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1. Introduction
Salt stress–induced reductions in growth and productivity 
are due to a number factors including osmotic stress 
(Shabala et al., 2012), Na+ and Cl– ion toxicity or nutrient 
imbalance (Babu et al., 2012), oxidative stress (high ROS 
production) (Abbaspour, 2012), membrane damage 
(Farkhondeh et al., 2012), disturbed leaf water relations 
(Carpici et al., 2010), and hormonal imbalance (Babu et 
al., 2012; Iqbal and Ashraf, 2013). Adverse effects of salt 
stress on various growth, physiological, and biochemical 
attributes have been reported in crops such as wheat 
(Kausar et al., 2013; Kausar and Shahbaz, 2013; Perveen 
et al., 2013; Shahbaz and Ashraf, 2013), rice (Habib et al., 
2013), mungbean (Kanwal et al., 2013), cotton (Shaheen 
et al., 2012), canola (Shahbaz et al., 2013), sunflower 
(Shahbaz et al., 2011), tobacco (Jardak Jamoussi et al., 
2014), tomato (Ali et al., 2014), and vegetables (Shahbaz 
et al., 2012). However, tolerance to salinity stress is a 
multigenic response that involves regulation of myriad 
physiological and biochemical processes (Sairam and 
Tyagi, 2004). For example, accumulation of various 

organic osmolytes and induction of an antioxidant defense 
system comprising various enzymatic and nonenzymatic 
antioxidants are commonly occurring processes in plants 
under saline stress that protect plants from oxidative stress 
by scavenging oxygen-free radicals, thereby protecting 
various cytoplasmic organelles (Ashraf, 2009; Abbaspour, 
2012). 

Crop sensitivity to salinity stress varies at different 
growth stages, and wheat shows differential sensitivity to 
salt stress; it is more sensitive at early growth stages (Ashraf 
and Ashraf, 2012). Wheat grain yield is adversely affected 
by salt stress (Eleiwa et al., 2011), and thus improving 
salinity tolerance in wheat to support the rapidly growing 
world population is the main enigma of the present day 
(FAO, 2010). 

Phytohormones play an important role in plant growth 
and development by transmitting a variety of signals 
between and within the cells; however, their endogenous 
levels undergo considerable changes under salt stress 
(Iqbal and Ashraf, 2013). It is now widely known that the 
levels of most growth up-regulators decrease in plants 
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exposed to saline stress (Yurekli et al., 2004). However, 
deficiency in these regulators could be overcome by their 
exogenous application (Akram et al., 2012; Babu et al., 
2012). Triacontanol (TRIA) enhances growth and yield 
of various crop species when applied exogenously as 
foliar spray at various growth stages (Singh et al., 2011). 
Foliar-applied TRIA ameliorates the negative effects of 
various abiotic stresses on growth, physiological, and 
biochemical processes of different plant species, e.g., 
Erythrina variegata L. seedlings (Muthuchelian et al., 
2003), sweet basil (Borowski and Blamowski, 2009), 
common duckweed (Kilic et al., 2010), soybean (Krishnan 
and Kumari, 2008), maize (Ertani et al., 2012), canola 
(Zulfiqar and Shahbaz, 2013), and sunflower (Aziz et al., 
2013). Under salt stress conditions, exogenous application 
of TRIA has been reported to up-regulate genes involved 
in the photosynthetic process while down-regulating 
stress-related genes, modulating activities of different 
metabolic and antioxidant enzymes, enhancing water 
and mineral nutrient uptake, and stimulating synthesis of 
various organic compounds through increased nitrogen 
metabolism (Perveen et al., 2011, 2012; Ertani et al., 2012). 
Although the effect of triacontanol as a seed treatment 
(Perveen et al., 2010, 2011, 2012a, 2012b) and foliar spray 
(Perveen et al., 2013) on wheat under saline conditions 
has been observed, the effect of this potential plant growth 
regulator as a foliar spray on physiological and biochemical 
attributes at various developmental stages is not known. It 
was hypothesized that foliar application of TRIA at various 
growth stages (vegetative, vegetative + boot, and boot 
growth stages) could ameliorate the negative effects of salt 
stress on growth, physiological, and biochemical attributes 
of wheat plants. Thus, the main objectives of the present 
study were to evaluate the effect of varying levels of foliar-
applied TRIA on various growth and yield attributes, leaf 
water relations, enzymatic and nonenzymatic antioxidants, 
compatible solutes, and mineral contents at various growth 
stages in wheat plants under saline conditions. 

2. Materials and methods
To assess the effect of exogenous application of triacontanol 
as foliar spray at different growth stages on wheat plants 
under saline and nonsaline conditions, a greenhouse 
experiment was conducted in the Old Botanical Garden, 
University of Agriculture, Faisalabad, Pakistan, under 
a 10 and 14 h light and dark period at 800–1100 µmol 
m–2 s–1 PPFD, a day and night temperature cycle of 20 
and 6 °C, and mean relative humidity of 54 ± 5%. There 
were 2 wheat cultivars (S-24 (salt tolerant) and MH-97 
(moderately salt sensitive)), 2 salinity levels (0 and 150 
mM NaCl), and 3 optimized levels of TRIA (0, 10, and 
20 µM) applied as foliar spray at the vegetative, boot, and 
vegetative + boot stages. Ten seeds per pot were sown in 

