Turkish Journal of Botany
http://journals.tubitak.gov.tr/botany/

# Molecular phylogeny of the genus Amygdalus (Rosaceae) based on nrDNA ITS and cpDNA trnS-trnG sequences 

Mahnaz VAFADAR ${ }^{1,2, \star}$, Shahrokh KAZEMPOUR OSALOO ${ }^{3}$, Farideh ATTAR ${ }^{2}$<br>${ }^{1}$ Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran<br>${ }^{2}$ School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran<br>${ }^{3}$ Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

Received: 16.03.2013

- Accepted: 13.12.2013

Published Online: 31.03.2014

- Printed: 30.04.2014


#### Abstract

With over 40 species, almonds (Amygdalus L.) are among the most economically important Rosaceae fruit crops distributed in the Irano-Turanian region of southwestern and Central Asia and southeastern Europe. While Amygdalus is considered a separate genus in floristic treatments of Asian countries it is a subgenus or a section of Prunus L. s.l. in other treatments. Phylogenetic relationships of the Iranian wild almonds based on data from 2 nuclear and chloroplast spacers (nrDNA ITS and cpDNA $\operatorname{trnS}-\operatorname{trn} \mathrm{G}$ ) were constructed using the maximum parsimony and maximum likelihood, Bayesian inference, and NeighborNet methods. Data from 2 nuclear and chloroplast spacers were congruent. All of the Iranian almonds formed a well-established monophyletic clade, and the subgenus Cerasus was recovered as sister to Amygdalus. Amygdalus spinosissima Bge. was sister to all other Amygdalus species included in this study. Most of the Amygdalus species were grouped in a monophyletic clade that consisted of 2 subclades. The taxonomic status of 2 traditional subgenera of Amygdalus, Amygdalus and Dodecandra (Spach) Browicz, did not agree with the phylogenetic relationships revealed here. Among the studied species of Amygdalus, species of the section Spartioides Spach form a monophyletic clade (BV = 83\%). Amygdalus mira Koehne, Amygdalus davidiana (Carriere) Franch., Amygdalus triloba Ltdl., and Amygdalus nana L. were recovered outside the main clade Amygdalus, indicating that these species should be excluded from Amygdalus. Similar to the previous phylogenetic studies in Prunus s.l., phylogenetic analysis did not fully resolve relationships of the studied Amygdalus. NeighborNet analysis of the nrDNA ITS dataset of Iranian almonds supported reticulate relationships for all Amygdalus hybrids as previously reported.


Key words: Amygdalus, molecular phylogeny, nrDNA ITS, cpDNA trnS-trnG, Iran

## 1. Introduction

Rosaceae is a large family in the order Rosales, comprising about 90 genera and 3000 species mainly distributed in the northern hemisphere, especially in temperate zones (Potter et al., 2007). This family includes 29 genera and 243 species with 58 endemic taxa in Iran (Khatamsaz, 1993; Ghahreman and Attar, 1999). The members of this family can be easily identified with respect to their habit, flower, and fruit features. The traditional classification of Rosaceae in terms of subfamilial subdivisions was controversial. The type of fruit and basic chromosome number are the main features used for the identification. Schulze-Menz (1964) classified the members of this family into 4 subfamilies, namely Amygdaloideae, Maloideae, Rosoideae, and Spiraeoideae, based on fruit type. However, Takhtajan (1997) later reclassified the family into 12 subfamilies. According to phylogenetic studies by Potter et al. (2007), Rosaceae currently consists of 3 subfamilies, namely Spiraeoideae, Dryadoideae, and Rosoideae, with the 2

[^0]traditionally recognized subfamilies, Amygdaloideae and Maloideae, transferred into Spiraeoideae.

Amygdalus L. (almond) includes economically important fruit crops and consists of about 40 species worldwide. These species are phytogeographically distributed in the Irano-Turanian region in southwest and Central Asia and southeastern Europe (Browicz and Zohary, 1996). In Iran, almond in the form of trees or shrubs can be found in rocky and mountainous areas (about 400 m to 3800 m ), steppes, and semiarid to arid habitats. They may grow in a wide range of habitats including stony to sandy slopes, dry valleys, woodlands, or steppe-forests at the margin of oak-pistachio parklands in western Iran.

Taxonomic status and circumscription of this group have always been controversial. In floristic treatments of Asian countries (Flora Iranica, Flora of Iran, Flora of Turkey, Flora of the USSR, Flora of Armenia, Flora of Iraq, Flora of Palestine, Flora Orientalis, and Flora of China) Amygdalus
was considered a separate, distinct genus in the family Rosaceae based on sessile or subsessile flower, pubescent drupes, drying and splitting mesocarp, and pitted or grooved stones. Amygdalus consists of 2 subgenera, Amygdalus and Dodecandra (Spach) Browicz, according to Browicz (1969) in Flora Iranica and Khatamsaz (1993) in Flora of Iran. The former subgenus includes 2 sections, Amygdalus and Spartioides Spach, and the second lacks sectional classification.

According to Flora Iranica, 15 species and 2 hybrids of Amygdalus are distributed in Iran, while 21 species and 6 hybrids of this genus were reported in Flora of Iran. Among these, 7 species and all the hybrids are endemic to Iran (Khatamsaz, 1993). Additionally, 2 new species, Amygdalus kurdistanica Attar, Maroofi \& Vafadar and Amygdalus orazii Maroofi, Attar \& Vafadar, were later described as 2 introduced Amygdalus species in Flora of Iran (Attar et al., 2009).

Contrary to its classification in floristic treatments of Asian countries, Amygdalus has primarily been recognized as a subgenus or section in the genus Prunus L. by most European taxonomists. According to the most widely accepted classification of Prunus, this genus consisted of 5 subgenera including the subgenera Amygdalus (L.) Focke, Prunus, Cerasus Pers., Laurocerasus Koehne, and Padus (Moench) Koehne (Rehder, 1940).

Few phylogenetic studies have addressed relationships within and between species in the genus Amygdalus and the rest of Prunus; thus, the phylogenetic status of Amygdalus is still not clear. Almonds were recognized as monophyletic, based on the studies by Bortiri et al. (2001), using nrDNA ITS and cpDNA $\operatorname{trnL}-\operatorname{trn} \mathrm{F}$ data. According to the phylogenetic studies by Lee and Wen (2001), which used ITS sequences of nuclear ribosomal DNA, the subgenus Amygdalus (sensu Rehder, 1940) was revealed within the subgenus Prunus (sensu Rehder, 1940), and the relationships between the 2 sampled taxa of the subgenus Amygdalus remained unresolved. These results also agreed with those published by Bortiri et al. (2001).

Furthermore, Amygdalus was later revealed as a polyphyletic group by Wen et al. (2008), using data from nrDNA ITS, and $n d h \mathrm{~F}$ showed the subgenus Amygdalus (sensu Rehder, 1940) as polyphyletic.

