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1. Introduction
Chickpea (Cicer arietinum L.) is the third most important 
cool season food legume worldwide after dry bean 
(Phaseolus vulgaris L.) and field pea (Pisum sativum L.). 
Chickpea seed production has been increasing since the 
1990s and rose from 7 million tons in 1990 to 11 million 
tons in 2012. This increase is mainly due to better yields, 
which reached about 0.9 t/ha worldwide in 2011 (FAO, 
2013). It is a diploid plant (2n = 2x = 16) with an estimated 
haploid genome size of 738 Mb (Varshney et al., 2013). It 
is cultivated in about 33 countries and regions including 
Central-West Asia, South Europe, Ethiopia, North Africa, 
and Australia (FAO, 2013; ICRISAT, 2013). It has high 
nutritive value and serves as an important cheap source of 
protein in developing countries in addition to improving 
land fertility (Saeed et al., 2011). The chickpea seed is a good 
source of carbohydrates and proteins, which collectively 
constitute 80% of the total dry seed weight (Talebi et al., 

2008; Aggarwal et al., 2013). Moreover, chickpea pod 
covers and seed coats are used as fodder (Tahir and Karim, 
2011). Chickpea is also an important food for people to use 
to improve major food-related health problems (Charles 
et al., 2002; Jukanti et al., 2012). However, more research 
is necessary to increase the benefits of this valuable food 
legume through breeding (Milan et al., 2006).

Modern plant breeding and agricultural systems have 
narrowed the base for the genetic diversity of cultivated 
chickpea (Robertson et al., 1997). Therefore, it is time to 
explore new sources of variation that might be used in 
plant breeding programs. Knowledge of genetic diversity 
is important for gene bank management and breeding 
programs such as gene tagging and marker-assisted 
selection (MAS). Genetic diversity among the parents is a 
prerequisite for ensuring the chance of improved segregate 
selection for various characters (Dwevedi et al., 2009). 
Criteria for the assessment of genetic variability can include 
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morphological traits (Upadhaya et al., 2007) and molecular 
markers (Sharma et al., 1995). Molecular markers have 
proved to be valuable tools for the characterization and 
assessment of genetic variability within and between 
species and populations (Talebi et al., 2008). 

Various molecular markers are available for the 
identification of cultivars and analysis of genetic diversity. 
The random amplified polymorphic DNA (RAPD) marker 
system has been used for evaluating genetic diversity in 
chickpea (Ahmad, 1999; Sant et al., 1999; Sudupak et 
al., 2002). However, little genetic diversity was detected 
using RAPD markers (Simon and Muehlbauer, 1997; 
Singh et al., 2002). Inter simple sequence repeats (ISSR) 
markers are more consistent than the RAPD markers, as 
they generate a greater number of polymorphic loci per 
primer (Ratnaparkhe et al., 1998a; Aggarwal et al., 2011). 
Unlike RAPDs, ISSR markers are detected using longer 
semiarbitrary SSR primers at highly stringent conditions 
in PCR; therefore, they are reproducible and highly 
polymorphic DNA markers (Bornet and Branchard, 
2001; Alam et al., 2009). ISSR is based on amplification of 
genomic segments flanked by inversely oriented and closely 
spaced SSR loci using microsatellite core-unit–bearing 
oligonucleotide primers that could be either nonanchored 
or anchored to 5’ or 3’ end of the repeats with 1–3 random 

nucleotides (Zietkiewicz et al., 1994; Sudupak, 2004). This 
technique is fast and cost-efficient, and does not require 
prior knowledge of sequence.

ISSR markers have been employed to analyze genetic 
diversity and relationships in a number of crops (Ajibade 
et al., 2000; Raina et al., 2001; Bart et al., 2002). In 
chickpea, Ratnaparkhe et al. (1998b) reported that the 
ISSR technique is helpful in finding markers closely linked 
to a disease-resistant gene. In addition, these markers have 
been successfully used to study diversity and phylogenetic 
relationships in chickpea for the last decade (Iruela et al., 
2002; Rajesh et al., 2003; Rao et al., 2007; Bhagyawant 
and Srivastava, 2008; Aggarwal et al., 2011). However, 
there have been very few reports investigating the level of 
genetic variation in chickpea cultivars according to their 
resistance/susceptibility to Fusarium wilt and Ascochyta 
blight. Therefore, the present study was carried out to 
determine genetic diversity among 125 chickpea cultivars, 
42 resistant and 13 susceptible to Fusarium wilt and 
Ascochyta blight, using ISSR markers.