plastic pots containing thoroughly washed river sand. 
When seedlings were 10 days old, thinning was done to 
maintain 6 plants per pot. Plants were nourished with 
full-strength Hoagland’s nutrient solution at the rate of 2 
L of solution per pot per week. Salt (NaCl) treatment was 
initiated when plants were 21 days old. The desired level 
of NaCl was applied along with full-strength Hoagland’s 
nutrient solution, and an aliquot of 50 mM solution per 
pot per day was applied until the desired level (150 mM) 
was attained. Foliar spray of the 3 optimized TRIA levels 
(0, 10, and 20 µM; solution prepared in hot, distilled water 
and 0.1% Tween-20 solution) was applied at the rate of 25 
mL/pot when the plants were 30 (vegetative stage) or 78 
(boot stage) days old. The design of the experiment was 
completely randomized with 4 replicates. When plants 
were 92 days old, data for various physiological and 
biochemical attributes were recorded. Two plants from 
each replicate were uprooted carefully, thoroughly washed 
with distilled water, and oven dried at 65 °C up to their 
constant weight. The dry weight of plants was recorded 
with the help of an electric balance. At maturity, data 
for various yield parameters, e.g., grain yield, number of 
grains per plant, and 100-grain weight were recorded.
2.1. Total leaf area per plant (cm2)
Total leaf area per plant was calculated using the formula 
of Carleton and Foote (1965):

leaf area (cm2) = maximum leaf length × maximum leaf width × 0.75,
                  0.75 = correction factor.

2.2. Leaf water relations 
The second leaf from the top was cut with a sharp clipper 
from the main tiller to determine leaf water potential with 
a Scholander-type pressure chamber (Arimad-2, Japan) 
according to the method of Scholander et al. (1964). The 
same leaf used for water potential determination was frozen 
at –20 °C in a freezer for 1 week, and osmotic potential 
was determined using a vapor pressure osmometer (Vapro 
5520, USA). Leaf turgor potential was calculated as the 
difference between osmotic potential and water potential 
values according to Nobel (1991).
2.3. Relative water contents (%)
Relative water content was determined following Jones 
and Turner (1978). Fresh leaf samples (0.5 g each) were 
weighed (Fw), kept in the dark for 24 h in deionized water, 
and turgid weight (Tw) was recorded. Dry weight (Dw) of 
the samples was recorded from samples oven-dried at 80 
°C for 48 h. Percent relative water content was determined 
using the following formula:

RWC (%) = [(Fw – Tw)/(Fw – Dw)] × 100.
2.4. Membrane permeability (%)
Fresh leaf tissue (0.5 g of each sample) was chopped 
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and placed in 10 mL of distilled water, vortexed for 5 s, 
and the electrical conductivity (EC0) was measured. The 
test tubes were kept at 4 °C for 24 h, and the electrical 
conductivity (EC1) was determined. Then the test tubes 
containing samples were autoclaved for 1 h, cooled at room 
temperature, and electrical conductivity (EC2) of dead 
tissues was measured. The relative membrane permeability 
(%) was determined using the following formula: 

RMP (%) = (EC1 – EC0/EC2 – EC0) × 100.
2.5. Hydrogen peroxide (H2O2)  
Hydrogen peroxide was determined following Velikova 
et al. (2000). Fresh leaf tissue (0.5 g of each sample) was 
homogenized in an ice bath with 5 mL of 0.1% (w/v) 
trichloroacetic acid (TCA) using a pre-chilled mortar 
and pestle. The homogenate was centrifuged for 15 
min at 12,000 × g. To the 0.5 mL of supernatant, 0.5 
mL of potassium phosphate buffer (pH 7.0) and 1 mL 
of potassium iodide were added. After vortexing, the 
absorbance of the supernatant was read at 390 nm using 
a UV-visible spectrophotometer (U2020 IRMECO). H2O2 
contents were determined from a standard curve.
2.6. Malondialdehyde (MDA)
The protocol described by Carmak and Horst (1991) was 
used to measure the MDA contents. To 0.5 g of finely ground 
leaf tissue, 10 mL of 0.1% (w/v) trichloroacetic acid (TCA) 
solution was added, and the mixture was centrifuged for 
10 min at 12,000 × g. To 1 mL of the supernatant, 4 mL of 
0.5% thiobarbituric acid (TBA) prepared in 20% TCA was 
added. The reaction mixture was kept in a water bath at 
95 °C for 30 min. Afterwards the samples were cooled by 
keeping them in an ice bath. Then the samples were again 
centrifuged at 12,000 × g for 10 min, and the absorbance of 
the samples was read using a spectrophotometer (U2020 
IRMECO) at 2 wavelengths, 532 and 600 nm.
2.7. Extraction of antioxidant enzymes
Antioxidant enzymes were extracted by finely grinding 
fresh leaf samples (0.5 g of each sample) in 10 mL of 
phosphate buffer (50 mM, pH 7.8) in an ice bath. The 
homogenate was then centrifuged at 12,000 × g at 4 °C for 
20 min and again at 15,000 × g for 10 min. The supernatant 
was stored at –20 °C for determining the activities of 
antioxidant enzymes. 
2.7.1. Superoxide dismutase (SOD)
The protocol described by Giannopolitis and Ries 
(1977) was used for the determination of SOD activity. 
It was determined as the ability of the enzyme to inhibit 
photochemical reduction of nitroblue tetrazolium 
(NBT). The 3 mL of reaction mixture consisted of 50 mM 
phosphate buffer of pH 7.8, distilled water, methionine 13 
mM, 50 µM of NBT, 50 µL of enzyme extract, and 1.3 µM 
of riboflavin. The reaction solutions were then kept under 
light (15-W fluorescent lamps) for 15 min at 78 µmol 