Based on recent molecular phylogenetic studies by Yazbek and Oh (2013) on the subgenus Amygdalus (almond and peach), which include 22 species and use 6 chloroplast gene regions $(\operatorname{trnL}-\operatorname{trn} \mathrm{F}, \operatorname{trn} \mathrm{S}-\operatorname{trn} \mathrm{G}, \operatorname{trn} \mathrm{H}-$ $p s b \mathrm{~A}, r p \mathrm{~L} 16, n d h \mathrm{~F}-r p l 32$, and $\operatorname{trnQ}-5 r p s 16)$ and 1 nuclear gene ( $s 6 p d h$ ), a very strongly supported clade of Prunus subgenus Amygdalus, including almonds and peaches, was recovered. Within the clade Amygdalus s.s., a strongly supported resolution was lacking.

Almost all the former taxonomic classifications of Amygdalus based on morphological characters revealed
no clear relationships between species. Taxonomic circumscriptions within Rosaceae havebeen associated with many difficulties due to high variation in morphological characters (Khatamsaz, 1993), self-incompatibility, interspecific gene transfer, and high rates of hybridization (Judd et al., 2002). In addition, micromorphological studies (pollen and drupe ultrastructural studies) and leaf anatomical studies in Amygdalus by Vafadar et al. (2008, 2010a, 2010b) indicated variation insufficient to resolve the taxonomic relationships of Amygdalus.

Since all studied taxa were allogamous taxa, and gene transfer was a fairly common process among these species, bifurcating trees could not be employed to represent phylogenetic relationships. Hybridization/gene transfer is sometimes quite specific, and networks may be useful only for studying certain types of evolution (Lemey et al., 2009). Phylogenetic networks are important and powerful tools for studying complex patterns in molecular sequence data and have been used to study intraspecific DNA sequence variation (Winkworth et al., 2005). The NeighborNet method produces more resolved split networks for large datasets than the split decomposition method.

The main objectives of the present work were to construct molecular phylogeny among Amygdalus and Prunus, to elucidate phylogenetic relationships within Amygdalus, and to evaluate the taxonomic status of Amygdalus based on the sequence data from nrDNA ITS and $\operatorname{trnS}$ - $t r n G$ intergenic spacers.

## 2. Materials and methods

### 2.1. Selection of taxa

The data matrix consisted of 47 taxa ( 52 accessions, including 31 taxa of Iranian Amygdalus) for nrDNA ITS, 43 taxa ( 44 accessions) for cpDNA $\operatorname{trnS}-\operatorname{trnG}$, and 39 taxa as ingroups for combined analyses. In addition, sequences belonging to different subgenera of Prunus were also obtained from GenBank and analyzed here. Prunus laurocerasus L. and P. padus L. were chosen as outgroups following previous molecular phylogenetic studies in Prunus (Lee and Wen, 2001; Wen et al., 2008). The nrDNA ITS for 24 species and 4 hybrid species of Amygdalus and the cpDNA $\operatorname{trnS}$ - $t r n$ G for 13 species and 4 hybrid species of Amygdalus collected in Iran are published here for the first time. The taxa analyzed and voucher information are presented in Table 1.

### 2.2. DNA extraction

DNA extraction was performed from either fresh collected leaves or dried herbarium leaf specimens from the Tehran University Herbarium (TUH) using a modified CTAB method of Doyle and Doyle (1987). The collected specimens were deposited in the TUH after DNA extraction.

## VAFADAR et al. / Turk J Bot

Table 1. Sampled taxa used in this study with their GenBank accession numbers (nrDNA ITS and cpDNA $\operatorname{trnS}-\operatorname{trnG}$ ). A hyphen shows that the sequence is not accessible.

| Species | Source and voucher | GenBank accession no. |
| :---: | :---: | :---: |
|  |  | ITS/trnS-trnG |
| Amygdalus communis L . | Iran: Kurdistan, Attar, Maroofi \& Zamani, 36333-TUH | AB890354 / AB890323 |
| Amygdalus orazii Maroofi, Attar \& Vafadar | Iran: Kurdistan, Maroofi, Attar \& Vafadar, 37225-TUH | AB890353 / AB890327 |
| Amygdalus trichamygdalus (Hand.-Mazz.) Woronow | Iran: Kurdistan, Attar, Maroofi \& Zamani, 36331-TUH | AB890355 / AB890335 |
| Amygdalus wendelboi Freitag | Iran: Hormozgan, Ghahreman \& Mozaffarian, 5420-TUH | AB890364 / AB890306 |
| Amygdalus korshinskyi (Hand.-Mazz.) Bornm. | Iran: Kurdistan, Attar, Maroofi \& Zamani, 36337-TUH | AB890346 / AB890334 |
| Amygdalus sp. | Iran: Kurdistan, Maroofi, Attar \& Vafadar, 37325-TUH | AB890344 / AB890325 |
| Amygdalus fenzliana (Fritsch) Lipsky Amygdalus nairica Fed. et Takht. | Iran: east Azerbayjan, Attar \& Zamani, 37212-TUH Iran: east Azerbayjan, Attar \& Zamani, 37219-TUH | AB890367 / AB890339 <br> AB890366 / AB890340 |
| Amygdalus haussknechtii (C.K.Schneider) Bornm. | Iran: Kurdistan, Attar, Maroofi \& Zamani, 36330-TUH | AB890359 / AB890337 |
| Amygdalus kurdistanica Attar, Maroofi \& Vafadar | Iran: Kurdistan, Maroofi \& Mohammadi, 6588-Kurdistan Herbarium | AB890357 / AB890321 |
| Amygdalus orientalis Duh. | Iran: Kermanshah, Attar, Vafadar \& Zamani, 37231-TUH | AB890365 / AB890313 |
| Amygdalus kotschyi Boiss. \& Hohen. | Iran: Kurdistan, Attar, Maroofi \& Zamani, 36029-TUH | AB890350 / AB890333 |
| Amygdalus carduchorum Bornm. | Iran: Kurdistan, Attar, Vafadar \& Maroofi, 37235-TUH | AB890349 / AB890322 |
| Amygdalus pabotii Browicz | Iran: west Azerbayjan, Attar, Vafadar \& Maroofi, 37224-TUH | AB890351 / AB890314 |
| Amygdalus elaeagnifolia Spach subsp. elaeagnifolia | Iran: Esfahan, Attar \& Zamani, 36186-TUH | AB890318 / - |
| Amygdalus elaeagnifolia Spach subsp. leiocarpa (Boiss.) Browicz | Iran: Kohgiluyeh and Boyer Ahmad, Attar \& Zamani, 36275TUH | AB890319 / - |
| Amygdalus reticulata Runemark ex Khatamsaz | Iran: Fars, Attar, Khatamsaz \& Sheikh, 20390-TUH | AB890368 / AB890315 |
| Amygdalus arabica Olivier Amygdalus arabica | Iran: Kurdistan, Attar, Maroofi \& Zamani, 36335-TUH Iran: Tehran, Vafadar \& Kazemi, 37349-TUH | $\begin{aligned} & \text { AB890356 / AB890316 } \\ & \text { AB890317 / - } \end{aligned}$ |
| Amygdalus glauca Browicz | Iran: Fars, Attar \& Zamani, 36299-TUH | AB890361 / AB890320 |
| Amygdalus scoparia Spach | Iran: Esfahan, Attar \& Zamani, 36106-TUH | AB890308 / - |
| Amygdalus scoparia | Iran: Fars, Attar \& Zamani, 36285-TUH | AB890360 / AB890309 |
| Amygdalus scoparia | Iran: Boushehr, Attar, 36382-TUH | AB890310 / - |
| Amygdalus scoparia | Iran: Tehran, Ghahreman \& Mozaffarian, 6283-TUH | AB890307 / - |
| Amygdalus spinosissima Bge. subsp. spinosissima | Iran: Khorassan, Ghahreman, Attar, Okhovvat \& Mahdigholi, 27289- TUH | AB890328 / - |
| Amygdalus spinosissima Bge. subsp. turcomanica | Iran: Khorassan, Attar \& Zamani, 37181-TUH | AB890342 / AB890329 |
| Amygdalus eburnea Spach | Iran: Kerman, Mirtadzadini, 23465-TUH | AB890363 / AB890338 |
| Amygdalus lycioides Spach var. horrida (Spach) Browicz | Iran: Alborz, Vafadar \& Kazemi, 37184-TUH | AB890358 / AB890332 |
| Amygdalus lycioides var. lycioides | Iran: Kurdistan, Attar, Maroofi \& Zamani, 36024-TUH | AB890331 / - |
| Amygdalus lycioides var. lycioides | Iran: Esfahan, Attar \& Zamani, 36319-TUH | AB890330 / - |
| Amygdalus sp. | Iran: Hamadan, Attar \& Zamani, 36318-TUH | AB890343 / AB890324 |
| Amygdalus sp. | Iran: Chahar Mahal-e Bakhtiari, Mozaffarian, 54543-TUH | AB890345 / AB890326 |
| Amygdalus $\times$ keredjensis Browicz | Iran: Alborz, Vafadar \& Kazemi, 37351-TUH | AB890352 / AB890341 |
| Amygdalus $\times$ kamiaranensis Khatamsaz \& Assadi | Iran: Kurdistan, Attar, Maroofi \& Zamani, 36313-TUH | AB890336 / AB890347 |
| Amygdalus $\times$ iranshahrii Khatamsaz | Iran: Fars, Vafadar \& Kazemi, 37123-TUH | AB890311 / AB890348 |
| Amygdalus $\times$ yasujensis Khatamsaz | Iran: Kerman, Mirtadzadini, 23470 -TUH | AB890312 / AB890362 |
| Subgen. Padus, Prunus serotina Ehrh. | USA: Illinois, Wen, 7229-US | NA / AM950176 |

