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Abstract: Diatom community structure and morphotype classification were studied and periphyton biomass, course particulate organic
matter (CPOM), hydrogeomorphological parameters, and nutrient concentrations were measured at 4 stations downstream of the
Cecita dam (Mucone River) and at 3 control sites located on different tributaries of the Mucone River in May, August, and November
2005. The lowest values of current velocities and the highest amounts of sand deposition and CPOM accumulation were detected at the
stations closest to the dam. Downstream, the confluence with the first permanent tributary (Cerreto River) of the Mucone showed a
“rhythral” morphology, similar to that of the control sites. Multivariate analysis showed that the community was constantly segregated
into 2 groups: G1 (stations upstream of the Cerreto inflow), dominated by early colonizers, adapted to both high and low current
velocity and tolerating burial and light deficiencies; and G2 (all other stations), where the prevailing taxa were species typical of stable
environments with high values of flow and abundance of coarse substrates. Genus-based morphotype classification failed to detect any
differences between the 2 groups. Biomass levels were higher at station G2 than G1, while accumulation of CPOM downstream of the
reservoir promoted fine particulate organic matter production and a switch from autotroph to heterotroph dominated biofilms.
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1. Introduction

River impoundment and flow regulation are among the
most pervasive human effects on running water ecosystems
due to the multiple negative effects on hydrochemical,
geomorphological, and biological components (Nichols
et al., 2006). Benthic diatoms have been extensively used
in monitoring mostly organic and trophic pollution (Solak
and Acs, 2011). However, there is increasing evidence of
their effectiveness in detecting physical disturbances of
streams and rivers (Cortez et al., 2012) coherently with
the differential behavior and adaptations that diatoms
show towards processes such as current drag, shear stress
(Stevenson, 1996), fine sediment deposition (Fore, 2010),
and desiccation (van Dam et al., 1994). Reviews of the
most common responses of diatom communities to flow
abstraction and regulation indicated that they consisted
mostly of dominance of aerophilic taxa, occurrence of
long filamentous mats, increase in relative abundance of
motile diatom taxa (Bradley et al., 2012), development of
heterotrophic biofilm, change in species composition, and
increase in periphyton biomass (Smolar-Zvanut and Mikos,
2014). Moreover, some authors suggested the adoption
of a genus-based community analysis (Growns, 1999) or
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the evaluation, at genus level, of the number of motile
taxa (Bahls, 1993) to detect river alterations associated to
flow regulation and siltation, because such a taxonomic
identification level can be particularly effective when rapid
analysis is required for biomonitoring purposes. Recently,
Passy (2007) and Rimet and Bouchez (2012) proposed
a genus-level classification of diatoms resulting in 3
morphoecological guilds depending on their differential
response to nutrient and physical disturbance gradients:
low-profile (LP) taxa, including genera experiencing
resource limitations while resistant to physical stress
due to their adnate, prostrate, and erect morphologies;
high-profile (HP) taxa, which include large and colony-
forming organisms, not suffering from resource limitation
but prone to grazing activity and physical disturbance;
and motile (M) taxa, colonizing highly polluted and/or
unstable environments.

The Mucone River is the main tributary of the Crati
River, the most important watercourse of the Calabria
region. It springs from Serra Stella, in the Sila Grande, and
joins the Crati after approximately 43 km. The basin covers
an area of 151,334 km? and a perimeter measuring 83,719
km. Geological substrates consist mainly of granites and
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granodiorites, phyllites, marbles, quartzites, acid granulates,
and gneiss granites. Half of the basin area is dedicated to
agriculture; in particular, the upper part is dedicated to the
cultivation of potatoes and sowable crops, and the lower
part to vineyards, olive groves, and other orchards. The
climate is typically Mediterranean, with relatively cold and
rainy autumns and winters, cool springs with less intense
rainfalls, and hot dry summers. Mucone damming dates
back to the mid-1950s and consists of the construction of
the Cecita reservoir, with a capacity of 108 x 10°m?, which
is used for irrigation and hydroelectric power purposes.
Releases take place downstream of the generators, which
are located at altitudes of 480 and 198 m above sea level,
respectively. An extremely reduced amount of water is
released directly downstream of the dam resulting in a
strong flow regulation, while larger releases occur twice a
year to check the functioning of the floodgates. The first
permanent tributary that joins the Mucone downstream of
the dam is the Cerreto River, which enters the main course
3.2 km from the reservoir. Riparian vegetation consists
primarily of alder trees (Alnus glutinosa) that in proximity
of the dam appear to suffer a moderate thinning out.