2. Materials and methods 
2.1. Plant materials and DNA isolation 
One hundred and twenty-five chickpea cultivars of 
Indian origin (Table 1) were grown in randomized 

Table 1. List of chickpea cultivars used in the present study.

Sr. no. Genotype Sr. no. Genotype Sr. no. Genotype Sr. no. Genotype Sr. no. Genotype
1 ICCV4958 26 Avrodhi 51 RSGK-6(k) 76 GPF-2 101 Pusa 391
2 Katila 27 CSG 8962 52 JG-64 77 JGG-1 102 SAKI9516
3 PDG 84-16 28 Pusa 372 53 ICCV-10 78 PG 12 103 GCP 105
4 BG 276 29 HK 98-155 54 BushyMutant 79 RSG-2 104 RAU 52
5 Tyson 30 RSG 973 55 Hima 80 Chaffa 105 Pusa 240
6 H-208 31 RSG 888 56 BG 396 81 PDG-3 106 Sadabahar
7 HC-3 32 HC-1 57 BG 1006 82 GNG1292 107 RSG-11
8 E 100 Ym 33 Pusa 256 58 IPC 92-39 83 JG 11 108 Pusa 329
9 GNG 663 34 Pusa 362 59 IPC 98-12 84 KWR 108 109 Dohadyellow
10 C-235 35 Vishal 60 ICCV14880 85 JG 218 110 Pusa 1003
11 DCP 92-3 36 H04-45 61 IPC 99-18 86 Phule G-5 111 JG 130
12 Radhey 37 HC-5 62 IPC2000-33 87 Pant G114 112 B 108
13 RSG 963 38 H03-56 63 IPC 2001-2 88 Pusa 312 113 BGD 75
14 Pusa 261 39 Gaurav 64 IPC 95-1 89 K 850 114 C 214
15 Annegiri 40 ICC 4958 65 PG 96006 90 GCP 101 115 C 15
16 RSG 931 41 Amethyst 66 IPC 97-67 91 BGM 413 116 C 20
17 GNG 146 42 WR-315 67 IPC 94-94 92 Virat(k) 117 C 16
18 BGM 408 43 ICCV92944 68 IPC2000-41 93 PBG-5 118 M 1
19 Pusa 267 44 ICCV96030 69 IPC2000-45 94 PDG 4 119 M 2
20 Vijay 45 L 551 70 RSG 807 95 RSG 44 120 H04-57
21 HK 94-134 46 Pusa 1053 71 Pusa 209 96 Pusa 212 121 H04-44
22 GNG 469 47 L 550(k) 72 CSJD-844 97 GL 769 122 H04-87
23 JG 315 48 ICCV-2 73 GG-2 98 Vaibhava 123 H04-11
24 BGD 72 49 JG 74 74 RS-10 99 KPG 59 124 Digvijay
25 PBG-1 50 JKG-1(k) 75 Pusa 244 100 ICCV 37 125 PantG186
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blocks designed in 3 replicates at the research farm of the 
Department of Plant Breeding, CCS Haryana Agricultural 
University, Hisar. All cultivars were categorized into 
3 groups/populations (Table 2) depending upon their 
resistance/susceptibility to Fusarium wilt and Ascochyta 

blight. Out of the 125 cultivars, 42 are resistant and 13 
are susceptible to Fusarium wilt and Ascochyta blight. 
Genomic DNA was isolated from leaves of 3–4-week-old 
seedlings using the modified CTAB method of Thompson 
and Murray (1980). The quality and concentration of DNA 
were measured by NanoDrop spectrophotometer (ND-
100) and electrophoresis using 0.8% agarose gel.  
2.2. ISSR-PCR 
A set of 40 ISSR primers were obtained from Alpha DNA 
(Montreal, Quebec, Canada; H4C3N9) (Table 3), and 
PCR amplification was performed in in a thermal cycler 
(MJ Research). Amplification reactions were performed 
in volumes of 15 µL containing 1X PCR buffer, 200 µM 
of each dNTP, 2.5 mM MgCl2, 0.4 µM primer, 1 unit of 
Taq polymerase (Sigma-Aldrich), and 20 ng of template 

Table 2. Grouping of chickpea cultivars in response to Fusarium 
wilt/Ascochyta blight.