Table 1. (continued).
Subgen. Padus, Prunus padus L.
Subgen. Laurocerasus, Prunus ilicifolia (Nutt.) Walp.

Subgen. Laurocerasus, Prunus laurocerasus L.
Amygdalus argentea (Lam.) Rehd.
Amygdalus nana L.
Amygdalus mira Koehne
Amygdalus davidiana (Carriere) Franch. Amygdalus triloba Lidl.
Amygdalus bucharica (Korsh.) Hand.-Mazz. Prunus dulcis (Mill.) Webb.

Prunus persica (L.) Batsch.
Subgen. Cerasus, Prunus pumila L.
Subgen. Cerasus, Prunus avium (L.) L.
Subgen. Cerasus, Prunus tomentosa Thunb.
Subgen. Cerasus, Prunus mahaleb (Dougl.) L.
Subgen. Cerasus, Prunus pensylvanica L.
Subgen. Cerasus, Prunus emarginata (Hook.) Walp.
Subgen. Cerasus, Prunus fruticosa Pall.
Subgen. Cerasus, Prunus glandulosa Thunb.
Subgen. Cerasus, Prunus bifrons Fritsch

USA: Colorado, cult. CS TS82097, Lee \& Wen, 4027-CS
USA: Santa Barbara, Young s.n., CS
Cult. AA 889-72-D, Lee \& Wen, 5001-CS
DPRU 194
USA: Colorado, cult. CS TS93054, Lee \& Wen, 4011-CS
DPRU 0953. EB 93
DPRU 581
USA: Colorado, cult. CS s.n.: Berggren s.n., CS DPRU 192.2
USA: Missouri, cult. MBG1983-0585: Davis s.n., CS
China: Zhejiang Prov., Wen, 3017-CS
DPRU 389.1
Cultivar: Van, no voucher
USA: Colorado, cult. CS TS81261, Lee \& Wen, 4010-CS
USA: Colorado, cult. CS TS83156, Lee \& Wen, 4015-CS
USA: Wisconsin, Wen, 7298-US
DPRU 2214
DPRU 385.11
USA: Colorado, cult. Ft. Collins, Berggren s.n., CS
DPRU 1213.1
DPRU 165.4

AF318726 / AY871259
AF179543 / AY871258
AF318724 / AY500740
AF318749 / AY871254
AF179560, AF179561 / AY500734

DQ003551 / AY500732
AF318744 / AY500731
EU669088 / NA
AF318719 / NA
EU669085 / EU669146
AF318741 / AY500733
NA / AY871255
AF318737 / AY871252
AF179500 / AY500729
AF318747 / AY500736
EU669090 / AY500737
AF318717 / AY871260
AF318738 / AY871257
AF318727 / AY500727
AF318757 / AY871246
AF492416 / AY871248

Abbreviations: TUH: Tehran University Herbarium, Cs: Colorado State University Arboretum, MBG: Missouri Botanical Garden, DPRU: USDA National Clonal Germplasm Repository.

### 2.3. Amplification, sequencing, and alignment of target regions

The nrDNA ITS spacer was amplified using primers ITS4 published by White et al. (1990) and ITS5m published by Sang et al. (1995). The cpDNA $\operatorname{trnS}-\operatorname{trnG}$ region was amplified using primers trnS and trnG published by Hamilton (1999). PCR amplification of the selected markers was performed in a $20 \mu \mathrm{~L}$ volume for both fragments containing $7.2 \mu \mathrm{~L}$ of deionized water, $10 \mu \mathrm{~L}$ of 2x Taq DNA polymerase master mix Red [Amplicon, cat. no. 180301; 150 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.5 ; 40 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$; $3.0 \mathrm{mM} \mathrm{MgCl}{ }_{2} ; 0.4 \mathrm{mM}$ dNTPs; 0.05 units $\mu \mathrm{L}^{-1}$ Amplicon Taq DNA polymerase; inert red dye; and stabilizer], $0.5 \mu \mathrm{~L}$ of each primer ( $5 \mathrm{pmol} / \mu \mathrm{L}$ ), $1 \mu \mathrm{~L}$ of DMSO, and $0.8 \mu \mathrm{~L}$ of template DNA ( $20 \mathrm{ng} / \mu \mathrm{L}$ ).

The PCR profile for nrDNA ITS consisted of an initial 2.5 min premelt at $94{ }^{\circ} \mathrm{C}$ and $26-35$ cycles of 1 min denaturation at $94^{\circ} \mathrm{C}$, annealing at $54^{\circ} \mathrm{C}$ for 50 s , and a 55 s extension at $72^{\circ} \mathrm{C}$ followed by a final extension of 55 $s$ at $72{ }^{\circ} \mathrm{C}$. The PCR profile for $\operatorname{trnS}-\operatorname{trn} \mathrm{G}$ consisted of an initial 4 min premelt at $95^{\circ} \mathrm{C}$ and $28-35$ cycles of 1 min denaturation at $95^{\circ} \mathrm{C}$, annealing at $62^{\circ} \mathrm{C}$ for 1 min , and a 1 min extension at $72^{\circ} \mathrm{C}$ followed by a final extension
of 7 min at $72^{\circ} \mathrm{C}$. PCR products were sequenced using the BigDye terminator cycle sequencing ready kit with the same primers in an ABI Prism 3730x1DNA Analyzer (Applied Biosystems, USA).

