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1. Introduction	
Peanut (Arachis hypogaea L.) is an important oilseed crop 
grown in 24 × 106 ha throughout the world (FAOSTAT, 
2010). It is mainly grown in semiarid tropical regions 
under rainfed conditions. Water deficit stress is one of 
the major abiotic stresses that have depressive effects on 
peanut productivity (Nageswara Rao et al., 1989; Nautiyal 
et al., 2002; Nigam et al., 2005), causing a yield loss of US$ 
500 million every year (Sharma and Lavanya, 2002).

Specific leaf area (SLA) and SPAD chlorophyll meter 
reading (SCMR) have been reported as important 
surrogate traits for tolerance to drought in peanut. Studies 
by Wright et al. (1994) observed that SLA was closely and 
negatively correlated with water use efficiency (WUE). 
SLA is significantly influenced by factors such as time 
of sampling and leaf age (Wright and Hammer, 1994; 
Nageswara Rao et al., 1995), suggesting the need for 
further studies on the factors influencing WUE in peanut 
(Nageswara Rao et al., 2001). Nageswara Rao et al. (2001) 
reported a significant and high interrelationship among 
SLA and SCMR in peanut, suggesting that SCMR could be 
used as a reliable and rapid measure to identify genotypes 
with low SLA and high WUE.

Extensive variation for SLA and other leaf characters 
exists in wild Arachis L. species (Nautiyal et al., 2008) 
with abundant DNA polymorphisms (Kochert et al., 1991; 
Halward et al., 1993; Garcia et al., 1996; Burow et al., 2001; 
Garcia et al., 2005; Moretzsohn et al., 2013) suggesting 
the need for molecular characterization of wild peanut 
germplasm for SLA and SCMR (surrogate traits for WUE).

Wild species have proven their importance in 
improvement of biotic and abiotic stresses in many 
crops (Simpson et al., 2003; Fernie et al., 2006; Tanksley 
and Fulton, 2007; Fu et al., 2010; Nevo and Chen, 2010). 
Likewise, wild Arachis species exhibit many desirable traits 
related to disease, pest and insect resistance, and drought 
tolerance. On the other hand, the cultivated peanut has 
been characterized by a narrow genetic base (Halward et 
al., 1991, 1992; Raina et al., 2001; Gimenes et al., 2002; 
Herselman, 2003; He et al., 2005). Thus, introgression 
breeding would certainly help in widening the narrow 
genetic base of cultivated peanut. It is, therefore, critical 
to determine the levels of genetic diversity available in 
wild relatives for SCMR and SLA and identify desirable 
donors to broaden the genetic base of the crop (Singh et 
al., 1997). Arachis glabrata Benth. was reported to thrive 
well under water deficit stress conditions (Nautiyal et 
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al., 2008) and remained largely unexploited. Arachis 
glabrata is highly cross-incompatible with A. hypogaea. 
However, Mallikarjuna and Sastri (1985a, 1985b, 2002) 
and Mallikarjuna (2002) reported fertile hybrids between 
A. hypogaea and A. glabrata and the transfer of genes for 
biotic and abiotic stresses to A. hypogaea.

Introgression of desirable traits could be more efficient 
and successful with the use of molecular markers and 
genetic linkage maps (Mohan et al., 1997; Samizadeh et 
al., 2003; Varshney et al., 2005; Burow et al., 2008; Selvaraj 
et al., 2009; Varshney et al., 2009; Khedikar et al., 2010; 
Mondal and Badigannavar, 2010; Ravi et al., 2010; Gautami 
et al., 2011; Shirasawa et al., 2012; Sujay et al., 2012). In 
the recent past, good progress was made for tagging a few 
economically important traits (Mace et al., 2006; Selvaraj 
et al., 2009; Mondal et al., 2012) and genetic linkage maps 
have been developed using both wild species (Burow et 
al., 2001; Moretzsohn et al., 2005) and cultivars in peanut 
(Varshney et al., 2009; Sujay et al., 2012). 

Success in marker-assisted selection (MAS) depends 
on accurate phenotyping of the breeding lines, which is 
difficult sometimes in natural field conditions and/or in 
simulated artificial conditions. Climatic conditions vary 
not only with locations and growing seasons, but also from 
year to year at the same location. The phenotype reflects 
nongenetic as well as genetic influence on plant growth 
and development. Effects of genotype and environment 
are not independent (Comstock and Moll, 1963). 
Knowledge on the performance and/or adaptability of 
genotypes to particular environments is highly important 
to estimate the agronomical value of the genotype and 
allows recommendations for specific environments. The 
selection of genotypes, based on the stability in different 
environments rather than on trait means in a specific 
environment, is a strategy to reduce the genotype × 
environment interaction (Eberhart and Russell, 1966). 
Thus, a stable wild accession identified for a trait of 
interest would unravel variation for many useful traits not 
observed in the cultivated species. 