Sr. no. Groups Response to Fusarium wilt/Ascochyta blight

1–42 Group 1 Resistant

43–55 Group 2 Susceptible

56–125 Group 3 Miscellaneous

Table 3. Sequence of primers used for ISSR amplification and their GC content, annealing temperature (TA), total number of loci (TL), 
number of polymorphic loci (NPL), percentage of polymorphic loci (PPL), total fragments amplified (TF), resolving power (Rp), and 
polymorphic information content (PIC).

No. Primer sequence (5’~3’) GC (%) TA (°C) TL PPL TF Rp PIC
807 AGAGAGAGAGAGAGAGT 47.0 52.3 13 92.3 363 5.81 0.886
808 AGAGAGAGAGAGAGAGC 52.9 55.0 17 100 513 8.21 0.905
809 AGAGAGAGAGAGAGAGG 52.4 55.0 18 100 238 3.81 0.915
810 GAGAGAGAGAGAGAGAT 47.0 53.5 11 100 240 3.84 0.875
811 GAGAGAGAGAGAGAGAC 52.9 56.0 14 100 205 3.28 0.863
812 GAGAGAGAGAGAGAGAA 47.0 53.8 9 100 128 2.05 0.814
813 CTCTCTCTCTCTCTCTT 47.0 48.0 3 66.6 148 2.37 0.575
814 CTCTCTCTCTCTCTCTA 47.0 38.1 7 85.7 250 4.00 0.730
815 CTCTCTCTCTCTCTCTG 52.9 51.6 9 100 84 1.34 0.815
816 CACACACACACACACAT 47.0 51.4 8 100 96 1.54 0.728
817 CACACACACACACACAA 47.0 51.4 1 100 21 0.34 0
818 CACACACACACACACAG 52.9 50.4 5 100 147 2.35 0.718
819 GTGTGTGTGTGTGTGTA 47.0 49.6 4 100 66 1.06 0.662
820 GTGTGTGTGTGTGTGTC 52.9 52.4 4 75 131 2.10 0.504
821 GTGTGTGTGTGTGTGTT 47.0 53.5 4 100 40 0.64 0.229
823 TCTCTCTCTCTCTCTCC 52.9 50.0 11 90.9 268 4.29 0.794
824 TCTCTCTCTCTCTCTCG 52.9 50.1 2 100 54 0.86 0.499
825 ACACACACACACACACT 47.0 48.9 3 100 79 1.26 0.450
826 ACACACACACACACACC 52.9 55.0 9 100 200 3.20 0.851
827 ACACACACACACACACG 52.9 54.3 16 100 157 2.51 0.913
829 TGTGTGTGTGTGTGTGC 52.9 54.0 4 75 122 1.95 0.264
830 TGTGTGTGTGTGTGTGG 52.9 55.9 12 83.3 433 6.93 0.849
834 AGAGAGAGAGAGAGAGAT 44.4 48.5 11 63.6 542 8.67 0.866
835 AGAGAGAGAGAGAGAGAC 50.0 51.0 15 80 460 7.36 0.843
836 AGAGAGAGAGAGAGAGTA 44.4 55.9 10 60 640 10.24 0.870
840 GAGAGAGAGAGAGAGAAT 44.4 55.8 12 100 283 4.53 0.797

Total 232 5908
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DNA. The first cycle consisted of denaturation for 5 min 
at 94 °C, primer annealing at 48–56 °C (depending on 
the primer) for 45 s, and extension at 72 °C for 1 min. In 
the next 35 cycles the denaturation period was 45 s at 94 