m–2 s–1. The absorbance of the reaction mixture was read 
at 560 nm with a UV-visible spectrophotometer (U2020 
IRMECO). One unit activity of SOD was defined as the 
amount of enzyme required to cause 50% inhibition of the 
rate of NBT photoreduction, as compared to the sample 
that lacked the plant enzyme extract.
2.7.2. Activities of catalase (CAT) and peroxidase (POD)
The method described by Chance and Maehly (1955) 
was used to appraise the activities of CAT and POD on a 
protein amount basis. The reaction solution for the CAT 
contained phosphate buffer and H2O2 of 50 and 5.9 mM, 
respectively. The addition of 0.1 mL of enzyme extract to 
the reaction mixture initiated the reaction. After every 20 
s the changes in the absorbance of the reaction mixture 
were observed at 240 nm. The reaction mixture for POD 
consisted of phosphate buffer, guaiacol, and H2O2 with 
molar values of 50, 20, and 40 mM, respectively, and 0.1 
mL of the enzyme extract. At 470 nm, the absorbance 
was taken every 20 s. The enzyme activity was assessed 
on a protein basis, while 1 unit of CAT was considered 
equivalent to 0.01 units per minute change in absorbance, 
and 1 unit of POD was defined as 0.01 units per minute 
change in absorbance.
2.8. Total soluble proteins
Fresh leaves (0.5 g of each sample) were homogenized in 
10 mL of 50 mM phosphate buffer and centrifuged at 6000 
× g for 5 min at 4 °C. The extract was used for determining 
total soluble proteins following Bradford (1976).
2.9. Glycine betaine determination
Glycine betaine content in fresh leaf tissues was determined 
following Grieve and Grattan (1983). Fresh leaf tissue (0.5 
g of each sample) was finely ground in 10 mL of distilled 
water. The homogenate was then filtered with Whatman 
no. 2 filter paper. To 1 mL of the above filtrate 1  mL of 
2  N H2SO4 was added. Then to the 0.5 mL of the above 
mixture, 0.2 mL of KI3 solution was added to an ice 
bath, and the mixture was cooled for 90  min at 0–4 °C. 
Afterwards, 2.8 mL of chilled distilled water and 6 mL of 
1-2-dichloroethane were added to the sample mixture. Two 
distinct layers formed, and the absorbance of the colored 
layer was read at 365  nm using a spectrophotometer 
(U2020 IRMECO). 
2.10. Leaf free proline
Free proline contents were determined from the leaf tissues 
according to the method of Bates et al. (1973). Fresh leaf 
(0.5 g of each sample) was properly homogenized in 10 
mL of sulfosalicylic acid (w/v) solution, and the filtrate was 
derived using Whatman no. 2 filter paper. To the 2 mL of 
filtrate were added 2 mL each of acid ninhydrin and glacial 
acetic acid, and the mixture was heated at 100 °C in a water 
bath for 1 h. Then the reaction mixture was placed in an 
ice bath to terminate the reaction. To the reaction mixture 
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was added 4 mL of toluene and the mixture was vigorously 
vortexed for 15 s. The free proline was aspirated from the 
chromophore layer, kept at room temperature, and the 
absorbance was read at 520 nm on a spectrophotometer 
(U2020 IRMECO). The free proline contents in the leaf 
tissues were calculated using the following formula: 
 

µmol proline g–1 fresh weight =
 µg proline mL–1 × mL of toluene/115.5

                                                                         g of sample.  
     
2.11. Total free amino acids
Leaf free proline was determined according to the method 
of Moore and Stein (1957). Fresh leaves (0.5 g of each 
sample) were homogenized in 10 mL of citrate buffer (pH 
5.0). The mixture was centrifuged at 15,000 × g for 10 
min. The extracted samples were further processed with 
ninhydrin solution prepared by dissolving 2 g of ninhydrin 
in 100 mL of distilled water. The optical density of the 
solution was read at 570 nm using a spectrophotometer 
(U2020 IRMECO).
2.12. Total phenolics
Total phenolic contents were determined following 
Julkenen-Titto (1985). Fresh leaves (100 mg of each 
sample) were homogenized in 2 mL of 80% acetone and 
centrifuged at 10,000 × g for 15 min. The supernatant 
was collected in a microfuge tube and stored at –20 °C. 
The extract (100 µL) was diluted with 2.0 mL of distilled 
water in a test tube, and 0.5 mL of Folin–Ciocalteau’s 
phenol reagent was added to it. The mixture was shaken 
vigorously. To the above mixture was added 2.5 mL of 20% 
Na2CO3 solution, and the final volume was brought up to 
5 mL using distilled H2O. It was then vortexed for 5–10 
s. The absorbance of the extracted samples was read at 
750 nm after 20 min using a spectrophotometer (U2020 
IRMECO). Total phenolic contents were calculated from 
the standard curve obtained from different concentrations 
of gallic acid (0, 2, 4, 6, 8, and 10 mg L–1), and total 
phenolics were determined on a fresh weight basis.
2.13. Mineral nutrient determination 
Mineral ions (Na+, K+, and Ca2+) in shoot and root were 
determined by following Allen et al. (1985). Digestion 
mixture was prepared by properly mixing Se (0.42 g) 
and LiSO4.2H2O2 (14 g) to H2O2 (350 mL), slowly adding 
conc. H2SO4 (420 mL) by keeping it in an ice bath, and 
storing it at 2 °C and using it for plant tissue (shoot and 
root) digestion. Then 100 mg of dried ground shoot and 
root material was digested in 2 mL of digestion mixture 
in a digestion flask at 200 °C on a hotplate. Perchloric acid 
(HClO4) was used to complete the digestion process. The 
digested mixture was diluted with distilled water up to 50 
mL, filtered, and the filtrate was used for Na+, K+, and Ca2+ 
ion determination with the help of a flame photometer 
(Jenway, PFP-7).

2.14. Chloride (Cl–) determination
For Cl– determination 100 mg of dried ground shoot or 
root material was taken in a test tube, and 10 mL of distilled 
water was added to it. Then the material was extracted by 
placing the test tubes in test tube stands in an oven at 80 
°C for 6 h. The concentration of Cl– was determined with 
a chloride analyzer (Model 926, Sherwood Scientific Ltd., 
Cambridge, UK).
2.15. Statistical analysis
Four-way analysis of variance (ANOVA) of data for all 
attributes was performed using the MSTAT computer 
program (MSTAT Development Team, 1989). The least 
significant difference was used to compare the mean values 
of all treatments (Snedecor and Cochran, 1980).

