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1. Introduction
As a result of stratospheric ozone depletion, the amount 
of solar ultraviolet-B (UV-B) radiation reaching Earth 
has been increasing. Negative effects of increased UV-B 
irradiation on plant ecosystems are well known. UV-B 
modifies plant morphology, reduces growth, alters 
biosynthesis of secondary metabolites, induces oxidative 
stress via overproduction of reactive oxygen species 
(ROS), disturbs the normal physiological processes, 
and even leads to plant death (Frohnmeyer and Staiger, 
2003; Bassman, 2004; Edreva, 2005). To minimize the 
detrimental effects of UV-B radiation, plants have evolved 
various detoxification mechanisms, such as enhancement 
of the antioxidant system (Brosché and Strid, 2003), 
induction of photolyases, and accumulation of UV-
absorbing compounds (Frohnmeyer and Staiger, 2003; 
Fedina et al., 2007).

When the strength of the stressor pressure does not 
exceed the endogenous defense capacity, plants are able 
to overcome negative stress effects. The effectiveness of 
the antioxidant defense systems could be enhanced by 
application of compounds possessing different chemical 
natures or physiological modes of action. Applied in low 
doses, these substances could activate cell metabolism, 

improve plant physiological processes, and increase plant 
resistance to various unfavorable stress factors (Park et 
al., 2006; Todorova et al., 2008; Habibi, 2012; Kabiri et al., 
2012; Pandey et al., 2012; Todorova et al., 2012).

Humic substances (HSs), including humic acids 
(HAs), are natural organic polyelectrolytes in the soil 
humus that stabilize the soil organic matter (Chen et al., 
2004a). Several authors (Chen and Aviad, 1990; Chen et 
al., 2004a, 2004b; Mora et al., 2010) have reported the 
ability of HSs to increase the growth of different plant 
species grown under adverse conditions. However, the 
exact mechanism responsible for this effect of HS is poorly 
understood. Some authors suggested that HSs promote 
plant growth by improving the bioavailability of certain 
nutrients, mainly iron and zinc (Chen et al., 2004a, 2004b). 
Others proposed that HSs can directly influence the plant 
metabolism by both activating the root plasma membrane 
ATPase activity and increasing the nitrate uptake rates 
in roots (Nardi et al., 2002). This could act as a signal 
for root-to-shoot distribution of certain plant growth 
regulators (polyamines) and phytohormones (cytokinins 
and abscisic acid) (Mora et al., 2010). To our knowledge, 
limited information is available about the possibilities of 
HSs to protect plants grown under unfavorable conditions 

Abstract: A natural substance extracted from coal with humic acids as its active ingredients, namely Biomin, was added to nutrient 
medium and applied to triticale roots 3 days prior to UV-B irradiation treatment. UV-B treatment increased malondialdehyde and 
anthocyanin contents and the activities of peroxidase and superoxide dismutase, while it decreased chlorophyll content, fresh weight, 
and shoot length. Catalase and total phenolics content did not change in UV-B–treated shoots. The pretreatment with Biomin showed 
favorable effects on growth, decreased the oxidative damage provoked by UV-B irradiation, increased the content of UV-B–absorbing 
compounds, and positively influenced enzymatic activities. The application of Biomin on triticale plants was beneficial for counteracting 
the UV-B–induced oxidative stress by increasing the content of nonenzymatic antioxidants and antioxidant enzyme activities involved 
in detoxification of reactive oxygen species.

Key words: Defense enzymes, humic acids, Biomin, triticale, UV-B stress

Received: 17.12.2013              Accepted: 30.03.2014             Published Online: 20.05.2014              Printed: 19.06.2014

Research Article



TODOROVA et al. / Turk J Bot

748

(Kamenova-Jouhimenko et al., 1997, 2003; Sergiev et 
al., 2013; Zhang et al., 2013). The authors reported that 
HAs could protect pea and triticale plants from the toxic 
action of high concentrations of Cu and Cd as well as 
Malus robusta seedlings from drought stress. In the light 
of the positive action of HS on plants, the goal of the 
present investigation was to examine the effect of a natural 
substance HA extracted from coal, namely Biomin, 
on triticale plants and its potential beneficial effect in 
preventing damage caused by UV-B irradiation.