The sequences were edited using BioEdit version 7.0.9.0 (Hall, 1999). The sequence alignment was carried out using ClustalX (Larkin et al., 2007) and adjusted manually. Although frequent single and multiple-base indels (insertions/deletions) were observed in the data matrix, positions of indels were treated as missing data for all datasets. The preliminary analyses of datasets, including the indels, produced similar results.

### 2.4. Phylogenetic analyses

### 2.4.1. Parsimony method

Maximum parsimony (MP) analyses were conducted using PAUP* version 4.0 b 10 (Swofford, 2002). The heuristic search option was employed for each of the 2 single datasets using tree bisection-reconnection (TBR) branch swapping with 1000 replications of random addition sequence and an automatic increase in the maximum number of trees. Uninformative characters were excluded from analyses. Branch support values were calculated using a full heuristic search with 1000 bootstrap replicates
(Felsenstein, 1985), each with simple addition sequence. The combinability of these 2 datasets was assessed using the partition homogeneity test (incongruence length difference test; Farris et al., 1995) as implemented in PAUP*. The test was conducted with invariant characters excluded (Cunningham, 1997) using the heuristic search option and including 100 replications of random addition sequence and TBR branch swapping with 1000 homogeneity replicates. An automatic increase in the maximum number of trees (by 100 trees) was selected.

### 2.4.2. Bayesian method

The general time-reversible model, with a parameter for invariant sites and gamma distribution (GTR $+\mathrm{I}+\mathrm{G}$ ), was chosen as the best fitting model of sequence evolution for the combined dataset using MrModeltest version 2.3 (Nylander, 2004) based on the Akaike information criterion (AIC) (Posada and Buckley, 2004). Both datasets were analyzed using the GTR+I+G model. The combined dataset was analyzed as a single partition with the GTR $+\mathrm{I}+\mathrm{G}$ model using MrBayes (Ronquist and Huelsenbeck, 2003). Posteriors on the model parameters were estimated from the data using the default priors.

The analysis was carried out with 5 million generations for ITS and combined data matrices and 2 million generations for the $\operatorname{trnS}-\operatorname{trn} \mathrm{G}$ data matrix using Markov chain Monte Carlo search. Using MrBayes, 2 simultaneous analyses were performed starting from different random trees (nruns = 2), each with 4 Markov chains and trees sampled every 100 generations. The first $25 \%$ of trees were discarded as the burn-in. The remaining trees were then used to build a $50 \%$ majority rule consensus tree accompanied by posterior probability (PP) values. Tree visualization was carried out using TreeView version 1.6.6 (Page, 2001).

### 2.4.3. Maximum likelihood method

The maximum likelihood (ML) analyses were performed using SeaView4 (Gouy et al., 2010). The model of evolution employed for each dataset is the same used in Bayesian analyses.

### 2.4.4. Network analysis

The analysis was performed with the program Splits Tree 4.0 (Huson and Bryant, 2006). Analyses were carried out for all examined taxa for phylogenetic studies of the nrDNA ITS dataset.

## 3. Results

### 3.1. Size and structure of molecular datasets

The aligned nrDNA ITS dataset consisted of 636 nucleotide sites and of these sites 58 were parsimonyinformative. The length of nrDNA ITS varies from 570 bp in Amygdalus triloba Lindl. to 610 bp in Amygdalus argentea (Lam.) Rehd. In ITS sequences of Iranian
almond, many polymorphic sites were observed (Table 2). A total of 30 accessions of Amygdalus including 17 species, 3 undetermined species, and 4 studied hybrids possessed nucleotide site polymorphisms for nrDNA ITS sequences. Among the taxa studied, Amygdalus orientalis Duh., Amygdalus lycioides Spach var. lycioides (Esfahan population), and Amygdalus $\times$ yasujensis Khatamsaz had the highest number of polymorphic sites ( 9,9 , and 13, respectively) (Table 2).

The aligned $\operatorname{trnS}$-trnG dataset consisted of 797 sites; among these, 3 sites were parsimony-informative. The length of the $\operatorname{trnS}-\operatorname{trn} \mathrm{G}$ dataset varied from 584 bp in Prunus bifrons Fritsch to 709 bp in Amygdalus mira Koehne and Prunus persica (L.) Batsch. These datasets differed in their taxon sampling, with 56 accessions for nrDNA ITS and 48 for $\operatorname{trnS}$-trnG. Large gaps throughout the $\operatorname{trnS}-\operatorname{trn} \mathrm{G}$ aligned matrix were introduced. The aligned, combined nrDNA ITS-trnS-trnG dataset for 46 taxa was 1372 bp long, and 302 sites were parsimony-informative.

### 3.2. Analysis of the nrDNA ITS dataset

MP analysis of the dataset resulted in 226 shortest trees of length $(\mathrm{L})=119$ steps, $\mathrm{CI}=0.605$, and $\mathrm{RI}=0.804$. The strict consensus tree of these trees is shown in Figure 1. Bayesian and ML trees are topologically similar to the MP tree (trees not shown). The ITS tree exhibits several polytomies. Taxa of the subgenus Cerasus (sensu Rehder, 1940) were recovered as sister to Amygdalus. All Iranian Amygdalus with Amygdalus bucharica (Korsh.) Hand.Mazz. and A. argentea were grouped in a monophyletic clade with $\mathrm{BV}=100$ and 77 (parsimony and likelihood analyses, respectively), and $\mathrm{PP}=1.00$. Three Chinese almond species, namely Amygdalus mira Koehne, A. davidiana (Carriere) Franch., and A. triloba, in addition to Amygdalus nana L. (with distribution in China, Russia, and southeastern Europe) were recovered from the clade Amygdalus. The clade Amygdalus comprises 3 main subclades. Subclade A consists of members of the section Spartioides. Most species in subclade B belong to the subgenus Amygdalus, section Amygdalus. In this subclade, Amygdalus communis L. and A. orazii Maroofi, Attar \& Vafadar ( 2 tree almonds) formed a monophyletic group, although these relationships were poorly supported. Subclade C contained various species from the 2 subgenera Amygdalus and Dodecandra.