3. Results 
3.1. Effects on shoot and root dry weights
Root-medium–applied salinity of 150 mM (NaCl) 
significantly decreased shoot and root dry weights in both 
cultivars (Figures 1A and B). Cultivar S-24 was superior 
to MH-97 in shoot dry weight, while the reverse was true 
for root dry weights under saline stress. Foliar-applied 
TRIA at various growth stages markedly enhanced shoot 
and root dry weights of both wheat cultivars under both 
normal and salt-stressed conditions. A TRIA level of 20 
µM was effective for shoot dry weight and 10 µM TRIA 
was effective for root dry weight in both cultivars under 
salt-stressed and nonstressed conditions. Overall, TRIA 
application at the vegetative + boot stage was more 
effective for enhancing growth of cv. S-24 under nonstress 
conditions, while this was true for cv. MH-97 at vegetative 
or boot growth stages (Figures 1A and B).
3.2. Effect on total leaf area per plant
Total leaf area per plant decreased markedly in both wheat 
cultivars under saline conditions. The cultivars did not differ 
significantly in this attribute (Figure 1C). Foliar-applied 
TRIA at various growth stages significantly enhanced total 
leaf area per plant in both cultivars under both saline and 
nonsaline conditions. Foliar-applied 20 µM TRIA was 
more effective when applied at both vegetative and boot 
stages for both wheat cultivars, while 10 µM TRIA was 
more effective when applied at the vegetative or boot stage 
in wheat plants, particularly under nonsaline conditions. 
Overall, TRIA application at the boot or vegetative + boot 
stages was more effective in increasing total leaf area per 
plant in both wheat cultivars, particularly under nonsaline 
conditions (Figure 1C). 
3.3. Effects on yield attributes
Yield attributes, i.e. grain yield per plant (Figure 1D), 
number of grains per plant (Figure 2A), and 100-seed 
weight (Figure 2B), significantly decreased in both wheat 
cultivars under salinity stress. Cultivar difference among 
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Figure 1. Shoot and root dry weights, total leaf area, and grain yield per plant of Triticum aestivum plants foliarly sprayed with 
TRIA under nonstress and salt-stress conditions at different growth stages. Cvs = cultivars, S = salinity, Gs = growth stages.
*, **, and *** = significant at 0.05, 0.01, and 0.001 levels, respectively. Bars in graphs represent standard errors.
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Figure 2. Number of grains per plant, 100-grain weight, and leaf water and osmotic potential of Triticum aestivum plants foliarly 
sprayed with TRIA under nonstress and salt-stress conditions at different growth stages.
Cvs = cultivars, S = salinity, Gs = growth stages. *, **, and *** = significant at 0.05, 0.01, and 0.001 levels, respectively. Bars in graphs 
represent standard errors.
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these attributes was nonsignificant. Foliar application 
of TRIA at different growth stages markedly increased 
grain yield per plant, number of grains per plant, and 
100-seed weight in both cultivars under salt-stress and 
nonstress conditions. Overall, TRIA application at the 
vegetative + boot stages was more effective in enhancing 
yield attributes in the salt-stressed and nonstressed plants 
of both cultivars as compared to TRIA application at the 
other growth stages.
3.4. Effects on leaf water relations
Leaf water and osmotic potentials significantly decreased 
in both wheat cultivars under NaCl-induced stress 
(Figures 2C and D). Leaf water and osmotic potentials 
were more negative in cv. MH-97 than in cv. S-24 under 
both saline and nonsaline conditions. Foliar application 
of TRIA significantly increased leaf water potential in 
both cultivars under nonsaline and saline conditions; 
however, the response of the cultivars to foliar-applied 
TRIA was variable at different growth stages, because at 
the vegetative growth stage leaf water potential was higher 
in cv. S-24 and lower in MH-97 under both salt-stress 
and nonstress conditions. Leaf osmotic potential slightly 
decreased under TRIA application at the vegetative stage, 
while it increased under TRIA application at the boot stage 
in both cultivars under salt-stress conditions. 

The root-medium–applied salinity stress significantly 
decreased leaf turgor potential in both wheat cultivars 
(Figure 3A). S-24 exceeded MH-97 in leaf turgor potential 
under both saline and nonsaline conditions. The response 
of cv. S-24 to TRIA application was more positive than 
that of cv. MH-97 in terms of leaf turgor potential under 
both nonsaline and saline conditions. Increase in leaf 
turgor potential with increase in foliar-applied TRIA levels 
applied at different growth stages was consistent only in cv. 
S-24 under both nonstress and stress conditions. Overall, 
leaf turgor potential of cv. S-24 increased when TRIA was 
applied at the vegetative stage under both salt-stress and 
nonstress conditions. 

Relative water content (%) significantly decreased in 
both wheat cultivars under saline stress, while the cultivars 
did not differ significantly in this attribute (Figure 3B). 
Foliar application of TRIA significantly increased relative 
water content (%) in both wheat cultivars under both 
nonsaline and saline conditions. Relative water content 
(%) was higher when TRIA was sprayed at the vegetative 
stage than when it was applied at the other 2 stages. 
Cultivar MH-97 was higher in this attribute than cv. S-24. 
3.5. Effect on hydrogen peroxide (H2O2) content
Hydrogen peroxide (H2O2) significantly increased in 
both wheat cultivars under salt stress. Cultivar MH-97 
accumulated higher H2O2 content than cv. S-24 under 
saline conditions (Figure 3C). Foliar application of TRIA 
reduced H2O2 content in the salt-stressed and nonstressed 