2. Materials and methods
2.1. Plant material and treatments
The triticale seeds (× Triticosecale Wittm.) were produced 
by cross-breeding wheat (Triticum) and rye (Secale) in the 
Institute of Plant Physiology and Genetics of the Bulgarian 
Academy of Sciences. Plants were grown as a water culture 
on half-strength Hoagland-Arnon nutrient medium in 
a growth chamber with a 16/8-h light/dark regime, 120 
mmol m–2 s–1 photon flux density, 26/22 °C day/night 
temperature, and 60% air humidity. Seven-day-old triticale 
seedlings were treated with UV-B (Philips TL 20W/12 
RSSLV/25, λmax 312 nm) for 4 days at 7.7 kJ m–2 day–1 in the 
middle of the light period. A natural substance extracted 
from coal with HA as the active ingredient, namely Biomin, 
was added to the nutrient medium at a concentration of 
500 mg L–1 3 days prior to UV-B irradiation and it was 
resupplied with nutrient solution changes. Plant material 
was collected from 12-day-old seedlings 1 day after the 
end of the UV-B treatment. 
2.2. Biometrical and biochemical analyses 
Growth parameter (fresh weight and plant length) 
measurements and biochemical analyses were performed 
according to the appropriate methods. The measurements 
were carried out on shoots and roots of triticale plants. 
The frozen and lyophilized plant material was used to 
determine concentration of pigments. The amount of 
photosynthetic leaf pigments was extracted with 90% 
acetone and determined according to Arnon (1949). 
Anthocyanins were extracted with acetone and 2 N HCl 
(90:10) and measured spectrophotometrically according 
to Lindoo and Caldwell (1978).

Fresh material was homogenized with 0.1 % 
(w/v) trichloroacetic acid for soluble phenol and 
malondialdehyde (MDA) determinations. The amount 
of total soluble phenols was measured by the method 
of Simonovska et al. (2003); caffeic acid was used as the 
reference standard. MDA content was estimated as a 
parameter reflecting biomembrane integrity deterioration. 
It was determined as the thiobarbituric acid product 
according to Kramer et al. (1991) by using a extinction 
coefficient of 155 mM–1 cm–1. 

For the assay of antioxidant enzymes, fresh plant 
material was homogenized in 100 mM potassium 
phosphate buffer (pH 7.0) containing 1 mM EDTA and 
1% polyvinylpyrrolidone (w/v). The homogenates were 
centrifuged at 12,000 × g for 15 min. The enzyme activities 
were determined according to previously described 
methods as follows: catalase (CAT; EC 1.11.1.6), Aebi 
(1984); guaiacol peroxidase (POX; EC 1.11.1.7), Dias and 
Kosta (1983); superoxide dismutase (SOD; EC 1.15.1.1), 
Beauchamp and Fridovich (1971). 

CAT activity was measured by following the 
decomposition of hydrogen peroxide and was determined 
by monitoring its decrease in absorbance at 240 nm (ε = 
36.8 mM–1 cm–1 ) for 30 s.

POX activity was measured using guaiacol as a substrate 
and the increase in absorbance at 470 nm (ε = 26.6 mM–1 
cm–1 ) due to the guaiacol oxidation was recorded for 3 
min. 

Total SOD activity was assayed by monitoring the 
inhibition of photochemical reduction of nitroblue 
tetrazolium (NBT). One unit of SOD activity was defined 
as the amount of enzyme required to cause 50% inhibition 
of the reduction of NBT as monitored at 560 nm.
2.3. Statistics
All experiments were repeated 3 times with 3 replicates 
each. The data reported are mean values ± standard errors 
(SEs). The significances of differences were examined by 
one-way ANOVA. Treatment means were compared with 
their Fisher’s least significance difference (LSD), α ≤ 0.05.

3. Results
The Biomin application positively influenced fresh weight 
of triticale shoots and roots (18% and 19%, respectively, 
as compared to the respective control) but did not have 
a significant effect on plant length (Figure 1). It was 
observed that UV-B treatment reduced the length (by 
17% in comparison to the control) and the fresh weight 
(by 25%) of triticale shoots (Figure 1). In the Biomin-
pretreated plants, the negative effects of UV-B radiation on 
the measured growth parameters of shoots were reduced.

The UV-B irradiation drastically affected levels of 
chlorophyll a and b, which decreased by 42% and 37%, 
respectively (Figure 2A). Biomin applied alone did 
not influence the amount of chlorophyll considerably. 
The UV-B treatment caused a substantial increase of 
anthocyanin content in shoots (129% as compared to the 
control; Figure 2B), while in roots a decrease of 31% was 
observed. Applied alone, Biomin did not considerably 
influence anthocyanin concentrations measured in both 
organs, but in combination with UV-B there was an 
enhancement of 156% in shoots.

Total soluble phenolic content (Figure 3A) was slightly 
affected in roots only: UV-B led to a decrease of 12%, while 



TODOROVA et al. / Turk J Bot

749

HA caused an increase (11% as compared to control). In 
plants subjected to the combined treatment, the value of 
this parameter was comparable to the control level.