°C, annealing and extension parameters were the same 
as in the first cycle, and final extension was at 72 °C for 
10 min. Amplification products were electrophoresed on 
1.4% (w/v) agarose gel in 1X Tris-Borate EDTA (TBE) 
buffer at 90 V for 1 h, stained with ethidium bromide, and 
documented on a gel documentation system (SynGene, 
Germany); 1 kb and 100 bp ladders were used as molecular 
size markers. All PCR reactions were run in duplicate, and 
only reproducible and clear bands were scored.
2.3. Data analysis 
The banding patterns obtained from ISSR were scored 
as present (1) or absent (0), and each was treated as an 
independent character. The data were subjected to cluster 
analysis by the neighbor-joining (NJ) method, and a 
dendrogram was generated using DARWIN (version 
5.0.158). In addition, statistically unbiased clustering of 
data was performed using STRUCTURE (version 2.3.1) 
(Evann et al., 2005). POPGENE was used to calculate 
within-species diversity (Hs), total genetic diversity (Ht), 
and Nei’s unbiased genetic distance among cultivars (Nei, 
1978). Data for Nei’s genetic diversity (H), Shannon’s 
information index (I), number of polymorphic loci 
(NPL), and percentage polymorphic loci (PPL) across 
125 cultivars were also analyzed (Zhao et al., 2006). 
Furthermore, the ISSR data was subjected to a hierarchical 
analysis of molecular variance (AMOVA) (Excoffier et al., 
1992) among the cultivars. Diversity index (DI), effective 
multiplex ratio (EMR), and marker index (MI) of ISSR 
marker was calculated according to Powell et al. (1996). 
The resolving power of the ISSR primers was calculated 
according to Prevost and Wilkinson (1999). The resolving 
power (Rp) of a primer is: Rp = Σ IB, where IB (band 
informativeness) takes the value of: 1 – [2 × (0.5 – P)], P 
being the proportion of the 125 cultivars containing the 
band. Similarly, the polymorphism information content 
(PIC) of a primer is calculated as: 

PIC =1− pi
2

i=1

n

∑
 
,

where pi is the frequency of an individual genotype 
generated by a given ISSR primer, and summation extends 
over n alleles.

3. Results and discussion
The 26 ISSR primers selected in the study generated a total 
of 232 ISSR bands (an average of 9 bands per primer), out 
of which 213 were polymorphic (91.8%). The number of 
bands varied from 2 to 15 with sizes ranging from 120 
to 2000 bp. Amplification results of 26 primers seem to 

indicate that microsatellites more frequent in Cicer contain 
the repeated di- (AG)n, (GA)n, (CA)n, (CT)n, (TC)n, 
(TG)n, and (AC)n. The resolving power (Rp) of the ISSR 
primers of the 26 nucleotides ranged from 0.34 to 10.24 
(Table 3).

The complete data set of 5908 bands was used for 
cluster analysis based on bootstrapping and NJ method. 
The NJ-generated dendrogram (Figure 1) consisted of 1 
mega cluster and 2 mini clusters; cluster II was extensively 
divided into mini clusters. Cluster I consists of 9 cultivars 
(90, 73, 87, 89, 88, 81, 77, 78, and 84), while cluster III 
comprised 33 cultivars (60, 14, 20, 21, 19, 22, 8, 11, 15, 
10, 12, 17, 18, 6, 7, 9, 16, 4, 5, 71, 68, 70, 44, 45, 61, 72, 
69, 67, 63, 62, 66, 64, and 65). The other 83 cultivars in 
cluster II were further subdivided into 10 subgroups. The 
estimated likelihood of the clustering of cultivars using 
STRUCTURE analysis was found to be optimal when K 
= 3; ∆Κ reached its maximum value when K = 3 (Figure 
2), suggesting that all the cultivars fell into 1 of the 3 
clusters. The cultivars were more likely distributed (at high 
probability) with respect to response towards diseases 
despite small interference (Figure 3).

Relatively high genetic variation was detected among 
the cultivars. Genetic diversity analysis in terms of Na, 
Ne, H, I, Ht, Hs, and PPL for resistant, susceptible, 
and miscellaneous cultivars revealed higher values for 
miscellaneous, indicating more variability among these 
cultivars in comparison to resistant and susceptible 
ones (Table 4). AMOVA among groups (6%) and among 
cultivars (94%) indicated that there are more variations 
within the population (Table 5). Higher genetic variability 
occurred across cultivars, as the estimated gene flow was 
8.964 (Table 6). The overall value of Shannon’s index was 
0.369, and the value of Nei’s genetic diversity was 0.231. 
The values of the mean diversity index (DI) and mean 
effective multiplex ratio (EMR) are 0.721 and 7.659, 
respectively. Further, the marker index of ISSR was 
obtained within a good range (0.639), indicating ISSR is a 
powerful molecular marker for genetic characterization of 
Cicer arietinum cultivars; this is further supported by the 
grouping pattern in the NJ-generated dendrogram.