plants of both wheat cultivars when applied at various 
growth stages. Furthermore, H2O2 content decreased 
consistently in the salt-stressed plants of cv. MH-97 with 
an increase in the level of TRIA applied at the vegetative 
and boot stages. Overall, TRIA applied at various growth 
stages did not show a marked difference in H2O2 contents. 
3.6. Effect on malondialdehyde (MDA) content
The wheat cultivars showed nonsignificant differences 
in malondialdehyde (MDA) content under nonsaline 
conditions, while content significantly increased in both 
wheat cultivars under saline conditions (Figure 3D). 
Foliar application of TRIA significantly decreased the 
MDA content in both wheat cultivars, and 10 µM TRIA 
at all growth stages was more effective in lowering MDA 
content in the wheat plants under both nonsaline and 
saline conditions.
3.7. Effect on total soluble protein content
Soluble proteins increased significantly in both cultivars 
under saline conditions (Figure 4A). A marked variation 
between the 2 cultivars was also observed. Overall, 
cultivar S-24 exceeded cv. MH-97 in soluble proteins, 
but this difference was more prominent under nonsaline 
conditions as compared to saline conditions. Exogenous 
application of TRIA did not affect soluble proteins in 
either cultivar. 
3.8. Effects on antioxidant enzyme activity
The activity of superoxide dismutase (SOD) enzyme in 
both wheat cultivars showed a prominent decrease under 
NaCl stress (Figure 4B). The behavior of both wheat 
cultivars with respect to this biochemical attribute was 
markedly different under saline or nonsaline conditions. 
Exogenous application of TRIA as a foliar spray did not 
alter SOD activity in either cultivar under nonsaline or 
saline conditions. 

The activity of peroxidase (POD) was not influenced by 
salt stress in either wheat cultivar. However, the cultivars 
differed significantly in POD activity under saline and 
nonsaline conditions. Cultivar S-24 showed higher POD 
activity than MH-97 under saline conditions (Figure 4C). 
Foliar application of TRIA significantly increased the POD 
activity in both wheat cultivars. A consistent increase 
in POD activity in both cultivars with an increasing 
level of TRIA was observed when TRIA was applied at 
the vegetative stage under both saline and nonsaline 
conditions. TRIA application at the boot or vegetative + 
boot stages caused a significant decrease in POD activity, 
particularly in cv. MH-97 under salt stress. 

Salinity stress significantly increased catalase (CAT) 
activity in both wheat cultivars. The effect of foliar-applied 
TRIA on CAT activity was also nonsignificant; however, 
there was differential behavior between cultivars when 
TRIA was applied at the vegetative + boot stages, and CAT 
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Figure 3. Leaf turgor potential, relative water content (%), hydrogen peroxide, and malondialdehyde contents of Triticum aestivum 
plants foliarly sprayed with TRIA under nonstress and salt-stress conditions at different growth stages. 
Cvs = cultivars, S = salinity, Gs = growth stages. *, **, and *** = significant at 0.05, 0.01, and 0.001 levels, respectively. Bars in graphs 
represent standard errors.
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Figure 4. Soluble proteins and activity of superoxide dismutase, peroxidase, and catalase enzyme of Triticum aestivum plants 
foliarly sprayed with TRIA under nonstress and salt-stress conditions at different growth stages. 
Cvs = cultivars, S = salinity, Gs = growth stages. *, **, and *** = significant at 0.05, 0.01, and 0.001 levels, respectively. Bars in graphs 
represent standard errors.
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activity decreased significantly in cv. S-24 and increased in 
cv. MH-97 under nonsaline conditions (Figure 4D).
3.9. Effect on total phenolic content
Salt stress significantly increased total phenolic content 
in cv. S-24, while the reverse was true in cv. MH-97. The 
cultivars differed prominently in this attribute as salt 
stress increased total phenolics in cv. S-24 under TRIA 
application at all growth stages (Figure 5A). Furthermore, 
under salt stress, total phenolic contents rose when 
TRIA was applied at the vegetative growth stage. Foliar 
application of TRIA at the boot or vegetative + boot stages 
significantly decreased total phenolic contents in the salt-
stressed plants of both cultivars. Foliar-applied 10 µM 
TRIA was more effective at decreasing total phenolics 
in both cultivars under saline conditions. However, this 
reduction in total phenolic content was greater in the salt-
stressed plants of cv. MH-97 than in cv. S-24, particularly 
under TRIA application at the boot or vegetative + boot 
stages. 
3.10. Effect on total free amino acid content
Total free amino acid content increased significantly 
in both cultivars under NaCl stress. Cultivar S-24 had 
significantly higher total free amino acids than cv. MH-97 
under saline conditions as well as under TRIA application 
(Figure 5B). Overall, the effect of TRIA application at 
different growth stages on total free amino acid contents 
was uniform in both wheat cultivars.
3.11. Effect on leaf free proline content
Leaf free proline content increased significantly in both 
cultivars under NaCl stress (Figure 5C). The effect of 
foliar application of TRIA at different growth stages was 
statistically nonsignificant on leaf proline content in both 
cultivars.
3.12. Effect on glycine betaine content
Salt stress markedly increased the glycine betaine content 
in both wheat cultivars, but the cultivars did not differ 
significantly in this biochemical attribute (Figure 5D). 
The effect of foliar-applied TRIA at various growth stages 
was also nonsignificant on glycine betaine content in both 
wheat cultivars.
3.13. Effects on shoot and root mineral ion content
Shoot and root Na+ content increased significantly in both 
wheat cultivars under saline conditions (Figures 6A and 
B). Foliar-applied TRIA at various growth stages slightly 
reduced shoot Na+ content in both cultivars under saline 
conditions. Overall, the effect of TRIA was cultivar-
specific, as 20 µM TRIA proved more effective in reducing 
shoot Na+ in cv. S-24 under saline conditions and 10 µM 
TRIA was more effective in cv. MH-97. Comparison of 
various growth stages with applied TRIA showed that 
shoot Na+ content decreased more sharply when applied 
at the boot stage under salt stress in both wheat cultivars 
(Figure 6A). 

Shoot and root K+ ions decreased prominently in 
both wheat cultivars under salinity stress. Cultivar S-24 
was higher in shoot K+ (Figure 6C) content than cv. MH-
97 under both saline and nonsaline conditions, while in 
the roots K+ (Figure 6D) content was higher only under 
nonsaline conditions. The exogenous application of TRIA 
at various growth stages increased shoot K+ content in 
both cultivars, while it did not modulate root K+ content 
under saline or nonsaline stress.