### 3.3. Analysis of the chloroplast $\operatorname{trnS}-\operatorname{trn} \mathrm{G}$ dataset

Parsimony analysis of the dataset resulted in 15 shortest trees of length $(\mathrm{L})=249$ steps, $\mathrm{CI}=0.927$, and $\mathrm{RI}=0.984$ (tree not shown). Bayesian and ML trees are topologically similar to the MP tree (trees not shown). All trees showed a high degree of polytomy, and the relationships of the studied species were poorly resolved, perhaps due to the low number of parsimonious sites. As seen in the nrDNA ITS tree, progressing upward from the base, the subgenus

VAFADAR et al. / Turk J Bot
Table 2. Variable nucleotide sites for ITS region in 30 Amygdalus taxa. Sequence symbols: $Y=T / C, M=C / A, R=G / A, K=T / G, S=G / C, W=T / A$.

| Taxa | Nucleotide number |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 13 | 38 | 39 | 57 | 70 | 81 | 84 | 113 | 116 | 121 | 122 | 124 | 125 | 126 | 129 | 133 | 187 | 195 | 197 | 202 | 203 | 219 | 227 | 228 | 235 | 238 | 241 | 244 | 247 | 268 | 456 | 497 | 539 | 621 | 627 | 628 | 53 | 206 | 164 | 108 | 450 | 426 | 569 | 599 | 59 |
| Amygdalus pabotii | Y | Y |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus carduchorum | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus sp. | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus eburnea |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | R |
| Amygdalus fenzliana |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus elaeagnifolia subsp. elaeagnifolia |  |  |  | K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus elaeagnifolia subsp. leiocarpa |  |  |  |  |  |  |  |  | Y |  |  |  |  |  | Y | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  | S |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |
| Amygdalus $\times$ iranshahrii |  |  |  | R | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | S |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus $\times$ yasujensis |  |  |  |  | Y |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  | Y |  | Y | Y | S |  |  | Y |  |  |  | Y |  |  |  |  |  | R |  |
| Amygdalus orientalis |  |  |  |  | Y |  |  |  | Y |  |  |  |  | Y |  |  |  |  | Y |  |  |  |  |  | Y | Y | Y | Y |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  |
| Amygdalus sp. |  |  |  |  | Y |  |  |  | Y |  |  |  |  |  | Y | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus communis |  |  |  |  |  | Y | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | M |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | R |  |  |
| Amygdalus sp. |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus kotschyi |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus reticulata |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |
| Amygdalus arabica (Karaj) |  |  |  |  |  |  |  |  | Y |  |  |  |  |  | Y | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus wendelboi |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus spinosissima subsp. turcomanica |  |  |  |  |  |  |  |  |  | W | M |  |  |  |  |  |  |  |  |  |  |  | R |  |  |  |  |  |  |  |  | Y |  |  | M |  |  |  |  | R |  |  |  |  |  |
| Amygdalus spinosissima subsp. spinosissima |  |  |  |  |  |  |  |  |  |  |  |  | R |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  | Y |  |  | M |  |  |  |  |  |  |  |  |  |  |
| Amygdalus nairica |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus $\times$ kamiaranenensis |  |  |  |  |  |  |  |  |  |  |  |  |  | S |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y | Y |  | R |  |  |  |  |  |  |  |  |  |
| Amygdalus haussknechtii |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | M |  | Y |  |  |  |  |  | Y |  | Y | Y |  |  |  |  |  |  |  |  |  |  | M |  |  |  |  |  |  |
| Amygdalus arabica (Kurdistan) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus scoparia (Esfahan) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus scoparia (Fars) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus scoparia (Bushehr) |  |  |  |  | Y |  |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus lycioides (Karaj) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  |  | M |  | M |  |  |  |  |  |  |  |  |
| Amygdalus lycioides (Kurdistan) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Y |  |  | Y |  |  |  |  |  |  |  |  |  |  |  |
| Amygdalus lycioides (Esfahan) |  |  |  |  |  |  |  | Y |  |  |  |  |  | Y |  |  | M |  | Y |  | Y |  |  |  | Y |  | Y |  |  |  |  |  |  |  | M |  |  |  |  |  |  | Y |  |  |  |
| Amygdalus $\times$ keredjensis |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | M |  |  |  |  |  |  |  |  |  |  |



Figure 1. Strict consensus tree of the 226 shortest trees produced by the MP analysis of nrDNA ITS sequence data. Branch support values are shown above the branches as bootstrap values (BV) of MP/posterior probabilities (PP)/BV of ML.

Cerasus (sensu Rehder, 1940) was recovered as sister to Amygdalus. Iranian Amygdalus revealed a monophyletic, well-supported clade ( $\mathrm{BV}=100$ and 80 ; $\mathrm{PP}=0.94$ ). However, within the clade Amygdalus, 3 monophyletic subclades with unresolved relationships were recovered.

### 3.4. The combined ITS-trnS-trnG dataset

The ILD test suggested that the $\operatorname{trnS}$ - $\operatorname{trn} \mathrm{G}$ and nrDNA ITS datasets were congruent $(\mathrm{P}=0.07)$. The combined dataset consisted of 1372 nucleotide sites, and 302 of these were parsimony-informative.

MP analysis of the combined dataset of the aligned, combined nrDNA ITS- $\operatorname{trnS}-\operatorname{trnG}$ dataset resulted in 140 shortest trees, each consisting of 415 steps $(\mathrm{CI}=0.809$ and $R I=0.944)$. The combined tree is presented in Figure 2. The topology of the Bayesian and ML trees of the combined dataset was compatible with parsimony analysis, with a few exceptions. The tree from the combined dataset is better resolved and supported than both the nrDNA ITS and $\operatorname{trnS}$-trnG trees. Taxa of the subgenus Cerasus were recovered as sister to the clade Amygdalus, similar to the individual trees (Figure 2).

With the exceptions of Amygdalus mira and A. nana, all $A$. species were grouped in a monophyletic clade (BV $=100$ and 57; PP = 0.97) (Figure 2). A. spinosissima Bge. was recovered as sister to all other species. The main clade of almond consisted of subclade (A) (BV = 74 and 73 ; $\mathrm{PP}=0.64$ ), which comprises 2 subgroups ( $\mathrm{A}_{1}$ and $\left.\mathrm{A}_{2}\right)$. Subclade $A_{1}$ comprised 2 groups, 1 from species of the section Spartioides and 1 with 5 species (A. orientalis, $A$. wendelboi Freitag, A. reticulata Runemark ex Khatamsaz, A. $\times$ yasujensis, and A.sp.).

In subclade $A_{2}, 2$ groups were observed, 1 from tree almonds including $A$. communis, $A$. orazii, and $A$. trichamygdalus (Hand.-Mazz.) Woronow as well as 1 unknown shrubby species, $A$. sp. Another group consists of some species belonging to the subgenus $A$., section $A$. with morphological similarities including A. nairica Fed. et Takht., A. fenzliana (Fritsch) Lipsky, A. haussknechtii (C.K.Schneider) Bornm., A. argentea, and A. kurdistanica. The relationship of $A$. kotschyi Boiss. \& Hohen. and $A$. carduchorum Bornm. to their relatives is unknown in this group. A. nairica and A. fenzliana formed a well-supported monophyletic clade (in combined and trnS-trnG trees).

Among the hybrids, Amygdalus $\times$ iranshahrii Khatamsaz was grouped with only one of its parents (Amygdalus eburnea Spach). The other hybrids did not form a clade with their parents (Figure 2).