MDA content was not significantly influenced in 
roots by any treatments (Figure 3B). On the contrary, in 
shoots UV-B caused a considerable rise of MDA, with 71% 
augmentation as compared to the control. The combined 
treatment, Biomin + UV-B, led to lower MDA content (by 
12%) as compared to treatment by UV-B alone. 

SOD activity inhibition was observed in roots of plants 
treated with Biomin and with Biomin + UV-B (18% and 
28%, respectively), while in shoots the enzymatic activity 
was enhanced (21% and 18% for UV-B and Biomin + 
UV-B) (Figure 4A). In addition, the SOD activity in roots 
treated with Biomin + UV-B was 23% lower as compared 
to plants treated by UV-B alone. 

The application of Biomin did not change significantly 
POX activity (Figure 4B) in either studied part of triticale 
plants. The UV-B treatment increased POX activity in 
roots (33%) and a huge enhancement of up to 12-fold as 
compared to the control was observed in shoots. In the 
combined treatment, the presence of Biomin reduced 
to some extent the POX activity, which was amplified in 
shoots by UV-B irradiation (Figure 4B).
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Figure 1. Length (A) and fresh weight (B) of triticale plants 
subjected to treatment with 500 mg/L Biomin, UV-B (7.7 kJ m–2 
day–1), or both combined (UV-B+Biomin). Data are mean values 
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significantly different (α ≤ 0.05) for either roots or shoots.
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Figure 2. Content of chlorophyll (A) and anthocyanins (B) in 
triticale plants subjected to treatment with 500 mg/L Biomin, 
UV-B (7.7 kJ m–2 day–1), or both combined (UV-B+Biomin). 
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Figure 3. Total soluble phenolics (A) and malondialdehyde (B) 
in triticale plants subjected to treatment with 500 mg/L Biomin, 
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The CAT activity (Figure 4C) was not significantly 
influenced by the application of Biomin or UV-B in either 
shoots or roots of triticale. However, the enzymatic activity, 
which was increased in shoots (24%), was equally reduced 
in roots by the combined treatment (Figure 4C).

4. Discussion
The application of Biomin did not show significant effects 
on the length of triticale plants; only an increase in root 
and shoot fresh weights occurred (Figure 1). Similar 
increases of plant growth caused by the application of HA 
were reported (Nardi et al., 2002; Mora et al., 2010). On 
the other hand, UV-B irradiation negatively affected the 
experimental plants. Fresh weight and length of shoots 

(Figure 1) and photosynthetic pigments (Figure 2A) were 
significantly decreased by the UV-B treatment. This was 
expected since similar effects were established previously 
in pea, wheat, bean, and Indian mustard plants (Alexieva 
et al., 2001; Singh et al., 2011; Li et al., 2012; Pandey et 
al., 2012). Additionally, when Biomin was added to the 
nutrient medium, the harmful effects of UV-B decreased.

In general, the observed changes were more 
pronounced in shoots than in roots. The deviations in 
the parameters measured in roots could be explained by 
the direct influence of HA on them rather than by the 
UV-B treatment of the aboveground plant parts. However, 
the lower fresh weight of roots in plants subjected to 
combined treatment was likely an indicator of interaction 
between UV-B irradiation and Biomin application. The 
higher fresh weight, length, and chlorophyll content in the 
shoots exposed to the combined treatment as compared 
with UV-B stress only could be interpreted as an indicator 
of better plant fitness due to HA treatment.

Accumulation of anthocyanins and other UV-
absorbing compounds after UV irradiation has been 
reported (Alexieva et al., 2001; Steyn et al., 2002; Guo et al., 
2008). These compounds may act in the leaf as screens by 
absorbing UV before it reaches UV-sensitive targets such 
as chloroplasts, other organelles, and macromolecules. 
An increase of anthocyanins was also observed in UV-B–
treated shoots (Figure 2B). However, the increase of total 
soluble phenolics by UV-B was not detected (Figure 3A). 
Anthocyanins have a lower UV absorbance than colorless 
flavonoids and simpler phenolics (Landry et al., 1995; 
Steyn et al., 2002) and contribute only a little to UV-B 
absorbance (Woodall and Steward, 1998). The increase 
of only anthocyanins and no alteration of phenolics in 
our model system seemed to be insufficient to mitigate 
the UV-induced damage as evidenced by chlorophyll 
and biomass loss. This is in agreement with the results 
stated by Hatier and Gould (2009) that anthocyanins can 
enhance the antioxidant capacity but cannot substitute the 
major antioxidant pool in plants. The combined treatment 
(Biomin + UV-B) did not have a negative effect on 
anthocyanin content in roots, despite it being additionally 
enhanced in the shoots. The preliminary application of 
HA showed some beneficial effects on plants subsequently 
subjected to UV-B stress. The enhanced synthesis of 
UV-B–screening compounds in plants treated with UV-B 
+ Biomin resulted in a better ability to cope with UV-B 
stress, evidenced by lesser damage of chlorophyll and also 
lesser reduction of fresh weight and length as compared to 
UV-B–irradiated plants.