Root-medium–applied salinity stress decreased shoot 
and root Ca2+ content prominently in both wheat cultivars 
(Figures 7A, B). Of the 2 cultivars, S-24 was higher in 
shoot and root Ca2+ content than MH-97. Foliar-applied 
TRIA at various growth stages markedly increased the 
shoot and root Ca2+ content in both cultivars under both 
nonsaline and saline conditions. TRIA application at all 
growth stages showed almost uniform behavior. However, 
10 µM TRIA was more effective for both cultivars under 
nonsaline stress, while a consistent increase in shoot Ca2+ 
content was observed at vegetative and vegetative + boot 
stages in cv. S-24 under saline stress. 

Salinity stress caused a remarkable increase in shoot 
and root Cl– content in both wheat cultivars (Figures 7C 
and D). The response of the 2 wheat cultivars in terms of 
shoot and root Cl– content was markedly variable. Cultivar 
S-24 accumulated more shoot and root Cl– content than 
cv. MH-97 under both salt-stressed and nonstressed 
conditions. Cultivar response to foliar application of TRIA 
in terms of shoot Cl– content was also variable under saline 
or nonsaline conditions, and shoot Cl– content increased 
slightly with increasing TRIA levels at all growth stages 
under nonsaline conditions and decreased under saline 
conditions in both cultivars, except at the boot stage in cv. 
MH-97.

4. Discussion
Salt stress, which is partially associated with hormonal 
imbalance, drastically reduced plant growth (Babu et al., 
2012). However, exogenous application of plant growth 
regulators can overcome the negative effects of salt stress 
(Eleiwa et al., 2011). Triacontanol is known as a potential 
plant growth regulator like many other known growth 
regulators (Naeem et al., 2011). Various physiological 
and biochemical processes have been regulated by foliar 
application of TRIA under saline stress (Perveen et al., 
2013). 

Under saline conditions plants are unable to take up 
water in the presence of excess salts in the soil solution, 
which results in reduced growth and disorder in various 
metabolic processes (Munns and Tester, 2008; Tavakkoli et 
al., 2010). In root cells, Na+ is readily absorbed due to its 
small size and is transported to all plant tissues resulting 
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Figure 5. Total free amino acids and total phenolics, proline, and glycine betaine contents of Triticum aestivum plants foliarly 
sprayed with TRIA under nonstress and salt-stress conditions at different growth stages. 
Cvs = cultivars, S = salinity, Gs = growth stages. *, **, and *** = significant at 0.05, 0.01, and 0.001 levels, respectively. Bars in graphs 
represent standard errors.



PERVEEN et al. / Turk J Bot

907

  

0 
2 
4 
6 
8 

10  

Sh
oo

t N
a+  (

m
g 

g
–1

 
d.

w
t.)

  
    

TRIA 0 µM TRIA 10 µM TRIA 20 µM 

Vegetative stage A 
S***; Cvs  × Gs**;   S × Gs*; Cvs × S × Gs*;  
 TRIA**; S × TRIA* 
 

0 

5 

10  

15  

Ro
ot

 N
a+

 (m
g 

g–1
 

d.
w

t.)
 

    

TRIA 0 µM TRIA 10 µM TRIA 20 µM 

Vegetative stage B 
S***; Cvs  × S*** 

0 
2 
4 
6 
8 

Sh
oo

t N
a+  (

m
g 

g–1
 d

.w
t.)

  
 

Boot stage  

0 
5 

10  
15  
20  

Ro
ot

 N
a+  (

m
g 

g–1
 d

.w
t.)

 
  

Boot stage  

0 

5 

10  

Control  Saline  Control  Saline  

S –24  MH–97  

Sh
oo

t N
a+  (

m
g 

g–1
 d

.w
t.)

  
  

Vegetative + boot stages 

0 
5 

10  
15  
20  

Control  Saline  Control  Saline  

S –24  MH–97 

Ro
ot

 N
a+  (

m
g 

g–1
 d

.w
t.)

 
  

Vegetative + boot stages 

0 
10  
20  
30  

Sh
oo

t K
+  (

m
g 

g
–1

 

d.
w

t.)
 

    

TRIA 0 µM TRIA 10 µM TRIA 20 µM 
Vegetative stage C 

Cvs***; S***; Cvs  × S**;   Cvs × Gs *;  
Cvs  × S × Gs *; TRIA* 

0 
5 

10  
15  
20  
25  

Ro
ot

 K
+ (

m
g 

g
–1

 
d.

w
t.)

     

TRIA 0 µM TRIA 10 µM TRIA 20 µM 
Vegetative stage D 

Cvs***; S***; Cvs  × S***; Gs*;    S × Gs**;  
Cvs × TRIA*; S × Gs × TRIA* 

0 

10  

20  

30  

Sh
oo

t K
+  (

m
g 

g–1
 d

.w
t.)

 
  

Boot stage  

0 

10  

20  

30  

Ro
ot

 K
+ (

m
g 

g–1
 d

.w
t.)

 
  

Boot stage  

0 
10  
20  
30  

Control  Saline  Control  Saline  

S –24 MH–97 

Sh
oo

t K
+  (

m
g 

g
–1

 
d.

w
t.)

 
 

 

Vegetative + boot stages 

0 
5 

10  
15  
20  
25  

Control  Saline  Control  Saline  

S –24 MH–97 

Ro
ot

 K
+ (

m
g 

g
–1

 
d.

w
t.)