In the present study, we report 1) genetic diversity of 
Arachis glabrata accessions using DNA markers [simple 
sequence repeat (SSR) and random amplified polymorphic 
DNA (RAPD)], 2) genetic variability of A. glabrata 
accessions based on surrogate traits (SLA and SCMR) 
for tolerance to drought, 3) stable accessions for SCMR, 
and 4) association of markers with SCMR in A. glabrata 
accessions.

2. Materials and methods
In this study, 34 Arachis glabrata accessions of various 
origins have been used (Table 1). Stem cuttings of 
perennial A. glabrata accessions were collected from 
the International Crop Research Institute for Semi-Arid 

Tropics (ICRISAT), Hyderabad, India. Cuttings were 
propagated and maintained in closed-bottom concrete 
round pots of 66 cm in diameter and 46 cm in height filled 
with a mixture of soil and sand at a 1:1 ratio under field 
condition (Figure 1). Fertilizers (DAP and urea) were 
applied at 6-month intervals at a ratio of 25:60:30 (N:P:K) 
for luxurious growth. Pots were irrigated on alternate days 
except in the rainy season (July to September).  
2.1. Surrogate traits for water deficit stress
In each accession, 30 leaves from the 2nd and 3rd positions 
from the top of the main axis or branches were collected 
from 5 randomly selected plants per replication to record 
SCMR and SLA values, using the equation SLA = leaf area 
(cm2) / leaf dry weight (g). Leaf area was measured using a 
leaf area meter (LI 3000 LI-COR, USA) followed by drying 
at 80 °C in a hot air oven for leaf dry weight. SCMR was 
recorded as described by Nigam and Aruna (2008) using 
a SPAD meter (SPAD-502, Minolta Corp., USA) from the 
leaves collected for recording SLA.
2.2. Isolation of genomic DNA
Genomic DNA was extracted from tender leaf samples 
collected from field-grown plants following a CTAB method 
(Saghai-Maroof et al., 1984). The quality of total DNA 
isolated was checked in NanoDrop spectrophotometer 
(Model ND 1000, NanoDrop Technologies, USA) at an 
A260/A280 ratio as well as in 2% agarose gels. 
2.3. Molecular markers
RAPD (Table 2) SSR primers (Table 3) obtained from 
Integrated DNA Technologies (USA) were used in the 
study. The polymerase chain reaction (PCR) mixture (8 
µL) contained 0.5 µL (50 ng) of genomic DNA, 2.5 U of 
Taq DNA polymerase, 0.75 µL of 10X Taq buffer (Genei, 
India), 0.5 µL of dNTPs (10 mM) (Genei), 5 µL of Milli-Q 
water, and 0.5 µL each of forward and reverse primers (25 

Figure 1. Arachis glabrata accessions maintained in concrete pots 
under field conditions.
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Table 1. Details of 34 Arachis glabrata accessions used in the present study. 

Gen no. NRCG no. ICG no. Org Lat (°S) Long (°W) Elev (m)

G1 11841 8177 PRY 23.25 57.5 100

G2 11837 8173 PRY 23.25 57.5 100

G3 11835 8171 BRA 18.28 54.46 247

G4 11833 8169 BRA 20.43 54.33 450

G5 11839 8175 PRY 23.25 57.5 100

G6 11828 8161 PRY 22.13 56.53 700

G7 11823 8156 PRY 27.32 55.78 80

G8 11824 8157 PRY 27.32 55.78 80

G9 11816 8149 BRA 20.26 55.22 225

G10 11831 8166 BRA 22.57 55.13 400

G11 11830 8165 BRA 22.07 56.48 250

G12 11846 8188 BRA - - -

G13 11832 8167 BRA 21.5 54.3 400

G14 11815 8148 BRA - - -

G15 11821 8154 ARG 44.3 65.35 -

G16 11819 8152 BRA 21.43 57.26 200

G17 11817 8150 BRA 20.26 55.23 225

G18 11818 8151 BRA 20.5 55.53 250

G19 11813 8145 ARG - - -

G20 11847 8902 BRA - - -

G21 11834 8170 BRA 20.5 54.24 570

G22 11838 8174 PRY 23.25 57.50 100

G23 11826 8159 PRY 25.29 56.35 220

G24 11820 8153 BRA 21.39 57.19 200

G25 11822 8155 PRY 27.32 55.78 80

G26 11825 8158 PRY 25.25 56.58 220

G27 11836 8172 BRA - - -

G28 11844 8184 BRA - - -

G29 11845 8185 BRA - - -

G30 11829 8162 BRA 22.7 56.32 200

G31 11842 8179 BRA - - -

G32 12036 8950 BRA 18.55 54.33 300

G33 12033 8921 ARG 27.45 57.36 60

G34 11840 8176 PRY 23.25 57.50 100

Abbreviations: Gen no. = Genotype number, Org = origin, Lat = latitude, Long = longitude, Elev = Elevation, 
PRY = Paraguay, BRA = Brazil, ARG = Argentina. 
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Table 2. RAPD primers used in the amplification of Arachis glabrata accessions with 
their sequence and annealing temperature (TM).