Ratnaparkhe et al. (1998a) studied inheritance of ISSR 
polymorphisms in a cross of cultivated chickpea (Cicer 
arietinum L.) and a closely related wild species (Cicer 
reticulatum L.) using primer that anneals to a simple 
repeat of various lengths, sequences, and nonrepetitive 
motifs. The majority of primers are dinucleotides, which 
upon testing provide useful banding patterns. Twenty-
two primes were used for analysis and yielded a total of 
31 segregating loci. Moreover, all ISSR loci showed nearly 
complete agreement with expected Mendelian ratios. 
Ratnaparkhe et al. (1998b) also observed an abundance 
of dinucleotides and trinucleotide repeats at the Fusarium 
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wilt disease resistance gene cluster. The repeat (AC)8T 
amplified a marker, UBC-8251200, which was closer to 
the gene than other markers for resistance to Fusarium 
wilt race 4. These results specified that ISSR markers can 
provide important information for the design of other 
primers.

Iruela et al. (2002) used a total of 52 markers (RAPD 
+ ISSR) to study the variation within Cicer arietinum 
and found that the Jaccard’s similarity index obtained 
from these data varied between 0.19 and 0.97. Only 31 
fragments were found to be polymorphic out of 234; thus, 
little polymorphism was detected (13.2%). The other 
species with more than 1 accession showed average values 
of similarity between 0.45 and 0.78, with C. bijugum and 

Figure 1. NJ tree representing clustering of cultivars along with supported bootstrap values based on ISSR profiling.
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Figure 3. STRUCTURE analysis of chickpea cultivars based on ISSR data showing grouping of cultivars when K = 3.

Table 4. Summary of genetic variation statistics for all loci of ISSR among the chickpea cultivars with respect to their resistance/
susceptibility to Fusarium wilt and Ascochyta blight.

Response to diseases Sample size Na Ne H I Ht PPL

ISSR

Resistant 42 1.747 (0.436) 1.342 (0.343) 0.210 (0.183) 0.324 (0.256) 0.209 (0.033) 74.68

Susceptible 13 1.556 (0.498) 1.309 (0.349) 0.186 (0.191) 0.282 (0.276) 0.186 (0.037) 55.79

Miscellaneous 70 1.888 (0.316) 1.367 (0.316) 0.231 (0.166) 0.363 (0.228) 0.231 (0.028) 88.84

Na = observed number of alleles; Ne = effective number of alleles; H = Nei’s gene diversity; I = Shannon’s information index; Ht = total 
genetic diversity; PPL = percentage of polymorphic loci.

Table 5. Summary of analysis of molecular variance (AMOVA) based on ISSR analysis. Levels of significance are based on 1000 iteration steps.

Source of variation D.F. S.S.D. M.S. Variance component Percentage P-value

Among groups 2.00 177.87 88.93 1.79 6 -

Among cultivars 122.00 3188.87 26.14 26.14 94 <0.001

D.F.: degree of freedom; S.S.D.: sum of square deviation; M.S.: mean square deviation; P-value: probability of null distribution.

Table 6. Overall genetic variability across all 125 cultivars of chickpea based on ISSR markers.

Na Ne H I Ht Hs Gst Nm DI EMR MI

2.000 1.364 0.231 0.369 0.231 0.219 0.053 8.964 0.721 7.659 0.639

– (0.310) (0.159) (0.211) (0.025) (0.023)

Na = observed number of alleles; Ne = effective number of alleles; H = Nei’s gene diversity; I = Shannon’s information index; Ht = 
heterogeneity; Hs = homogeneity; Gst = gene differentiation; Nm = gene flow (Nm = 0.5(1 – Gst)/Gst); DI = diversity index; EMR = 
effective multiplex ratio; MI = marker index.
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C. cuneatum having the lowest genetic diversity (0.78 
and 0.74, respectively). These findings confirm the low 
level of genetic diversity within chickpea compared to 
the wild species. Rajesh et al. (2002) selected 13 wild 
species of Cicer (6 annual and 7 perennial) and amplified 
using 25 ISSR primers. The UPGMA and AMOVA tests 
were performed to quantify the genetic variability. They 
also used 4 cultivars of C. arietinum, i.e. Vijay, JG62, 
ICC4958, and V65R. Fifteen primers out of 25 generated 
a total of 115 reproducible bands, giving an average of 6.6 
polymorphic bands per primer. In an AMOVA analysis 
among populations, a total variance of 51.10% was found 
within populations, while 48.90% of total variance was 
found among populations.