Abiotic stresses, including UV irradiation, lead to 
general disturbance of plant metabolism, which causes 
an increase of ROS production. Typically, the increased 
quantity of MDA is associated with the negative effects 
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Figure 4. Activities of superoxide dismutase (A), guaiacol 
peroxidase (B), and catalase (C) in triticale plants subjected 
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of ROS on biomembrane integrity, which result in 
peroxidation and fragmentation of unsaturated fatty 
acids (Kramer et al., 1991). Our data showed that ROS 
caused oxidative stress and membrane damage since MDA 
(estimated as an oxidative stress marker) was considerably 
enhanced in UV-B–treated shoots. However, preliminary 
application of HA led to a decline of MDA content, 
suggesting that UV-B–induced damage was partly 
alleviated. 

Under normal growth conditions, the formation and the 
removal of ROS are in a delicate balance. This equilibrium 
is impaired when stress conditions occur (Gill and Tuteja, 
2010). Furthermore, plant resistance to stress factors 
has been associated with their antioxidant capacity, and 
increased levels of antioxidant constituents may prevent 
stress damage. Some of the most important enzymatic 
antioxidants triggered in response to ROS generation are 
SOD, CAT, and POX. SOD is a metal-containing enzyme 
that acts as the first line of defense against ROS, catalyzing 
the dismutation of superoxide to H2O2. Subsequently, CAT 
and POX detoxify H2O2 (Foyer and Noctor, 2005; Gill 
and Tuteja, 2010). CAT is a tetrameric heme-containing 
enzyme that directly scavenges hydrogen peroxide (Gill 
and Tuteja, 2010). The Biomin application caused some 
changes in the antioxidative capacity of plant: significant 
reduction of SOD in roots (Figure 4A) and a lower 
reduction of MDA and POX (Figures 3B and 4B). Few data 
were reported about HAs and ROS in plants. Bowden et al. 
(2010), comparing corn and soybean, concluded that HAs 
had effects specific for plant species.

In UV-B–treated pea shoots, the superoxide anion 
radical was demonstrated to be the dominant ROS, while 
singlet oxygen was minor (Hideg et al., 2002). Therefore, 
the increased SOD activity in irradiated triticale shoots 
(Figure 4A) indicated that this enzyme system was 
switched on to detoxify the superoxide anion induced 
by UV-B irradiation. Peroxidases use a wide range of 
substrates (i.e. phenolics) to scavenge hydrogen peroxide 

and were noted to be important enzymes in UV-B stress 
reactions and tolerance (Jansen, 2002). Besides hydrogen 
peroxide detoxification, under UV-B radiation POX serves 
various physiological functions in plants, including lignin 
biosynthesis and cell wall linkage (Jansen, 2002; Marjamaa 
et al., 2009). The extremely increased POX activity in 
UV-B–irradiated triticale (Figure 4B) suggested that 
peroxidase was the main enzyme in detoxifying H2O2, 
since CAT activity was not changed by UV-B treatment 
(Figure 4C). Additionally, since the POX activity in UV-
irradiated seedlings was tremendously enhanced, it is 
possible that lignification processes were stimulated, also. 
Similar data were obtained by other authors, who showed 
that silicon can increase plant defense systems of soybean 
against UV-B stress by reduction of SOD and POX activity 
in silicon-treated UV-B–stressed seedlings as compared 
to only UV-B–treated seedlings (Shen et al., 2010). On 
the other hand, while the combined treatment reduced 
SOD and POX activities in triticale, it increased the CAT 
in shoots as compared to irradiated plants (Figure 4C). 
These results indicate that a compensation mechanism for 
attenuating ROS (and H2O2 in particular) was probably 
activated by application of HS prior to plant irradiation.

The data from the combined treatment showed 
that Biomin can protect triticale plants against UV-B 
irradiation, as Biomin treatment positively influenced 
the growth of irradiated plants, lessened chlorophyll 
loss and membrane damages, and increased the content 
of UV-B–absorbing compounds and the activities of 
antioxidant enzymes. Our data show that the application 
of Biomin might render beneficial and protective effects 
on triticale seedlings exposed to UV-B stress through a 
coordinated action of nonenzymatic antioxidants and 
ROS detoxification enzymes.
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