### 3.5. Phylogenetic network

NeighborNet method analysis of the nrDNA ITS dataset of Prunus and A. recovered 2 main groups, Prunus and Amygdalus (Figure 3). Amygdalus taxa were grouped with each other and have not mixed with species of Prunus s.l. other than Amygdalus mira, A. davidiana, A. nana, and A. triloba (Figure 3). In the Prunus group, 3 lineages were distinguished in a split graph compatible with the clades in the Prunus ITS MP tree (Figure 1) including (1) Prunus avium (L.) L., P. fruticosa Pall., P. emarginata (Hook.) Walp., P. mahaleb (Dougl.) L., as well as P. laurocerasus and P. padus; (2) P. tomentosa Thunb., P. bifrons Fritsch, P. glandulosa Thunb., Amygdalus triloba, and Prunus microcarpa (C.A.Mey.) Boiss.; and (3) Amygdalus mira, A. davidiana, Prunus persica, and Amygdalus nana.

There was a difference between this split graph and the Prunus ITS MP tree. While in the tree Amygdalus nana and Prunus microcarpa formed a clade, in the split graph these 2 species were located far from each other (Figure 3). NeighborNet analysis of the nrDNA ITS dataset of Iranian almonds confirmed reticulate relationships for all Amygdalus hybrids, as previously suggested (Figure 4). Iranian Amygdalus hybrids including Amygdalus $\times$ iranshahrii (Amygdalus scoparia Spach $\times$ Amygdalus eburnea), Amygdalus $\times$ kamiaranensis Khatamsaz \& Assadi (Amygdalus lycioides $\times$ Amygdalus arabica Olivier), Amygdalus $\times$ yasujensis (Amygdalus scoparia $\times$ Amygdalus elaeagnifolia Spach), and Amygdalus $\times$ keredjensis (Amygdalus lycioides $\times$ Amygdalus scoparia) produced networks with their parents (both parents or one parent). In addition, Amygdalus pabotii Browicz, A. kurdistanica, A. fenzliana, and one unknown species represented reticulation.

In addition to reticulation, 3 lineages are compatible with the clades in the ITS MP tree with a few exceptions (Figure 1). Respectively, the 3 lineages consist of: (1) Amygdalus nairica, Amygdalus lycioides (Esfahan population), A. haussknechtii, A. korshinskyi (Hand.Mazz.) Bornm., A. carduchorum, A. communis, A. orazii, A. trichamygdalus-Amygdalus sp., and A. kotschyi; (2) all populations of A. scoparia, A. glauca Browicz, A. arabica (Kurdistan population), as well as both subspecies of $A$. spinosissima and 1 unknown species; and (3) A. orientalis, A. wendelboi, A. reticulata, and A. elaeagnifolia subsp. elaeagnifolia.

## 4. Discussion <br> 4.1. Phylogenetic status of Amygdalus with regard to Prunus

All Amygdalus taxa growing in west and Central Asia were recovered in a well-supported clade in both combined and individual dataset analyses (Figures 1 and 2). However, 4 almond species outside Iran and Central Asia, namely Amygdalus mira, A. davidiana, A. triloba, and A. nana, were placed outside the clade Amygdalus (Figures 1 and 2). These findings were confirmed with our split graph of the nrDNA ITS dataset of Prunus and Amygdalus in which these 4 Amygdalus species were grouped with Prunus species outside of the clade Amygdalus (Figure 3).

The results suggest that these species belong to Prunus s.l. and should be excluded from Amygdalus. Yazbek and Oh (2013) indicated that Amygdalus nana (Prunus tenella) and Amygdalus triloba should be excluded from the subgenus Amygdalus. In the phylogenetic study of Prunus by Shaw and Small (2004), Amygdalus nana was revealed as sister to other studied almonds.


Figure 2. Strict consensus tree of the 140 shortest trees produced by the MP analysis of the combined nrDNA ITS-trnS-trnG dataset. Branch supports were shown above the branches as bootstrap values (BV) of MP/posterior probabilities (PP)/BV of ML.

In addition, in Yazbek and Oh's (2013) study, Amygdalus mira and A. davidiana clustered with peach taxa in a separate subclade. A. mira was recovered as sister to Prunus persica in a highly supported clade based on nrDNA ITS and combined datasets (Figures 1 and 2), and

Amygdalus davidiana was recovered as sister to A. mira and Prunus persica, based on analyzing ITS sequences (Figure 1). These results agreed with the previous studies in Prunus by Bortiri et al. (2001) and Wen et al. (2008) that identified Amygdalus davidiana as sister to Prunus persica.


Figure 3. Split graph for nrDNA ITS sequences of Amygdalus and Prunus. Two major lineages were recovered: Prunus s.l. and Amygdalus. Amygdalus taxa were shown with numbers 1-38. 1. Amygdalus orientalis, 2. A. wendelboi, 3. A. elaeagnifolia subsp. elaeagnifolia, 4. A. reticulata, 5. A. lycioides (Kurdistan), 6. A. eburnea, 7. A. fenzliana, 8. A. nairica, 9. A. bucharica, 10. A. lycioides (Esfahan), 11. A. haussknechtii, 12. A. korshinskyi, 13. A. argentea, 14. A. communis, 15. A. communis (cultivated almond), 16. A. orazii, 17. A. sp., 18. A. spinosissima subsp. spinosissima, 19. A. spinosissima subsp. turcomanica, 20. A. scoparia (Bushehr), 21. A. glauca, 22. A. arabica (Kurdistan), 23. A. scoparia (Tehran), 24. A. scoparia (Esfahan), 25. A. sp., 26. A. $\times$ yasujensis, 27. A. arabica (Karaj), 28. A. scoparia (Fars), 29. A. elaeagnifolia subsp. leiocarpa, 30. A. $\times$ iranshahrii, A. $\times$ kamiaranensis, 31. A. lycioides (Tehran), 32. A. $\times$ keredjensis, 33. A. pabotii, 34. A. carduchorum, 35. A. kotschyi, 36. A. kurdistanica, 37. A. trichA., and 38. Amygdalus sp.

The genus Amygdalus is characterized by subsessile flowers, smooth sepal margins, pubescent drupes, splitting mesocarp, and pitted or grooved stones. In this genus, flowers appear before leaves. The maximum length of stamens and petals in Amygdalus are 9 mm and 20 mm , respectively. The shape of the hypanthium in Amygdalus is campanulate to broad-campanulate, tubular, or campanulate-tubular to semispheric.

However, in Amygdalus mira, the mesocarp is fleshy and does not split when ripe (Lu and Bartholomew, 2003). In A. nana (belonging to the section Chamaeamygdalus in Flora of the USSR), leaves and flowers appear at the same time, and stamen filaments are very long. Moreover, the margin of sepals is slightly serrate with more or less sparse remote papilliform glands, the petals are very long, and the hypanthium is funneliform (Shishkin and Yuzepchuk, 1941). In Amygdalus davidiana (a Chinese almond), the mesocarp is dry but does not split when ripe ( Lu and Bartholomew, 2003).

Amygdalus triloba is another almond species suggested for exclusion from Amygdalus due to sepal character, because the sepal margin in this species is sparsely serrate. Browicz (1989) suggested this exclusion.