No. Primer no. Sequence TM (°C)
1 D5 5’- TGAGCGGACA -3’ 37.1
2 D6 5’- ACCTGAACGG -3’ 34.3
3 D7 5’- TTGGCACGGG -3’ 40.9
4 D9 5’- CTCTGGAGAC -3’ 29.5
5 OPT5 5’- GGGTTTGGCA -3’ 35.8
6 OPT6 5’- CAAGGGCAGA -3’ 34.1
7 OPT7 5’- GGCAGGCTGT -3’ 40.3
8 OPI5 5’- TGTTCCACGG -3’ 34.9
9 OPI6 5’- AAGGCGGCAG -3’ 41.1
10 OPI7 5’- CAGCGACAAG -3’ 33.5

Table 3. SSR primers used in the amplification of Arachis glabrata accessions with their sequence and annealing temperature (TM).

Primer Sequence TM (°C)
SSR

PM15
F 5’- CCTTTTCTAACACATTCACAC ATGA -3 53.7
R 5’- GGCTCCCTTCGATGATGAC -3 55.4

PM402
F 5’- CCGCCCTAAAAACTGTATTCG -3 53.9
R 5’- CCTAAGAGTACACGCGACGA -3 56.2

PM375
F 5’- CGGCAACAGTTTTGATGGTT -3 54.2
R 5’- GAAAAATATGCCGCCGTTG -3 52.7

PM32
F 5’-AGTGTTGGGTGTGAAAGTGG GGGACT -3 63.9
R 5’- CGGAACAGTGTTTATC -3 43.9

PM188
F 5’- GGGCTTCACTGCTTTTGATT -3 53.8
R 5’- TGCGACTTCTGAGAGGACAA -3 55.8

 PMc588
F 5’- CCATTTTGGACCCCTCAAAT -3 53.1
R 5’- TGAGCAATAGTGACCTTGCATT -3 54.7

PMc478
F 5’- GTCGTGCAGGTCAAAGTGC -3 57.0
R 5’- TTAAGATGGGTGCCTGCAAT -3 54.6

PMc297
F 5’- ATGCACCTGCAAGTGAAGAG -3 55.5
R 5’- TCAAGGATGCAGCAAGACAC -3 55.5

TC1A02
F 5’- GCAATTTGCACATTATCCGA -3 51.6
R 5’- CATGTTCGGTTTCAAGTCTCAA -3 53.4

TC11A04
F 5’- ACTCTGCATGGATGGCTACAG -3 56.9
R 5’- CATGTTCGGTTTCAAGTCTCAA -3 53.4

TC7C06
F 5’- GGCAGGGGAATAAAACTACTA ACT -3 54.5
R 5’- TTTTCCTTCCTTCTCCTTTGTC -3 52.7

TC2D06
F 5’- AGGGGGAGTCAAAGGAAAGA -3 55.6
R 5’- TCACGATCCCTTCTCCTTCA -3 55.2

TC1E01
F 5’- CAGCAAAGAGTCGTCAGTCG -3 55.8
R 5’- GAAAGTTCACTTGAGCAAATTCA -3 52.1

TC9F10
F 5’- ATCACAATCACAGCTCCAACAA -3 54.9
R 5’- GGCAAGTCTAATCTCCTTTCCA -3 54.5

TC11E04
F 5’- ACGACACCCTGAAATCAAGTTT -3 54.8
R 5’- CCGAAGGCACCAAAAAGTAT -3 53.2
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pmol). PCR amplification was performed in a C 10000 
thermal cycler (Bio-Rad, USA). For RAPD primers, 
samples were held at 94 °C for 4 minutes for complete 
denaturation of the template DNA, followed by 35 cycles 
of 1 min at 94 °C for denaturation of the template, 30 s at 
37 °C for primer annealing, and 1 min at 72 °C for primer 
extension. For amplification with SSRs, 44 cycles of 30 s at 
94 °C for denaturation of the template, 1 min at 54 °C for 
primer annealing, and 30 s at 72 °C for primer extension 
were used. 

The DNA was size-separated by horizontal 
electrophoresis in 3% agarose gels (Lonza, USA) and stained 
in ethidium bromide (0.1%). The resolved amplification 
products were scanned using a laser scanner (Fujifilm FLA 
5100, Japan). The amplification products were scored as 1 
(presence) or 0 (absence) across the lanes comparing their 
respective sizes. Only strong, reproducible, and clearly 
distinguishable bands were used in the following analysis. 
2.4. Statistical analysis
The level of polymorphism was measured by the number 
of polymorphic bands using the following equation: 
polymorphism % = number of polymorphic bands / 
total number of bands in that assay unit. Polymorphic 
information content (PIC) values in this study were 
calculated by the following algorithm: PIC [or the diversity 
index of Nei (1973)] = 1 – ∑ ƒi2, where ƒ is the frequency of 
the ith allele averaged across loci. 