The aims of this work were the following: a) evaluation
of the impact of river regulation through a comparison
of river sites of the (regulated) downstream reservoir and
upstream confluence of the first permanent tributary with
the control sites, b) evaluation of river recovery through

Crati River

Tyrrhenian Sea

) J

a comparison of the abovementioned sites (regulated and
control) with a site located downstream of the inflow of
the first permanent tributary, and c) evaluation of the
effectiveness of a genus-based morphotype index in
detecting hydrogeomorphological differences between
regulated and unregulated (control + site downstream of
the Cerreto inflow) river segments.

The experimental design consisted of 4 stations located
downstream of a multiple-use reservoir, one of which was
approximately 700 m below the inflow of the first permanent
tributary, and 3 control sites, each located on a different
tributary, to be sampled in May, August, and November
2005. Diatom community structure, morphoecological
guilds, periphyton biomass, and hydrochemical and
geomorphological parameters were evaluated on each
sampling date to test the abovementioned hypotheses.

2. Materials and methods

Four stations were located downstream of the Cecita
dam. Another 3 stations, designated as control sites, were
located on different tributaries of the Mucone: the Cerreto,
S Martino, and Ceraco rivers (Figure 1). The stations on
the tributaries were considered as control sites because
of their similar altitude and rhythron morphologies
compared to the Mucone downstream of the reservoir and
the lack of human pressures. Table 1 gives the geographical
descriptors of these stations.

N
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Figure 1. Mucone River downstream of the Cecita dam and the affluents Cerreto, Ceraco, and S Martino. Monitoring sites are denoted
by the following codes: MU: Mucone, CRT: Cerreto, SMA: S Martino, CRC: Ceraco.
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Table 1. Altitude and geographical coordinates of the monitoring sites. MU: Mucone, MU1 = 0.6 km, MU2 = 0.9 km, MU3 = 3.1 km,

MU4 = 4 km. CRT: Cerreto, SMA: S Martino, CRC: Ceraco.

Stations MU1 MuU2 MU3 MU4 CRT SMA CRC

Altitude (m a.s.l.) 1097 1077 977 960 977 905 920

Geosranhical coordinates 39°24'19.8"N  39°24'14.3"N  39°24'58.7"N  39°25'16.3"N  39°24'43.6"N  39°26'33"N 39°25'51"N
erap 16°32'03.0"E ~ 16°31'59.9"E  16°31'16.4"E  16°31'02.7"E ~ 16°31'08.3"E ~ 16°24'33"E 16°22'16"E

All sample collections and field measurements were
conducted in riffle environments. Current velocity was
measured at a height of 3 cm from the riverbed in 3
different riffles, using a General Oceanics flowmeter (Mod.
2030R, General Oceanics, USA). Water samples were
collected in 2-L bottles and returned to the laboratory
for measuring nitrate and phosphate concentrations
(APAT-CNR-IRSA, 2003). Temperature was measured
with a Hanna Instruments portable probe (Mod. HI
991300, Hanna Instruments, USA). Light intensity was
measured using a portable Instruments and Systems light
meter (Mod. LX07, Instruments and Systems, Italy). Both
substrate and woody debris were sampled and processed
according to Lucadamo et al. (2012) for the evaluation of
substrate typology representation (%) and the amount of
course particulate organic matter (CPOM) (g) per surface
unit (m?), respectively. Epilithic diatoms were scraped
from 5 cobbles (each from a different riffle) using a hard
toothbrush (Kelly et al., 1998; European Committee
for Standardization, 2003; European Committee for
Standardization, 2004). They were then placed in 50-mL
plastic containers and preserved with 2 mL of formalin.
Organic matter was eliminated by hydrogen peroxide
digestion through repeated rinses with distilled water and
mounted in Naphrax resin. Diatom community analysis
was undertaken with an Axioscope-Zeiss light microscope
(Carl Zeiss, Germany) at 1000x magnification. For each
sample, 400-500 individuals were identified. Taxonomical
identification, atleast to the specieslevel whenever possible,
was made with the use of appropriate keys (Lange-Bertalot
and Metzeltin, 1996; Lange-Bertalot, 2003). Morphotype
classification of diatoms and the estimation of their
representation were performed according to Passy (2007)
and Rimet and Bouchez (2012). Periphyton biomass
evaluation was performed by removing one more cobble
from the same 5 riftles sampled for diatom community
investigation and placing it in a 5-L dark plastic bottle
containing river water. Once in the laboratory, epilithic
chlorophyll a was measured according to Steinmann
and Lamberti (1996). Multivariate analyses (Bray-
Curtis, cluster analysis, and multiresponse permutation
procedure) were performed on log (x + 1) transformation
of relative abundance of diatoms. Endpoints in Bray-Curtis
analysis were selected according to the variance-regression