In the present study, the subgenus Cerasus (sensu Rehder, 1940) was recovered as sister to Amygdalus based on both nrDNA ITS and the combined ITS-trnS-trnG molecular datasets (Figures 1 and 2). Two species of this subgenus, including Prunus tomentosa and Prunus bifrons (sect. Microcerasus Webb.), were closest to Amygdalus. Taxa of this section exhibited characters that placed them close to subgenera Amygdalus and Prunus (sensu Rehder, 1940), such as the presence of 3 auxiliary buds and shorter pedicels. Lersten and Horner (2000) indicated that leaf crystals in Prunus subgenus Cerasus section Microcerasus were similar to those of Prunus subgenus Amygdalus (sensu Rehder, 1940) and Prunus subgenus Prunus. Moreover, in a study using isozyme data on Prunus, Mowrey and Werner (1990) indicated that the section Microcerasus was grouped with the 2 above-mentioned subgenera.

### 4.2. Relationships within the clade Amygdalus

According to traditional classification of Amygdalus (Browicz, 1969; Khatamsaz, 1993) this genus is divided into 2 subgenera (subgen. Amygdalus and subgen. Dodecandra) based on the presence of thick spines or their absence. The findings of the current study did not confirm the infrageneric treatment of Amygdalus, because


Figure 4. Split graph for nrDNA ITS sequences of Amygdalus. Three major lineages are more or less congruent with the clades in the ITS MP tree.

Amygdalus lycioides of Amygdalus subgenus Dodecandra was grouped with Amygdalus wendelboi, A. orientalis, A. reticulata, and some other species of Amygdalus subgenus Amygdalus. The subgenus Amygdalus consists of 2 sections: Amygdalus and Spartioides. Our results showed that the section Amygdalus is not monophyletic, and its members are scattered across the core clade Amygdalus; however, species of the section Spartioides were recovered in a clade (Figures 1 and 2).

In contrast to the phylogenetic results based on the combined data matrix, the relationships of the analyzed species were poorly resolved in each individual phylogenetic analysis. The unresolved relationships within Amygdalus species in our study were also congruent with the previous studies of the subgenus Amygdalus by Yazbek and Oh (2013). However, in a comparison between the present molecular phylogenetic study and the study by Yazbek and Oh (2013), more species of Amygdalus have been included and analyzed in the present molecular study.

Amygdalus spinosissima (subgen. Dodecandra) was recovered as sister to other Amygdalus species included here in all analyses (Figure 2). This species is found in Khorassan Province in eastern and northeastern Iran and was revealed as a distinct species based on our molecular data. Morphological characters such as spatulate leaves, a
long hypanthium tube, the occurrence of thick fiber tissue around the phloem in leaf midrib anatomy, and a reticulate pollen exine sculpture type, in contrast to the common striate type, also support the separation of this species from Amygdalus species (Vafadar et al., 2008, 2010a).

Most of the analyzed Amygdalus species were recovered as a monophyletic group and consisted of 2 main subclades ( $A_{1}$ and $A_{2}$ ) (Figure 2). In subclade $A_{1}$, species of the section Spartioides were recovered in a monophyletic group, and these results were in agreement with Yazbek and Oh (2013). The other group in this subclade possessed species from the section Amygdalus with one hybrid taxon.

Subclade $A_{2}$ consisted of 2 groups: 1 from tree almond species in the section Amygdalus including A. communis, A. orazii, and A. trichamygdalus (morphologically related to each other) and 1 shrubby unknown species; all of these formed a well-supported, monophyletic clade ( $\mathrm{BV}=$ 100 and $82 ; \mathrm{PP}=0.83$ ). A. orazii, a new almond species for Flora of Iran (Attar et al., 2009), was grouped with its relative (Amygdalus communis) in a clade. According to Yazbek and Oh (2013), Prunus dulcis (Amygdalus communis) and Prunus trichamygdalus were clustered in a subclade. Another group in subclade $\mathrm{A}_{2}$ consisted of some shrubby species of subgenus Amygdalus section Amygdalus with morphological similarities, including $A$. nairica, $A$.
fenzliana, A. haussknechtii, A. argentea, and A. kurdistanica as well as $A$. kotschyi and $A$. carduchorum; the 2 last species were sister species to the rest in this group. Yazbek and Oh (2013) found that A. kotschyi and A. haussknechtii formed a sister group for other related species.

Amygdalus nairica (syn. Amygdalus urumiensis from subgen. Amygdalus sensu Browicz, 1969) and A. fenzliana formed a well-supported clade in the combined and trnS$\operatorname{trnG}$ trees. Both species are found in northwestern Iran. According to Khatamsaz (1993), A. nairica belongs to the subgenus Dodecandra. However, our molecular data supported the previous conclusions of Browicz which indicated that $A$. nairica was more closely related to the subgenus $A$., with respect to morphological characters. A. nairica exhibits features that differentiate it from other species in the subgenus Dodecandra; characters such as long petiole and leaves, comparatively large flowers, and broad tubular hypanthium lead us to suggest that its position is in subgenus $A$., section Amygdalus.

The most closely related species to Amygdalus nairica is A. fenzliana. The close phylogenetic relationship between these 2 species is confirmed by other evidence such as leaf anatomical features and pericarp indumentum of drupe (Vafadar et al., 2008, 2010b).

In the combined tree, Amygdalus argentea (syn. Amygdalus orientalis) and A. haussknechtii were grouped in a clade. These 2 species are also morphologically similar to each other. However, A. argentea and A. orientalis had different positions in the combined MP tree (Figure 2).

Amygdalus kurdistanica was reported as a new shrubby almond from the west of Iran fairly recently by Attar et al. (2009). This species is similar to A. haussknechtii with respect to morphological characters; however, the phylogenetic relationship between these species was poorly resolved in our study due to the low number of informative sites or small sample size of genes.

Based on Khatamsaz (1993) in Flora of Iran, 6 hybrids of Amygdalus occur in Iran. Four hybrid species, namely Amygdalus $\times$ iranshahrii, Amygdalus $\times$ kamiaranensis, Amygdalus $\times$ keredjensis, and Amygdalus $\times$ yasujensis, were analyzed here. Among the studied hybrids, Amygdalus $\times$ iranshahrii was grouped with one of its parents, Amygdalus eburnea, solely in the combined MP tree (Figure 2). Among Amygdalus species, only A. eburnea shows a hairy hypanthium. Interestingly, the hypanthium in Amygdalus $\times$ iranshahrii is also hairy. This hybrid was far from its other parent, A. scoparia. In individual trees (Figure 1), 3 studied hybrids were relatively near to 1 of their parents but did
not form a monophyletic clade with them (Amygdalus $\times$ yasujensis near A. elaeagnifolia, Amygdalus $\times$ iranshahrii near A. eburnea, and Amygdalus $\times$ keredjensis near A. scoparia).

This molecular phylogenetic study with unresolved relationships within Amygdalus showed that bifurcating trees could not help trace phylogenetic relationships within such a problematic and diverse genus as Amygdalus because of the high degree of inter/intraspecific variation, hybridization, and gene transfer. A split graph of the nrDNA ITS dataset of Prunus and Amygdalus (Figure 3) showed that 2 groups were distinguished: 1 from Amygdalus species (sensu Browicz, 1969) and 1 from Prunus s.l. species. Similar to our phylogenetic trees, Amygdalus nana, A. davidiana, A. triloba, and A. mira were located apart from core Amygdalus and included in Prunus s.l.

The split graph of the nrDNA ITS dataset of Iranian Amygdalus confirmed the idea that bifurcating trees are not appropriate tools for reconstructing phylogenetic relationships in Amygdalus (Figure 4). In this graph, 3 lineages as well as a network were recovered in which the lineages were more or less compatible with the clade in the ITS tree (Figure 1). Amygdalus hybrids were located inside the network.