Marker index (MI) value was calculated for the RAPD 
and SSR markers by applying the formula given by Powell 
et al. (1996) and Smith et al. (1997): MI = polymorphism 
(%) × PIC value.

Analysis of variance (ANOVA) was performed to check 
significance of genotypes between treatments. Variance 
components for SCMR and SLA were calculated by 
partitioning phenotypic variance into genotypic variance, 
environmental variance, and genotypic × environmental 
interaction variance. Furthermore, Finlay–Wilkinson  
stability analysis (Finlay and Wilkinson, 1963) was done 
for SCMR over 3 environments, the 2006 post-rainy season 
(February to May), 2006 rainy season (June to October), 
and 2007 post-rainy season (February to May). The model 
was presented with the following equation:

Fij = µij + gij + bitj + δij + eij,

where µij is the average yield of the ith genotype in the jth 
environment, gi is the average yield of the ith genotype 
in all environments, bi is the regression coefficient to the 
environmental index indicating a genotypic response to 
environmental changes, tj is an environmental index as a 
mean of all genotypes in the jth environment reduced by a 
grand mean, and δij is the deviation from regression of the 
ith genotype in the jth environment.

Heritability in the broad sense was computed for the 
2 characters by the formula suggested by Lush (1949). 
The predicted genetic advance (in the broad sense) was 
estimated according to the formula given by Johnson et al. 
(1955) using PBSTAT v.1.2 (Suwarno et al., 2008). Principal 
component analysis was performed for molecular data 
and significant principal components obtained were 
used to construct a cluster diagram by Ward’s method 
(Ward, 1963). A general similarity coefficient matrix was 
developed as suggested by Gower (1971) using PAST 
software (Hammer et al., 2001). 

Accessions were grouped into ‘low-SCMR’ and ‘high-
SCMR’ groups based on SCMR values. Accessions having 
SCMR values greater than the mean of 34 accessions 
formed the high-SCMR group, whereas accessions having 
SCMR values lower than the mean formed the low-SCMR 
group. Analysis of molecular variance (AMOVA) was 
performed using GenAlex (Peakall and Smouse, 2006) to 
study significant variance between the 2 groups. Regression 
analysis was used to detect associations between marker 
(genotypic) classes (presence or absence of the band) and 
their respective phenotypic values. The data on each marker 
were subjected to nonparametric Kruskal–Wallis one-way 
analysis of variance using PAST software (Hammer et al., 
2001) to identify markers potentially linked to SCMR.

3. Results
SSR markers have been found most successful in identifying 
molecular variation within the cultivated peanut species 
(Hopkins et al. 1999; Ferguson et al., 2004a, 2004b; Mace 
et al., 2006, 2007; Cuc et al., 2008; Varshney et al., 2009; 
Khedikar et al., 2010; Mondal and Badigannavar, 2010; 
Gautami et al., 2011; Shirasawa, 2012; Sujay et al., 2012). 
However, a few RAPD markers have been successfully 
used in the identification of candidate genes of interest in 
peanut (Burow et al., 1996; Garcia et al., 1996; Mondal et 
al., 2007).  

 In this study, 34 Arachis glabrata accessions of different 
origins were analyzed for genetic diversity using 10 RAPD 
and 15 SSR primers. The 10 RAPD primers yielded 140 
bands, of which 132 were polymorphic, with an average 
of 13.2 polymorphic fragments per primer (Table 4). The 
number of amplified fragments per primer ranged from 
11 to 18 and the size of amplicons ranged from 50 to 1500 
bp. Among these primers, OPT6 produced the maximum 
number of bands (18), while the lowest number of bands 
(11) was produced by OPT5. Polymorphism ranged from 
72.7% to 100.0%, with an average of 73.3%. All RAPD 
primers were highly polymorphic (≥50%). The PIC values 
for RAPD primers were higher than 0.90, with an average 
value of 0.92. The MI value of RAPD primers varied from 
65.4 (OPT7) to 93.9 (D7), with a mean value of 86.2. The 
RAPD primers used in the study had high polymorphism, 
PIC values, and MI values. 
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Table 4. Amplification of Arachis glabrata accessions by RAPD and SSR primers.