 
 

 

Vegetative + boot stages 

Figure 6. Shoot and root Na+ and K+ contents of Triticum aestivum plants foliarly sprayed with TRIA under nonstress and salt-
stress conditions at different growth stages. 
Cvs = cultivars, S = salinity, Gs = growth stages. *, **, and *** = significant at 0.05, 0.01, and 0.001 levels, respectively. Bars in graphs 
represent standard errors.
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Figure 7. Shoot and root Ca2+ and Cl– contents of Triticum aestivum plants foliarly sprayed with TRIA under nonstress and salt-
stress conditions at different growth stages. 
Cvs = cultivars, S = salinity, Gs = growth stages. *, **, and *** = significant at 0.05, 0.01, and 0.001 levels, respectively. Bars in graphs 
represent standard errors.
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in ion toxicity, osmotic stress, and nutrient imbalance 
(Siringam et al., 2011). Shoot dry matter, leaf area, plant 
height, relative water content, and chlorophyll all decrease 
with increasing accumulation of Na+ and Cl– (Bybordi, 
2010; Hossain et al., 2011). In addition, Na+ and Cl– ion 
toxicity leads to reduced growth and yield by altering 
nonstomatal factors’ effect like chlorophyll degradation 
and impaired chlorophyll fluorescence (Nemati, 2011; 
Tavakkoli et al., 2011).

In the present study, foliar-applied TRIA at different 
growth stages significantly enhanced dry biomass (shoot 
and root dry weights), total leaf area per plant, and yield 
attributes of the salt- stressed and nonstressed plants of 
both wheat cultivars, particularly when TRIA was applied 
at the vegetative + boot stages. It has also been reported 
that TRIA can exert growth-stimulatory effects equally 
well at different growth stages (Singh et al., 2011). For 
example, foliar application of TRIA at early vegetative 
stage and at anthesis was reported to increase the growth 
and yield of most economic crops including wheat (Ries, 
1991). In another study, foliar spray of TRIA applied 3 
times at various growth stages, i.e. vegetative, flowering, 
and podding, was more effective in enhancing crop growth 
and yield in ginger (Singh et al., 2011). Furthermore, Singh 
et al. (1991) was of the view that at the preflowering stage 
TRIA is more effective at increasing seed weight, seed yield, 
and protein content in chickpea. In addition, TRIA can 
interact with other growth hormones such as cytokinins 
and gibberellic acid to regulate growth, yield, and 
metabolic processes in plants (Aftab et al., 2010). TRIA is 
known to induce the formation of second messenger 9-β-L 
(+) adenosine, which is similar in structure to cytokinins 
(Bonhomme et al., 2000; He and Loh, 2000). TRIA applied 
foliarly along with gibberellic acid at different growth 
stages enhanced the translocation of assimilates for pod 
filling in groundnut, resulting in increased yield and yield-
related parameters such as pod yield, pod weight, and 
number of pods per plant (Verma et al., 2009). 

TRIA is known to play an important role in water 
uptake, cell elongation, increasing cell division, and 
permeability of membranes (Hangarter et al., 1978). In 
the current study, root-medium–applied salinity stress 
significantly decreased leaf water relations in both wheat 
cultivars. However, foliar application of TRIA at different 
growth stages improved leaf water relations in both wheat 
cultivars under saline and nonsaline conditions. Krishnan 
and Kumari (2008) also reported an increase in relative 
water content and a decrease in leaf osmotic potential 
in TRIA-treated, salt-stressed soybean plants. TRIA-
induced increase in growth could be due to maintenance 
of water homeostasis (water relations), which again 
depends on increased uptake of water, essential nutrients, 
and synthesis/accumulation of organic compounds by 

enhanced photosynthesis under salt stress. In wheat, 
increased levels of toxic Na+ and Cl– ions cause oxidative 
stress, which, in turn, causes membrane damage in various 
cytoplasmic organelles (Shabala et al., 2012). Membrane 
lipid peroxidation results in malondialdehyde (MDA) 
accumulation, which is an indication of membrane damage 
at the cellular level under salt stress (Weisamy et al., 2012). 
Peroxidation of membrane lipids occurs due to reactive 
oxygen species or lipooxygenases (Janmohammadi et 
al., 2012). In the present investigation, salinity stress 
increased oxidative stress in both wheat cultivars but 
to a greater degree in salt-sensitive cv. MH-97 than in 
salt-tolerant cv. S-24; however, foliar-applied TRIA at 
different growth stages decreased oxidative stress–induced 
membrane damage, which is apparent from the stress-
induced reduction in MDA content (a product of lipid 
peroxidation) and H2O2 (most stable ROS in plants) in 
both wheat cultivars. TRIA inhibited lipid peroxidation in 
spinach (Spinacea oleracea L.) (Ramanarayan et al., 2000) 
and Arachis hypogaea L. (Verma et al., 2011) leaves and 
improved membrane integrity by differentially modulating 
membrane lipid composition (Swamy et al., 2009). In the 
present study, TRIA-induced improvement in growth 
might have been due to its effect on the performance of 
antioxidant enzymes like POD under salt stress (Perveen 
et al., 2011; Ertani et al., 2012). Increased POD activity may 
have taken part in the detoxification of ROS (H2O2 in this 
case), leading to a balance between ROS generation and 
ROS scavenging, thereby mitigating the adverse effects of 
salt stress on wheat plants. 

Plants overcome salinity-induced osmotic effects 
through accumulation of inorganic or organic osmolytes/
solutes such as sodium, potassium, and chloride; free 
proline; glycine betaine; and free amino acids by a process 
known as osmotic adjustment (Munns, 2005; Zhu et al., 
2011) in response to decreased external water potential 
(Farouk, 2011). In this study, salinity stress increased 
total free amino acids, free proline, glycine betaine, and 
soluble protein content in both wheat cultivars. Foliar-
applied TRIA did not alter total free amino acids, free 
proline, glycine betaine, or soluble protein content 
significantly when applied to the wheat plants at various 
growth stages in this study. However, increased protein 
content under TRIA treatment was reported by Verma et 
al. (2011), Kumaravelu et al. (2000), and Muthuchelian et 
al. (2003) in different plant species. Krishnan and Kumari 
(2008) reported a decrease in proline and an increase in 
protein content in salt-stressed soybean plants treated with 
triacontanol. There is no clear evidence in the literature 
regarding the effect of TRIA on GB accumulation in 
plants under stress or nonstress conditions. Phenolics act 
as potential antioxidant compounds that play a role in 
scavenging singlet oxygen (1O2) (Rice-Evans et al., 1997); 
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however, under salt stress the level of total phenolics 
usually alters depending upon the sensitivity of a plant 
species to salt stress (Giorgi et al., 2009). In the present 
investigation, salinity stress increased total phenolic 
content in both wheat cultivars. However, foliar-applied 
TRIA at various growth stages decreased total phenolic 
content in both cultivars and to a greater degree in the 
salt-sensitive wheat cultivar. This study is in agreement 
with Ertani et al. (2012), who showed that a TRIA-based 
biostimulant decreased phenolic content in salt-stressed 
maize plants. 