procedure to avoid their sensitivity to outliers (McCune
and Grace, 2002). Student t-tests were performed on log
(x + 1) transformation of relative abundance of diatom
species and log (x) transformation of representations
of morphoecological types, respectively. Exponential
transformation (e%%*°) was used to perform ANOVA
with post hoc multiple comparison (Tukey tests) on
hydrogeomorphological parameters, epilithic chlorophyll
a, autotrophic index, and CPOM amounts. Nonparametric
analysis (Spearman correlation coeflicients) was
performed on ranked data of the chemical and physical
variables and epibenthic algae parameters (relative
abundance of diatoms, chlorophyll a concentration, and
autotrophic index). Univariate and bivariate analyses were
performed using Minitab Release 13.2 (Minitab, USA),
while multivariate analyses were performed with PC-
ORD4 software (MJM Software Design, USA).

3. Results

The results for the Ceraco station in November are missing,
because it was not possible to reach the monitoring site
due to the high amount of snow.

Table 2 shows the results for
hydrogeomorphological parameters.

The highest concentration values of NO, and PO,*
were measured at the S Martino and MU3 stations,
respectively. Both anions displayed comparable levels in
May and August, while in November nitrate significantly
increased and phosphate decreased.

In August, stations MU1 and MU2 constantly showed
the lowest values of current velocity as well as the strongest
decrease (-60% and -66%), followed by a slight recovery.
The other stations displayed the same trend of reduction in
August and recovery in November, except for MU3, which
showed a further, very weak decrease (-2.77%) in the third
sampling campaign. In May, the only statistically significant
difference was between MU2 and Ceraco, which, on this
occasion, showed the highest values of current velocity of
the entire study. In August and November, MU1 and MU2
differed significantly from all the other stations. Sand %
constantly increased at the MU?2 station, while at MU1 the
August-November variation was very slight (1.63%). The
other stations constantly showed different trends and never
reached an appreciable amount of sand content, except

nutrients and
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Table 2. Nutrient concentrations and values of hydrogeomorphological parameters measured at monitoring sites in the 3 sampling
campaigns. *November samplings at the Cerreto site are absent because access to the site was not possible due to high amounts of

snowfall.
Stations NO,(mg/L) PO (mg/L) Sﬁgﬁg} % Sand (S) (f’ii’ll’lf (((1;))) S/IP+C
May 0.123 0.006 0.46 13.718 67.657 0.928
MU1 August 0.066 0.008 0.184 32.26 42.508 0.816
November 0.249 0.005 0.202 32.787 39.879 1.051
May 0.164 0.010 0.404 14.151 73.282 0.196
MU2 August 0.047 0.009 0.136 29.858 47.427 1.229
November 0.205 0.005 0.207 46.33 14.894 7.931
May 0.194 0.017 0.728 14.614 70.939 0.246
MU3 August 0.179 0.016 0.512 11.318 68.29 0.168
November 0.815 0.009 0.498 11415 61.871 0.236
May 0.152 0.015 0.651 7.465 76.949 0.105
MU4 August 0.121 0.008 0.553 7.532 67.559 0.151
November 0.551 0.006 0.71 4.806 81.558 0.069
May 0.102 0.012 0.977 5.859 85.477 0.072
CRT August 0.128 0.012 0.471 8.574 74.501 0.124
November 0.223 0.006 0.598 3.522 83.284 0.044
May 0.671 0.013 0.794 9.16 86.052 0.107
SMA August 0.590 0.012 0.543 10.349 66.205 0.16
November 1.378 0.009 0.808 11.244 65.481 0.202
May 0.078 0.016 1.19 18.935 83.53 0.224
CRC August 0.109 0.012 0.587 20.906 59.927 0.291
November* - -——- --- --- -—- -