No. Primer G+C (%)
No. of bands

Polymorphism (%) PIC MI
M P Total

RAPD

1 D5 60.0 0 13 13 100.00 0.91 91.28

2 D6 60.0 0 14 14 100.00 0.93 92.69

3 D7 70.0 0 17 17 100.00 0.94 93.88

4 D9 60.0 0 13 13 100.00 0.92 91.75

5 OPT5 60.0 1 10 11 90.91 0.90 81.99

6 OPT6 60.0 1 17 18 94.44 0.94 88.62

7 OPT7 70.0 2 12 14 85.71 0.92 78.96

8 OPI5 60.0 1 12 13 92.31 0.92 84.55

9 OPI6 70.0 0 16 16 100.00 0.93 93.10

10 OPI7 60.0 3 8 11 72.73 0.90 65.35

Total 8 132 140

Mean 0.8 13.2 14.0 73.31 0.92 86.22

SSR

1 PM15 43.1 0 6 6 100 0.82 82.41

2 PM402 51.2 1 7 8 87.5 0.84 73.59

3 PM375 46.1 0 10 10 100 0.88 88.42

4 PM32 42.8 0 7 7 100 0.82 82.41

5 PM188 47.5 0 3 3 100 0.64 64.43

6 PMc588 42.8 0 8 8 100 0.86 85.56

7 PMc478 51.2 0 3 3 100 0.52 52.14

8 PMc297 50.0 0 5 5 100 0.79 78.76

9 TC1A02 40.4 0 2 2 100 0.39 38.56

10 TC11A04 46.5 0 6 6 100 0.78 77.70

11 TC7C06 39.1 0 2 2 100 0.49 49.38

12 TC2D06 50.0 0 9 9 100 0.88 88.35

13 TC1E01 41.8 0 9 9 100 0.88 88.03

14 TC9F10 43.1 0 5 5 100 0.78 77.72

15 TC11E04 43.9 0 6 6 100 0.79 78.75

Total 1 88 89

Mean 0.07 5.87 5.93 99.17 0.748 74.73

M = Monomorphic, P = polymorphic.
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Molecular analysis of Arachis glabrata accessions 
using 15 SSR primer pairs yielded 89 bands, of which 88 
were polymorphic, with an average of 5.9 polymorphic 
fragments per primer pair. The number of amplified 
fragments ranged from 2 to 10 per primer pair. Among 
these primers, PM375 produced the maximum number 
of bands (10), while the lowest number of bands (2) was 
produced by both TC1A02 and TC7C06. All the primers 
except PM402 showed 100% polymorphism. The PIC of 
15 SSRs varied from 0.4 (TC1A02) to 0.9 (PM375) with 
a mean value of 0.74. The MI of SSRs varied from 38.6 
(TC1A02) to 88.4 (PM375) with a mean value of 74.7 
(Table 4). Out of 15 SSRs, 8 had high polymorphism, PIC 
values, MI values, and number of alleles amplified. 

Ward’s (1963) method of clustering using RAPD and 
SSR markers in the present study discriminated the 34 
Arachis glabrata accessions into 6 clusters (Figure 2). The 
maximum number of accessions (10) were grouped into 
cluster 2, while the minimum number of genotypes (3) 
were grouped into cluster 4 and cluster 5. Similar grouping 
of accessions was observed by principal component 
analysis with minor deviation (Figure 3). The grouping 
of accessions was neither consistent with the country of 
origin nor with their elevations (Table 1). Accessions G7, 
G8, and G25, suspected as being duplicates, grouped into 
separate clusters (ICRISAT, 2012). 

Dissimilarity coefficients obtained using Gower’s 
similarity coefficient among the accessions of Arachis 
glabrata ranged from 0.16 to 0.57 (Table 5). Highest 
genetic similarity was observed between G6 and G 7 
and between G7 and G8. Lowest genetic similarity was 
observed between accessions G16 and G34, which differed 
in their countries of origin.  

ANOVA for SLA and SCMR in 34 Arachis glabrata 
accessions over 3 seasons had significant variability for 
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genotype, environment, and genotype × environment 
interaction (Table 6). The components of phenotypic 
variance (VP) due to genotype (VG) and genotype × 
environment interaction (VG × E) are presented in Table 7. 
The magnitude of genotypic variance was higher (11.9) 
than genotype × environment interactions (6.7) in SCMR. 
However, the magnitude of genotype × environment 
interactions (460.6) was higher than genotypic variance 
(231.5) in the case of SLA. Heritability estimates in a broad 
sense for SCMR and SLA were 83.2% and 54.0%, respectively. 
In addition, genetic advances as percent mean of (GAM) 
for SCMR and SLA were 23.2 and 8.4, respectively. Thus, 
SCMR in A. glabrata showed higher heritability as well as 
higher GAM in comparison with SLA. 