PCR products of 6 SSR primers in Cicer accessions were 
treated as dominant DNA markers by Sudupak (2004) and 
were exploited to compute the distances among accessions 
and species. On average, 25 bands per primer with product 
sizes ranging from 0.2 to 2.5 kb were observed. Among 
C. arietinum accessions, only 3 loci were polymorphic, 
revealing the grouping of accessions. ISSR variation among 
species was common with expected gene diversity of 0.24 
and 100% polymorphic loci, but variation within species 
was low. Among the species, C. pinnatifidum was the most 
polymorphic followed by C. reticulum, while C. arietinum 
had the lowest level of ISSR variation.

Rao et al. (2007) tested genetic relationships between 19 
chickpea cultivars and 5 accessions of its wild progenitor C. 
reticulum by using RAPD and ISSR markers. Six primers 
out of 10 were found to be polymorphic and generated 
a total of 64 bands; among these, 80% of bands were 
polymorphic. Among cultivated chickpea varieties, 56.3% 
polymorphic bands were found, while 65.6% polymorphic 
bands were found among wild accessions. From the 
UPGMA dendrogram, it is discernible that the material 
taken for the analysis can be divided into 2 major clusters. 
Wild accessions are grouped into 1 cluster and all chickpea 
cultivars in another cluster that is subdivided into groups 
and subgroups. The similarity coefficient varied from 0.84 
to 0.96 in cultivars, while it varied from 0.71 to 0.81 in 
wild accessions. The ISSR study clearly signified that, even 
with 6 polymorphic primers, reliable estimation of genetic 
diversity could be attained. 

Bhagyawant and Srivastava (2008) performed the 
genetic fingerprinting of chickpea cultivars using ISSR 
primers. Twelve Cicer cultivars were screened using 10 
ISSR primers for PCR studies. A total of 492 bands were 
amplified across 12 cultivars with 7 primers, revealing 
an average of 70.28 bands per primer and 5.85 bands per 
primer per genotype. The total number of loci amplified 
by 3’ anchored repeats varied from 36 to 96. The primers 
based on poly (ATG) and (GAA) motifs produced at least 

36 bands, whereas primers (AC)T and (AC)TT produced 
a maximum of 96 bands.

A molecular evaluation of 5 chickpea varieties was 
conducted by Tahir and Karim (2011) to access the 
genetic diversity and relationship of chickpea cultivars 
using RAPD and ISSR markers. All 5 primers used were 
polymorphic and generated 6.6 bands per primer in a 
total of 33 bands. The varieties shared 36.4% common 
bands and 63.6% polymorphic bands with ISSR primers. 
The Jaccard similarity matrix varied from 0.16 to 1.00 in 
chickpea varieties.

Genetic fingerprinting of 115 chickpea cultivars was 
performed by Aggarwal et al. (2011) using 6 ISSR primers. 
Out of 6 primers, 3 were found to be polymorphic and 
generated reproducible fragments of sizes ranging from 
0.15 to 3 kb. A total of 1527 scorable gel positions were 
observed, showing 72.3% polymorphism. The dendrogram 
based on UPGMA divided all cultivars into 5 clusters, 
while the Jaccard’s similarity coefficient ranged from 0.01 
to 0.90.

The extent of polymorphism detected in the present 
study is higher than in previously reported ISSR markers 
(Iruela et al., 2002; Rajesh et al., 2002; Sudupak, 2004; Rao 
et al., 2007; Tahir and Karim, 2011). This may be due to the 
high resolving power of ISSR primers used for detecting 
polymorphism. Since chickpea has little genetic diversity 
due to obligatory self-pollination and an extensively 
monotonous genome, it was necessary to screen many 
ISSR markers to detect sufficient DNA polymorphism. In 
the present scenario ISSR markers are the efficient marker 
system because of their ability to expose various informative 
loci from a single amplification. Similar studies were 
conducted by Bornet and Branchard (2001), by Fernandez 
et al. (2002) in barley, and by Qian et al. (2001) in rice. The 
idea behind studying such a large collection was to provide 
better knowledge about genetic variability so that this 
information proves to be informative in the management 
of genetic resources in chickpea. Genetic information 
obtained from ISSR data can be used in categorizing 
chickpea cultivars and can also harmonize the genetic 
studies generated from morphological traits. Further, the 
genetic divergence that exists between chickpea cultivars 
can be used efficiently for gene tagging and plant breeding.
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