Ceracd. MU1 and MU?2 displayed significant difference
with MU4 in August and MU4 and Cerreto in November.
The highest values of S/P + C (which can be considered an
estimation of burial of coarse substrates) were measured at
the MU1 and MU?2 stations in November, with the latter
resulting in a significant difference from the other stations.
MU4, Ceraco, and S Martino peaked in August when
MU3 showed the lowest S/P + C value. The percentage of
pebble + cobble fraction resulted in an opposite trend to
that of % sand at MU1 and MU2. On the other hand, the
representation of coarse substrates varied in a comparable
way in the cases of MU4 and Cerreto (lowest value in
August), but were different for MU3 and S Martino (Table
2). Only MU?2 in November differed significantly from the
other stations.

Thirty-seven genera and 97 species were identified
and are listed in Table 3. Relative abundance and, for 86
species, groupings into morphoecological guilds (Passy,
2007; Domaizon, 2012) are also shown. Thirty species
were attributed to the low-profile guild (LPG), 21 to the
high-profile guild (HPG), and 35 to the motile guild (MG).
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However, when calculated as % of organisms, the first
guild was the most represented (66.98%), followed by the
MG (21.19%) and HPG (11.83%).

Figures 2 and 3 show the ordination diagram and
dendrogram resulting from the application of Bray-Curtis
and cluster analyses on the dataset “diatoms x samples”,
respectively (including only taxa with a representation
higher than 2%).

The first 2 axes of Bray-Curtis ordination extracted
34.66% and 17.99% of the original distance matrix,
respectively. The strongest segregation between samples
took place along the first axis, where all the samples of
the stations situated upstream of the inflow of the Cerreto
stream clearly separated from the other samples, namely
the MU4 station (downstream of the Cerreto inflow)
and the 3 control sites. Ordination along the second axis
separated the August Ceraco sample and, to some extent,
the MU1 sample from the remaining ones. Stations did not
show any clear segregation according to sampling dates;
in fact, the main ordination criterion seemed to be their
spatial placement.
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Figure 2. Ordination diagram that resulted by performing Bray-Curtis analysis on the dataset: sampling dates x diatom species with a
representation higher than 2%. M: May, A: August, N: November.
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Figure 3. Dendrogram that resulted by performing cluster analysis on the dataset: sampling dates x diatom species with a representation
higher than 2%. M: May, A: August, N: November.
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Percent chaining associated to the cluster analysis
dendrogram was relatively low (1.65%), supporting
the idea that cluster components had a good degree of
similarity. The classification analysis gave a result that
highly overlapped with the result of the Bray-Curtis
analysis. In fact, the Mucone stations placed upstream of
the Cerreto tributary were segregated once more from the
MU4 station and the control sites.

Multiresponse permutation procedure (MRPP) was
performed to test the null hypothesis of no dissimilarity
between the 2 groups emerging from the application of the
Bray-Curtis and cluster analyses. The first was assigned
the code G1 and the second the code G2. MRPP resulted
in such a value of T (-8.6691) that we could refute the null
hypothesis with an extremely low probability of error (P =
0.00000132). Moreover, the A value (the chance corrected
within group agreement) was 0.0946, in agreement with
the idea that the observed effect (independently of the size
of the samples) had an appreciable size.