Furthermore, Finlay–Wilkinson stability analysis 
(Finlay and Wilkinson, 1963) was done for SCMR over 
3 environments, the 2006 post-rainy season (February 
to May), the 2006 rainy season (June to October), and 
the 2007 post-rainy season (February to May), among 34 
Arachis glabrata accessions to identify stable genotypes 
(Table 8). Regression coefficients ranged from 0.13 (G31) 
to 2.24 (G8). Thirteen genotypes had regression coefficients 
greater than 1.00, while 4 genotypes (G3, G19, G23, and 
G26) had regression coefficients close to unit (bi = 0.95 to 

1.1) and the remaining 17 genotypes had coefficients of less 
than 1.0. The mean squared deviation from the regression 
coefficient (S2di) ranged from 0.02 to 5.28. The regression 
model defines a stable variety as having an above-average 
mean (Pi), a regression coefficient of unity (bi = 1.0), 
and a nonsignificant mean square for deviations from 
regression (S2di = 0). None of the genotypes satisfied this 
criteria; however, G30 had an above-average mean (Pi > 0), 
bi close to 1.00, and low S2di, and hence its performance 
may not change with a change in environmental conditions. 
Genotypes G10, G11, G20, and G28 had Pi > 0, bi > 0, and 
low S2di, and hence are sensitive to environmental changes. 
Genotypes G1, G6, G13, G22, and G31 had Pi > 0, low S2di, 
and bi less than 1.0. Performance of these genotypes will 
not change irrespective of environmental conditions and 
they may not respond to conducive environments, either. 
Genotypes G2 and G4 have steady performances under 
poor environments (Pi < 0, low bi, and low S2di) and may 
not respond to conducive environments. 

AMOVA between Low-SCMR and High-SCMR 
groups indicated a significant difference between (8%) and 
within (92%) groups (Table 9). Markers associated with 
SCMR based on single-marker analysis using regression 
and the nonparametric methods of marker association 

Table 6. Analysis of variance for SLA and SCMR among Arachis glabrata accessions.

Source df
SCMR SLA

MS F-count MS F-count 1%

Season 2 610.7 526.0** 30,319.7 287.7** 4.83

Replication 3 1.2 1.0ns 105.4 0.4ns 3.99

Genotype 33 86.1 5.9** 2574.6 2.2** 1.86

G × S* 66 14.5 12.9** 1185.5 4.5** 1.67

Error 99 1.1 264.4

Total 203

CV %         3.38 10.03

*: G × S = Genotype × environment interaction, **: statistically significant, ns: not significant.

Table 7. Estimation of phenotypic variance parameters and broad sense heritability among Arachis 
glabrata accessions for SLA and SCMR.

Source VG VG × E VP h2
bs (%) GA GAM

SCMR 11.9 6.7 14.3 83.2 6.5 23.2

SLA 231.5 460.6 429.1 54.0 23.0 8.4

VG = Genotypic variance, VP = phenotypic variance, VG × E = genotypic × season interaction variance.
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Table 8. Finlay–Wilkinson stability analysis for SCMR among 34 Arachis glabrata 
accessions.

Var. Mean Pi bi R2 S2di

G1 35.4 4.0 0.2 0.3 1.4

G2 28.3 –3.2 0.3 0.2 2.3

G3 30.8 –0.7 1.0 1.0 0.2

G4 30.3 –1.1 0.3 1.0 0.1

G5 29.5 –1.9 0.4 0.1 4.5

G6 37.4 6.0 0.4 0.1 5.3

G7 26.8 –4.6 1.6 1.0 0.2

G8 30.3 –1.1 2.2 1.0 0.0

G9 31.1 –0.3 0.2 0.1 2.5

G10 34.2 2.8 1.9 1.0 1.3

G11 35.5 4.1 1.6 1.0 0.9

G12 31.3 –0.1 0.4 0.1 4.8

G13 31.8 0.4 0.2 0.6 0.6

G14 31.2 –0.2 0.9 0.7 2.6

G15 27.0 –4.4 2.0 1.0 1.5

G16 31.1 –0.3 1.7 1.0 1.6

G17 31.8 0.4 0.8 0.8 1.9

G18 27.2 –4.2 1.8 0.9 2.6

G19 33.2 1.8 1.0 0.9 1.1

G20 33.0 1.6 1.3 1.0 1.0

G21 30.8 –0.6 2.0 1.0 1.4

G22 32.4 1.0 0.3 0.3 2.1

G23 31.6 0.2 1.1 0.8 2.2

G24 30.1 –1.3 1.4 1.0 0.3

G25 29.8 –1.6 1.2 0.5 4.9

G26 32.5 1.1 1.0 0.9 1.1

G27 31.4 0.0 0.8 0.8 1.8

G28 37.3 5.9 2.2 1.0 0.0

G29 35.0 3.6 0.8 0.9 1.2

G30 42.1 10.7 1.2 1.0 0.6

G31 33.1 1.7 0.1 0.0 5.0

G32 24.6 –6.8 0.7 0.7 2.0

G33 28.0 –3.4 0.9 0.5 3.7

G34 22.1 –9.3 0.9 0.5 3.8
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are presented in Table 10. The Kruskal–Wallis test was 
performed in order to obtain an estimate of each locus 
contribution to the differentiation between 2 SCMR 
groups and compared with R2 values. The Kruskal–Wallis 

test demonstrated that they were associated with the 
SCMR (P-value ranged from 0.04 to 0.008). Phenotypic 
variation as accounted by these markers ranged from 
14.8% to 33.4%.