Triacontanol regulates different physiological and 
biochemical processes including the uptake and use 
efficiency of different mineral ions under both normal 
and salt-stress conditions (Ertani et al., 2012; Perveen 
et al., 2012). In addition, TRIA can interact with other 
growth hormones such as cytokinins and gibberellic acid 
for regulation of growth, yield, and metabolic processes 
(Aftab et al., 2010). For example, TRIA induces the 
formation of second messenger 9-β-L (+) adenosine, 
which is similar in structure to cytokinins, and exogenous 
application of cytokinins is known to induce growth 
(Bonhomme et al., 2000). Treatment with TRIA increases 
L(+)-adenosine levels (Ries and Wert, 1988), and picomole 
concentrations of (+)-adenosine can enhance Ca2+, Mg2+, 
and K+ concentrations (Ries et al., 1993). However, 
optimal concentrations of TRIA and plant age are among 
the important factors that control the growth and final 
yield of various plant species (Sagaral et al., 1978). 

As the physiochemical properties of Na+ and K+ are 
similar, uptake of K+ is affected by high Na+ levels (Hossain 
et al., 2011), which lead to reduced potassium and Ca2+ 
uptake (Bavei et al., 2011; Tavakkoli et al., 2011). In the 
current study shoot and root K+ and Ca2+ contents were 
drastically reduced under salinity stress in both wheat 
cultivars. Shoot and root K+ and Ca2+ ions increased 
by exogenous foliar application of TRIA at all growth 
stages. Interference in essential nutrient uptake, i.e. an 
increase in Na+ and Cl– content and decrease in K+ and 
Ca2+ ions and K+/Na+ ratios under NaCl stress have been 
reported in crops such as wheat (Shafi et al., 2010), barley 
(Tavakkoli et al., 2011), and maize (Turan et al., 2010). 
Salt-tolerant genotypes possess higher K+ uptake due to 
selective absorption of K+ rather than Na+ (Perveen et al., 
2012). Foliar application of TRIA stimulates the influx of 
Ca2+ into the cytoplasm (Ries et al., 1993), which could 
bind to receptor proteins such as calmodulin (Evans et 
al., 1991), while increased uptake of K+ could be due to 
increased competition at the plasma membrane sites 
(Epstein, 1966) that regulate growth processes in the face 
of certain external stimuli (Ries et al., 1993). Overall, 
TRIA application at vegetative + boot stages proved more 
effective at increasing shoot and root K+ and Ca2+ contents 

in both wheat cultivars, particularly under salt-stress 
conditions. Our findings are in accordance with Srivastava 
and Sharma (1990), who reported that foliar spray of TRIA 
at different growth stages increased shoot nutrient content. 
Under salt stress K+ and Ca2+ content increased under 
foliar application of TRIA in soybean as well (Krishnan 
and Kumari, 2008), while a nonsignificant effect of TRIA 
was observed by Naeem et al. (2009). In our study, foliar-
applied TRIA at various growth stages also enhanced shoot 
and root K+/Na+ ratios, particularly in salt-tolerant cv. S-24 
at the vegetative stage and in both cultivars at the vegetative 
+ boot stage. The possible mechanism of TRIA-induced 
alteration is a TRIA-mediated increase in membrane-
bound enzyme activities, e.g., Ca2+/Mg2+ ATPases (Lesniak 
et al., 1986); fluidity of membranes to several solutes by 
generation of an electrochemical gradient across plasma 
membranes; and increased uptake of the essential 
nutrients Ca2+, Mg2+, and K+ (Ries, 1991; Ries et al., 1993). 
Furthermore, exogenous foliar-applied TRIA at various 
growth stages also reduced the accumulation of shoot Na+ 
and shoot and root Cl– in both wheat cultivars under saline 
conditions.

In conclusion, foliar application of TRIA ameliorated 
the adverse effects of salt stress on growth, yield, and leaf 
water relations by enhancing shoot and root dry biomass 
and antioxidant defense (increased POD activity) and 
decreasing oxidative stress (MDA and H2O2 content) and 
total phenolic content in both wheat cultivars under saline 
conditions. The TRIA-induced improvement in plant 
biomass may be due to high accumulation of shoot and 
root K+ and Ca2+ contents and low accumulation of Na+ 
and Cl– contents. Overall, foliar application of TRIA at the 
vegetative as well as vegetative + boot stages was effective 
for increasing growth, yield, and leaf water relations in 
salt-stressed and nonstressed plants of both cultivars. Salt-
sensitive cultivar MH-97 showed a more positive response 
in terms of growth and yield to 10 µM TRIA, while cv. 
S-24 responded more favorably to 20 µM in yield attributes 
under both control and NaCl stress. Salt-tolerant cultivar 
S-24 was higher in leaf water relations, total soluble 
proteins, free amino acids, proline, shoot Ca2+, shoot and 
root K+ content, and POD and SOD activities only under 
saline conditions, while salt sensitive cultivar MH-97 
showed higher values for leaf osmotic potential, H2O2, and 
total phenolic content under both nonsaline and saline 
conditions. 
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