known as powerful natural antioxidants that act as the 
most efficient singlet oxygen quenchers in vitro among 
common carotenoids (Di Mascio et al., 1989). In the 
present study, salinity decreased β-carotene and lycopene 
contents of tomato fruits (Table 2). In agreement with 
these data, Dorais et al. (2000) showed that β-carotene in 
tomato fruit was significantly decreased under salt stress. 
Riggi et al. (2008) found that water stress had a negative 
effect on lycopene accumulation during tomato ripening 
but had no effect on β-carotene.

Table 4. Effect of exogenously sprayed SNP (10 μM) on the phenolic composition of tomato fruits grown under 100 mM NaCl using 
HPLC analysis.

Treatment
Phenolic compounds µg g–1 FW

Gallic Protocatechuic Vanillic Chlorogenic Esculetin Ferulic Sinapic Coumaric Cinnamic

Hoagland’s 335 116 144 128 116 100 124 153 132

SNP only 217 146 187 63 162 113 172 106 119

Salt only 184 238 217 199 116 180 257 93 101

Salt + SNP 219 374 234 215 96 235 323 51 46
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In contrast, Krauss et al. (2006) reported that moderate 
salinity enhances lycopene and β-carotene in fresh tomato 
fruit, although this was not confirmed by the results of 
Fernández-Garcia et al. (2004). However, according to 
de Pascale et al. (2001), the total carotenoid and lycopene 
concentrations in tomato fruit are enhanced by moderate 
salinity but decrease as the level of salinity exceeds a 
threshold value. 

Carotenoids are intimately linked with photosynthesis 
as a part of the light harvesting system, and it is well known 
that salinity suppresses photosynthesis (Chartzoulakis and 
Klapaki, 2000). Thus, under the prevailing experimental 
conditions the decrease in lycopene and β-carotene 
contents may relate to the decrease in photosynthetic 
processes under salinity. A possible explanation would 
be that salinity may inhibit or upregulate the biosynthetic 
pathway of carotenoids via inhibition of the genes encoding 
enzymes related to lycopene and β-carotene (Dumas et al., 
2003). Recently, Babu et al. (2011) reported that salt stress 
caused an inhibition in the expression of the gene encoded 
for lycopene β-cyclase, the enzyme that converts lycopene 
to beta carotene. 

SNP treatment alone resulted in a significant increase 
in lycopene content, and that was associated with a 
significant decrease in β-carotene; it has almost no effect 
under salt stress. Therefore, SNP treatment alone may 
block the enzymatic activities of β-carotene biosynthesis 
(e.g., β-cyclase) and, consequently, enhances the synthesis 
of other antioxidant components such as lycopene that 
protect the plants against the generation of oxidative 
chain. However, further studies are necessary to confirm 
this view. 
4.5. Total flavonoid, alkaloid, phenolic, and anthocyanin 
contents 
The results on phenol contents are in conformity with 
the findings in pepper (Navarro et al., 2006) and tomato 
fruits (Krauss et al., 2006), while it contrasts with those of 
Maggio et al. (2007) in other tomato varieties. In addition, 
Shi et al. (2002) reported that adding NaCl to the nutrient 
solution did not affect phytonutrients such as flavonoids 
(quercetin).

It is well known that anthocyanins are members of the 
flavonoid class of plant secondary metabolites that are not 
usually synthesised in tomato fruits (Mes et al., 2008). In 
the present investigation, salinity had almost no effect on 
anthocyanin content, while SNP treatment significantly 
increased it. Ganjewala et al. (2008) reported that SNP 
treatment increased the levels of anthocyanin and flavonol 
glycosides in pea leaves, most probably via its inhibitory 
effects on photosynthesis. 

The increased synthesis of total phenolic, flavonoid, and 
alkaloid contents under saline conditions may reflect some 
kind of defence against stress conditions (i.e. oxidative 

burden) since salt stress was accompanied by increased 
production of reactive oxygen species (Rezazadeh et al., 
2102).

Spraying the salinised tomato plants with SNP resulted 
in a significant increase in total phenolic contents, while 
total alkaloids remain almost constant compared to 
unsprayed plants. These observations reveal that the 
bioactive molecule NO (as SNP) may be an inducer for 
the biosynthesis of secondary metabolites (phenolics and 
anthocyanin) which act as oxygen scavengers to reduce 
oxidative stress and, hence, increase the growth and 
maturity of tomato fruits (Table 3).
4.6. Individual phenolic compounds
It has been reported that environmental stresses such 
as salinity lead to the accumulation of polyphenol 
constituents (Dixon and Palva, 1995). In the present study, 
salinity resulted in modulating several phenolic acids. For 
example, chlorogenic acid increased while cinnamic acid 
decreased in salt stressed tomato fruit. These results were 
in accordance with the results in several other plants such 
as artichoke leaves and tomato fruits (Sgherri et al., 2007; 
Rezazadeh et al., 2012) grown under saline conditions. 
Furthermore, several types of wounding of apple fruits 
and leaves induce accumulation of chlorogenic acid and 
flavanols via activating PAL (Michalek et al., 1999).

The results of the present study also suggest that salinity 
enhances the biosynthesis of these acids as salt-stress–
induced components that could play an important role in 
diminishing the oxidative processes. These results support 
the theory that polyphenols as secondary metabolites 
protect plant tissues against oxidative stress generated by 
salinity and contribute to salinity tolerance. The phenolic 
compounds of fruit may contribute to antioxidant 
intake, which is presumed to have a health-protective 
action (Kroon et al., 1999). For example, recent research 
indicated that benzoic and cinnamic acid derivatives 
have been recognised as potent antioxidants (Natella et 
al., 1999). In addition, Sgherri et al. (2007) reported that 
chlorogenic and caffeic acid can act as antioxidants due to 
their polyhydroxy nature. 

As shown in Table 4, the induction effect of SNP on the 
increase in some phenolic acids under salt conditions may 
confirm the hypothesis that NO can act as an inducer for 
biosynthesis of secondary metabolites (total phenolics and 
anthocyanin), which act as oxygen scavengers to reduce 
oxidative stress.

Application of NO could improve tomato fruit quality 
in the face of salinity by enhancing health-promoting 
compound (phenolic compounds, flavonoids, and 
alkaloids) synthesis in tomato fruits along with significant 
changes in other quality parameters.
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