Table 9. AMOVA for 34 genotypes in 4 clusters obtained by Ward’s method employing 10 RAPD and 15 SSR markers.

Source df SS MS Est. var. Variance Stat Value P

Among pops 1 123.3 123.3 4.4 8%

Within pops 32 1551.1 48.5 48.5 92%

Total 33 1674.4 52.9 100% PhiPt 0.083 0.01

Kruskal–Wallis test H: 1098, P < 0.0001.

Table 10. List of alleles putatively linked with SCMR as determined through locus-by-locus AMOVA % 
differentiation between ‘High-SCMR’ and ‘Low –SCMR’ groups among 34 Arachis glabrata accessions.

Locus Allele He P-value AMOVA % diff.

D5

1 11.8 0.003 33.4

2 6.4 0.04 17.1

3 6.4 0.04 29.9

4 6.4 0.04 22.9

5 11.8 0.003 33.4

D6 1 9.3 0.008 27.3

D9
1 6.4 0.04 23.2

2 9.3 0.008 23.2

3 7.2 0.04 14.8

OPT5 1 8.8 0.02 33.2

2 9.3 0.008 23.2

OPT6

1 11.9 0.008 32.8

2 6.4 0.04 28.6

3 9.8 0.008 18.0

4 9.3 0.008 23.2

OPT7

1 9.3 0.008 23.2

1 5.7 0.04 17.2

2 9.3 0.008 23.2

3 9.3 0.008 23.2

4 9.3 0.008 23.2

OPI5 1 9.8 0.008 22.9

OPI6 1 9.3 0.008 18.7

He = Expected heterozygosity.
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4. Discussion
DNA fingerprinting using molecular markers is a routine 
method employed to study the extent of genetic diversity 
across a set of germplasms or cultivars as well as to identify 
desired parents and for MAS in different crop species 
(Cooke, 1995; Collard et al., 2005; Mukherjee et al., 2013; 
Muthiah et al., 2013).

RAPD, a dominant PCR-based marker, has been 
reported as less polymorphic in cultivated peanut 
(Subramanian et al., 2000; Mondal et al., 2005). 
However, with limited sequence information in peanut, 
a few economically important traits, namely nematode 
resistance (Burow et al., 1996) and rust resistance (Mondal 
et al., 2007), have been tagged using RAPD markers. In 
contrast, SSRs are codominant PCR-based markers and 
more polymorphic in cultivated peanut than RAPDs. In the 
recent past, good progress was made in the development of 
SSRs as well as in tagging of economically important genes 
in peanut (Selvaraj et al., 2009; Varshney et al., 2009; Hong 
et al., 2010; Mondal and Badgannavar, 2010; Gautami et 
al., 2011; Ravi et al., 2011; Mondal et al., 2012; Qin et al., 
2012; Sujay et al., 2012).

SSR primer pairs used in this study amplified 4 to 18 
alleles. Some SSR primer pairs amplified more than one 
locus, which could be due to loci duplication in Arachis 
glabrata, a tetraploid species. Meiotic analysis of A. glabrata 
produced tetravalents (2.3 per cell), univalents (1.1 per 
cell), and occasional trivalents (0.2 per cell), although 
having 20 bivalents in a cell was not an uncommon feature 
(Mallikarjuna, 2004). Amplification of more than one 
fragment by primer pairs/markers in peanut was reported 
in earlier studies (Hopkins et al., 1999; Krishna et al., 2004; 
Kottapalli et al., 2007; Varshney et al., 2009) and has been 
attributed to either amplification of duplicated loci or 
different loci, because of the tetraploid genome. Liang et 
al. (2009) observed 3–18 alleles in wild species, which was 
attributed mainly to differences in repeat type and length 
in the microsatellite regions.

Accessions with unique alleles may be useful for 
introgressing diversity into cultivated peanut, which has 
a narrow genetic base, for crop improvement. Further 
evaluation of these novel alleles may provide some 
association with useful traits for peanut breeders. SSR 
markers used in this study were highly polymorphic and 
efficient in revealing the level of genetic diversity present 
in the tetraploid accessions studied.

High levels of genetic diversity in Arachis glabrata 
accessions indicated that these populations had not 
experienced any major genetic drift so far, since A. glabrata 
is solely asexually propagated through rhizomes and 
characterized with cleistogamous flowers. Natural cross-
pollination occurs at rates of less than 1% to greater than 
6% due to atypical flowers or action of bees (Coffelt, 1989). 

Hence, A. glabrata is maintaining its genetic variations 
as such without much gene flow. In nature, the amount 
of genetic diversity found in plant populations is often a 
function of the rate of gene flow (Bruschi et al., 2003). 