For each of the 2 groups, the averages of the relative
abundance of the 15 diatomic taxa (>2%) and representation
of ecological morphotypes were calculated and compared to
test the difference between G1 and G2. Sellaphora stroemi
and Adlafia langebertalotii (a recently described species; see
Monnier et al., 2012) were never detected in the G1 stations;
neither did they seem to characterize the G2 community. In
fact, the former was detected only at the Ceraco station in
August, and the latter at the S Martino station in all samples
and at the Ceraco station in August. Relative abundances

of Achnanthidium minutissium, Cocconeis euglypta, and
Sellaphora minima were significantly higher (P < 0.05) in G1
than in G2, while the reverse was true for Achnanthidium
pyrenaicum, Cocconeis placentula var. pseudolineata, and
Navicula lanceolata (P < 0.05).

No statistically significant differences were detected
between the representation of the morphoecological
guilds of G1 and G2.

Table 4 shows the light intensity measured in May and
August. November data are missing due to malfunctioning
of the luximeter. The highest values were registered in
May, before canopy closure, except for MU1 and MU2. At
these stations, especially MU, riparian vegetation showed
a thinning out as a consequence of clear cutting, and so
a higher amount of light reached the riverbed in August
than in May.

Figure 4 and Table 5 display the concentration of
epilithic chlorophyll a and the autotrophic index with the
amount of CPOM collected, respectively.

The highest levels of chlorophyll were measured in
May at all stations with M4 showing the highest value (P
< 0.0005). The stations located upstream of the Cerreto
inflow (Gl group) showed constantly low values of
chlorophyll a in August and November. Appreciable levels
of chlorophyll a were detected at the Cerreto station in
August (significantly different from all the other stations
except for S Martino; P < 0.0005), while the MU4, S
Martino, and Cerreto stations differed significantly from
the MU1, MU2, and MU3 stations in November.

Table 4. Light intensity values (Ix) measured in the sampling stations. The November data are missing due to malfunctioning of the

luximeter.
MU1 MU2 MU3 MU4 CRT SMA CRC
May 705 905 1579 2418 2372 1860 5069
August 3466 1046 1148 579 509 373 2056
November --- --- --- - --- --- ---
7 - B Mav 2005
8 August 2005
5
ﬂ% 4 B November 2003
Eb
4 3
N
=] 2
g e RS S s SRS BRS DS S '—- '_I ER S - S0 S BSESES NS
S MU2 CRT sma CrRc Sttions

Figure 4. Average values of the concentrations of ep111th1c chlorophyll a measured at the monitoring sites on each of the sampling dates.
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Table 5. Average values of the autotrophic index and amount of CPOM measured at the monitoring sites on each of the sampling dates.
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MUI1 MU2 MU3 MU4 CRT SMA CRC
May 0.00503 0.00597  0.01617 002579  0.01515 0.01093 0.01240
Autotrophic August 0.00299 0.00111 0.00476 0.00556  0.01552 0.01209 0.00754
index November 0.00196 0.00252 0.00403 0.01068 0.01642 0.00982
May 32.4083 264139 0.63096 0.13310 0.79081 0.98479 0.67278
CPOM August 12.4337 10.6696 1.28366 5.12366 243436 4.04151 2.74976
November ~ 22.9575 14.3222 9.31261 23.8353 15.5737 17.3206

MU1, MU2, and MU3 showed very low values of
autotrophic index, except for MU3 in May. However, only
the first two (MU1 and MU2) differed significantly from
MU4 and the control sites in May (P < 0.0005) and August,
while the only significant difference in November was
between MU2 and Cerreto (P < 0.0005).

The highest amounts of CPOM were collected in MU1
and MU2 in May, when all their comparisons with other
stations resulted in significant differences (P < 0.0005). In
August, a marked reduction of CPOM in MU1 and MU2
was evident and showed a significantly different trend
compared to the MU3 and Cerreto stations (P < 0.01).
In November, all stations showed an appreciable and
comparable amount of CPOM confirmed by a negative
Tukey test (P > 0.05).