In conclusion, Amygdalus (with its unique morphological features) was a well-supported monophyletic group. In all analyses in this study, 4 species, namely A. davidiana, A. mira, A. nana, and A. triloba, were recovered outside the main clade of Amygdalus species, indicating that these species should be excluded from Amygdalus. Molecular data in the present study were insufficient to resolve relationships within Amygdalus. More sequence data from other gene regions with high degrees of variation (chloroplast regions including psbA$\operatorname{trn} \mathrm{H}, \operatorname{trn} \mathrm{H}-r p l 2, r p l 20-r p s 12$, and nuclear single copy gene, LEAFY intron2) and greater sampling from a larger geographic distribution range are needed to address the question of phylogenetic relationships within Amygdalus.

## Acknowledgments

We are grateful to Dr Khezri and Mr Hosein Maroofi (Research Center of Agriculture and Natural Resources in Kurdistan Province). The authors thank Dr Hassan Zare Maivan (TMU) for editing the manuscript. This investigation received support from the research council at the University of Tehran (grant no.: 6104009/1/04).

## References

Attar F, Maroofi H, Vafadar M (2009). Amygdalus kurdistanica and A. orazii spp. nov. (Rosaceae) from Iran. Nord J Bot 27: 324-327.

Bortiri E, Oh SH, Jiang J, Baggett S, Granger A, Weeks C, Buckingham M, Potter D, Parfitt E (2001). Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast $\operatorname{trn} \mathrm{L}-\operatorname{trn} \mathrm{F}$ spacer DNA. Syst Bot 26: 797807.

Browicz K (1969). Amygdalus L. In: Rechinger KH, editor. Flora Iranica, Vol. 66. Graz, Austria: Akademische Druck und Verlagsanstalt, pp. 166-187.
Browicz K (1989). Conspect and chorology of the genera Amygdalus L. and Louiseania Carriere. Arbor Kornickie 34: 31-54.

Browicz K, Zohary D (1996). The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Crop Ev 43: 229-247.

Cunningham CW (1997). Can three incongruence tests predict when data should be combined? Mol Biol Evol 14: 733-740.

Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Farris JS, Kallersjo M, Kluge AG, Bult C (1995). Testing significance of incongruence. Cladistics 10: 315-319.

Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
Ghahreman A, Attar F (1999). Biodiversity of Plant Species in Iran. Tehran, Iran: Tehran University Publications.

Gouy M, Guindon S, Gascuel O (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221-224.

Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl Acid S 41: 95-98.

Huson DH, Bryant D (2006). Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol 23: 254-267.
Judd WS, Campbell ChS, Kellogg EA, Stevens PF (2002). Plant Systematics (A Phylogenetic Approach). Massachusetts, USA: Sinauer Associates Inc., Publishers.

Khatamsaz M (1993). Flora of Iran. Tehran, Iran: Research Institute of Forests and Rangelands Press.
Lakrin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. (2007). ClustalW and ClustalX version 2.0. Bioinformatics 23: 2947-2948.

Lee S, Wen J (2001). A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am J Bot 88: 150-160.

Lemey Ph, Salemi M, Vandamme AM (2009). The Phylogenetic Handbook. 2nd ed. Cambridge, UK: Cambridge University Press.

Lersten NR, Horner HT (2000). Calcium oxalate crystal types and trends in their distribution patterns in leaves of Prunus (Rosaceae: Prunoideae). Plant Syst Evol 224: 83-96.

Lu L, Bartholomew B (2003). Amygdalus L. In: WU ZY, Raven PH, editors. Flora of China, Vol. 9. St Louis, USA: Missouri Botanical Garden Press, pp. 391-395.
Mowrey BD, Werner DJ (1990). Phylogenetic relationships among species of Prunus as inferred by isozyme markers. Theor Appl Genet 80: 129-133.
Nylander JAA (2004). MrModeltest, ver. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
Page RDM (1996). TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 457-358.
Posada D, Buckley T (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approached over likelihood ratio tests. Syst Biol 53: 793-808.

Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007). Phylogeny and classification of Rosaceae. Plant Syst Evol 266: 5-43.

Rehder A (1940). Manual of Cultivated Trees and Shrubs Hardy in North America. 2nd ed. New York, USA: Macmillan.
Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Sang T, Crawford DJ, Stuessy TF (1995). Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci 92: 6813-6817.

Schulze-Menz GK (1964). Rosaceae. In: Melchior H, editor. Engler's Syllabus der Pflanzenfamilien II. Berlin, Germany: Gebruder Borntraeger, pp. 209-218.

Shaw J, Small RL (2004). Addressing the hardest puzzle in American pomology, phylogeny of Prunus section Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. Am J Bot 91: 985-996.
Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder Ch T, Schilling EE, Small RL (2005). The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92: 142-166.

Shishkin BK, Yuzepchuk SV (1941). Amygdalus L. In: Komarov VL, editor. Flora of the USSR, Vol. 10. Moskva-Leningrad, Russia: Izd Akad Nauk, pp. 389-407.

Swofford DL (2002). PAUP* Phylogenetic analysis using parsimony (*and other methods) version b. 4. Sunderland, USA: Sinauer Associates.

Takhtajan A (1997). Diversity and Classification of Flowering Plants. New York, USA: Columbia University Press.

Vafadar M, Attar F, Maroofi H, Aghabeigi F (2008). Leaf anatomical study of the genus Amygdalus L. (Rosaceae) in Iran and its taxonomical implication. The Iranian Journal of Botany 14: 143-155.

Vafadar M, Attar F, Maroofi H, Mirtadzadini M (2010a). Pollen morphology of Amygdalus L. (Rosaceaea) in Iran. Acta Soc Bot Pol 79: 63-71.

Vafadar M, Attar F, Maroofi H (2010b).Trichome micromorphology in drupe of Amygdalus L. (Rosaceaea) from Iran. Acta Bot Croat 69: 93-105.

Webb DA (1986). Prunus L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, editors. Flora Europea, Vol. 2. Cambridge, UK: Cambridge University Press, pp. 77-80.

Wen J, Berggren ST, Lee ChH, Ickert-Bond S, Yi TSh, Yoo KO, Xie L, Shaw J, Potter D (2008). Phylogenetic inferences in Prunus (Rosaceae) using chloroplast $n d h \mathrm{~F}$ and nuclear ribosomal ITS sequences. J Syst Evol 46: 322-332.
White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: Innis MA, Gelfard DH, Sninskyi JJ, White TJ, editors. PCR Protocols: A Guide to Methods and Applications. San Diego, USA: Academic Press, pp. 315-322.

Winkworth RC, Bryant D, Lockhart PJ, Havell D, Moulton V (2005). Biogeographic interpretation of split graphs: least squares optimization of branch lengths. Syst Biol 54: 56-65.

Yazbek M, Oh S-H (2013). Peaches and almonds: phylogeny of Prunus subg. Amygdalus (Rosaceae) based on DNA sequence and morphology. Plant Syst Evol, 299: 1403-1418.


[^0]:    * Correspondence: vafadar@znu.ac.ir