In this study, Arachis glabrata accessions belonging 
to different countries of origin were clustered together by 
multivariate analytical tools, which may be attributed to: 
1) high levels of polymorphism detected at the analyzed 
loci; 2) occurrence of homoplastic alleles, i.e. alleles that 
present the same size (bp) in a gel but are not identical 
by descent (Varshney et al., 2005); and 3) allele-sharing 
between accessions belonging to different genomes. In 
addition, A. glabrata accessions used in these studies were 
found to differ in SLA as well as SCMR, 2 surrogate traits 
of WUE in peanut (Wright et al., 1996; Nageswara Rao 
et al., 2001; Bindu Madhava et al., 2003; Chunilal et al., 
2006; Nigam and Aruna, 2008). Environment (season) 
as well as genotype × environment interactions had 
significant influence on the expression of SLA and SCMR. 
This indicates that the expression of these 2 traits in A. 
glabrata is influenced by the environment. The magnitude 
of genotypic variance was greater than genotype × 
environment interactions in SCMR in contrast to SLA, 
indicating that expression of SCMR is more genetically 
controlled while expression of SLA is more influenced by 
the changes in environment. In addition, SCMR had high 
heritability and high GAM in both environments. On the 
other hand, SLA had high heritability as well as high GAM 
in post-rainy seasons, while, in the rainy season, it had 
moderate heritability with high GAM.

In the present study, variance due to genotype × 
environment interactions for SCMR was lower than SLA 
along with high heritability, indicating that SCMR was a 
more stable parameter than SLA in Arachis glabrata and 
confirming the earlier observation made by Upadhyaya 
(2005) in a mini core collection of peanut. Nigam and 
Aruna (2008) also reported that variance due to genotypes 
× time of observation was very small for SCMR in cultivated 
groundnut. High heritability coupled with high genetic 
advance irrespective of seasons indicated additive gene 
action for SCMR, and thus selection in early generations 
could be more effective than for SLA. In contrast, Babitha 
et al. (2006) observed high heritability and low GAM in 
F2 generations of 5 out of 6 peanut crosses, predicting 
that SCMR may be controlled by many genes under the 
influence of nonadditive gene action.  

Success of any crop breeding program depends on 
availability of stable parents. The interactions between 
genotype and environment can influence the selection 
process and recommendation of undesirable parents vis-à-
vis failure of crop breeding programs. Stability is defined 
as the ability of a certain variety to maintain stable yield 
under changing environmental conditions (Yılmaz and 
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Tugay, 1999). Thus, stability analysis of 34 Arachis glabrata 
accessions based on SCMR value, a stable surrogate of 
WUE, using the Finlay and Wilkinson (1963) model, 
resulted in identification of stable reliable parents for 
improving WUE in peanut. Finlay and Wilkinson (1963) 
defined that bi ~ 1.00 indicates average stability, bi < 1.00 
below average stability, and bi > 1.0 above average stability. 
However, varietal adaptability must be determined based 
on size of bi in unison with mean. Accordingly, varieties 
with bi > 1.00 and genotypic mean higher than grand mean 
(Pi > 0) possess below-average stability. They are highly 
sensitive to environment. Thus, under most favorable 
environment, such varieties may produce maximum 
results. Varieties with bi < 1.00 and Pi > 0 possess above-
average stability, i.e. low sensitivity to environment. They 
yield average results under poor conditions but low in rich 
environments. Accordingly, accessions G1, G6, G13, G17, 
G22, and G31 would be preferred under poor (water deficit 
stress) environments because these accessions would be less 
sensitive to environmental changes and produce average 
performance. Accessions G10, G11, G20, and G28 would 
be better choices under favorable environment and small 
changes in environmental conditions would greatly affect 
their SCMR values. In contrast, accessions G19, G23, 
and G26 exhibit average stability and are suitable to all 

environments, and changes in environment would have little 
or no effect on their performances. Accessions identified 
for stable expression will make good parents for improving 
SCMR vis-à-vis tolerance to water stress in peanut.

AMOVA has indicated that only 8% of total variation 
is accounted for between low and high SCMR groups, 
whereas the majority of variation was accounted for (92%) 
within the SCMR groups. The diversity analysis reported 
in the present study was also used to identify loci linked to 
SCMR for use in MAS. Sun et al. (2003) studied diversity 
among 35 spring wheat genotypes with different levels 
of resistance to Fusarium head blight using 160 RAPD 
markers and were successful in identifying 3 RAPD 
markers associated with FHB resistance. This indicates that 
unrelated parents could be used to identify markers linked 
to agronomically important traits, and such markers can be 
used as candidate markers for further gene mapping. They 
further highlighted that this approach is advantageous 
over bi-parental populations as the markers identified are 
likely to be applicable to large breeding program. In this 
study, all RAPD primers were highly polymorphic and 8 
primers were found to be associated with SCMR through 
the Kruskal–Wallis test and regression analysis. This study 
has identified 4 markers, D5-1, D5-5, OPT5-1, and OPT6-1, 
linked to SCMR with more than 30% phenotypic variance.
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