Table 6 illustrates the results of correlation analysis
between relative abundance of diatom species with a
representation higher than 2% and hydrochemical and
geomorphological parameters, CPOM, and temperature.
Table 7 shows the results of correlation analysis between
chlorophyll a and autotrophic index and the same abiotic
parameters. The abundance of all the species that displayed
significant differences between the 2 groups that emerged
from multivariate analysis showed statistically significant
correlations with geomorphological variables, except for
Cymbella euglipta. Achnanthidium pyrenaicum, Cocconeis
placentula var. pseudolineata, and Navicula lanceolata all
negatively correlated with sand percentage and burial of
coarse substrate, while only Achnanthidium pyrenaicum
and Cymbella euglypta var. pseudolineata showed a positive
correlation with current velocity. Among the characteristic
species of group G1, Sellaphora minima displayed negative
correlation with current velocity and coarse substrate and
positive correlation with sand percentage and the ratio S/P
+ C. Achnanthidium minutissimum correlated negatively
only with current velocity. Both epilithic chlorophyll a and
autotrophic index (Table 6) negatively correlated with sand
%, burial of coarse substrate, and CPOM and positively
correlated with pebble % + cobble % and current velocity.
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Only the autotrophic index showed a positive correlation
with phosphate.

4. Discussion
During the experimental period, nitrate levels probably
depended mainly on the breakdown of organic matter
(CPOM) deposited in the riverbed. In May, the NO,
concentrations were quite similar in all stations despite
the higher amount of CPOM detected at MU1 and MU2.
However, the litter present in spring mostly consists of
nitrogen compounds linked to lignin and cellulose (Allan
and Castillo, 2007), recalcitrant to decomposition and
rich in scarcely soluble proteins (Barlocher, 1983), thus
determining a poorly efficient nitrogen mineralization
process. In August, the increase in average temperature
stimulates microbial reproduction and metabolism
(Abelho et al., 2005), which causes both nitrogen
incorporation in microbial biomass and a reduction in
water nitrate concentration. In November, the increase in
CPOM due to litter deposition coincides with a general
increase in NO, levels, suggesting that the accumulation
and decomposition of biodegradable organic matter results
in an excess of mineral nitrogen in relation to microbial
requests (Zeller et al., 2001). Due to the prevailing igneous
and metamorphic nature of the rocks of the Mucone
watershed, PO concentrations are low. The lowest
phosphate concentrations in the Mucone watershed were
detected in November, coinciding with the highest amount
of rainfall during the study period, in agreement with
the hypothesis that the run-off taking place on scarcely
erodible rocks results in the dilution of river network
phosphate concentration (Lewis and Saunders, 1990).
Despite flow standardization, it was only since August
that the differences in current velocity between the stations
closest to the dam and the other monitoring sites were
highest. The prolonged lack of rainfall together with flow
abatement resulted in a marked drop of current velocity
and sand deposition. Interestingly, at the second site
downstream of the dam (900 m), an increasing amount
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Table 7. Correlation analysis (Spearman) between variation of chlorophyll 4, autotrophic index, and hydrochemical and geomorphological

parameters.

% Sand %P+C S/P+C Current velocity NO,” PO> Temperature (°C) CPOM

r P r P r P r P r P r P r P r P
Chlorophyll a -0.644 0.002 0.669 0.002 -0.714 0.000 0.555 0.011 0.021 0930 0.442  0.051 0.128  0.591 -0.474 0.035
Autotrophic index ~ -0.686 0.001 0.774  0.000 -0.735 0.000 0.734 0.000 0.093 0.696 0517 0.020 -0.42 0.860 -0.528 0.017

of sand was sampled from May to November, while no
changes were evident between August and November at
the site nearest to the reservoir. Water release from the
dam, which takes place twice a year to test the floodgates,
may result in the following for the segment closest to the
reservoir: channel erosion, high capacity of interspaces
between coarse substrates, and a longer time to fill them
than in a less disturbed segment such as the MU?2 station.
This could also explain why a burial of coarse substrates,
which was significantly higher than at the other sites,
was detected in November at the MU2 station and not
at MUL1. Station MU3, located immediately upstream of
the Cerreto inflow, seemed to occupy an intermediate
position between the MU1 and MU2 stations and the
MU4 and control sites. This was indicated by the %
sand, which in November was not significantly different
from either the upstream stations or from the MU4 and
Cerreto stations. Despite the clear seasonal progression
of geomorphological gradients downstream of the Cecita
reservoir, the diatomic communities displayed a constant
spatial segregation between the stations located upstream
of the Cerreto inflow and the MU4 station, together with
the control sites. The succession of flow reactivation due
to winter rains, flow abatement, and sand accumulation
promoted the colonization and persistence of eurivalent
taxa with a high colonization rate, tolerating both high
and low current velocity as well as temporary burial of
coarse substrates. Achnanthidium minutissimum is an
early pioneer taxon capable of substrate colonization both
at low (Plenkovic-Moraj et al., 2008) and high (Kelly, 2002)
current velocity values, tolerating physical disturbance
(Walsh and Wepener, 2009), often dominating community
in sandy littoral (Cremer, 2006) and able to survive and
reproduce in poorly illuminated habitats (Johnson et
al., 1997). Cocconeis euglypta is also a pioneer taxon,
although colonizing later than Achnanthidium, which
shows adaptation to both low (Martina et al., 2013) and
high (Battegazzore et al.,, 2004) current velocities. These
taxa represented about 47% of all organisms identified
at stations MU1, MU2, and MU3, and their ecological
needs are well matched to the prevailing environmental
conditions detected at these sites. The third G1 group is

566

characterized by the taxon Sellaphora minima, a motile
diatom, not only adapted to settling in unstable substrates
(Spauldin et al., 2010) but also a facultative-N heterotroph
(Munn et al, 2002) coherently with the high average
amount of CPOM collected at the sites mainly colonized
by this species. The diatom taxa mostly contributing to
the segregation of groups G2 and Gl, Achnanthidium
pyrenaicum, Cocconeis placentula var. pseudolineata, and
Navicula lanceolata, are all taxa that are well adapted to
high current velocities (Battegazzore et al., 2004). They
all correlated negatively with % sand and S/P + C, and
two of them (Achnanthidium pyrenaicum and Cocconeis
placentula var. pseudolineata) correlated positively with
current velocity, whereas Achnanthidium minutissimum
correlated negatively only with current velocity. Cocconeis
euglypta did not show any significant correlation,
coherently with its persistence in environments with
different characteristics.

A comparison of our results with the diatomic
communities detected in other regulated rivers in
Mediterranean climate river catchments in Europe (Comte
and Cazaubon, 2002; Gallo et al., 2013), N Africa (Nehar
et al., 2014), and Australia (Growns and Growns, 2001)
showed both a moderate degree of sharing of taxa and a
higher representation of species such as Achnanthidium
minutissimum and Cocconeis euglypta downstream of dams
than in unregulated segments. This suggests comparable
patterns of colonization.

Our results do not support the use of a diatom genus-
based index, such as that deriving from morphoecological
groupings, for revealing geomorphological changes
taking place in river segments. In fact, species taking
part in the same genus (Achnanthidium and Cocconeis)
showed marked differences between environments, clearly
being unalike in current velocity and sand deposition
preferences.

Epilithic chlorophyll showed a value range that
suggested moderate nutrient enrichment (Tank and
Dodds, 2003), and so biomass variation did not
correlate with nitrate concentration. However, neither
did phosphate concentration correlate with chlorophyll
a variation despite its limiting levels (Bothwell, 1989),
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suggesting that other factors result in an overriding effect
on PO, limitation.

Epilithic chlorophyll correlated (P < 0.05) positively
with pebble + cobble fraction percentage and negatively
with sand content and S/P + C, a result that points toward
the abundance and diversity of coarse substrates as a
factor promoting algal epibenthic colonization (Power
and Stewart, 1987) and burial of riverbeds as a cause of
depression of algal growth (Izagirre et al., 2009).

Current velocity also showed a direct correlation with
epilithic chlorophyll, although the values measured during
the experimental period at the control sites and MU4
sometimes indicated that it probably exceeded the stress
threshold (Horner et al., 1990) in May and November,
particularly at the Ceraco site, where the appreciable
amount of sand could result in a strong scouring of
periphytic biomass (Blinn and Cole, 1991). Lightening
of the riverbed was controlled both by canopy closure-
opening cycles and by sand deposition. The former was
dominant in May, when the flow was still quite intense;
in August, however, when the canopy closes and the flow
markedly drops, the effects of the two factors were additive
and depressed microalgal biomass. Light intensity was not
measured in November, yet it is reasonable to suppose that
solar radiation was lower then than in August (Burgess,
2009), although the defoliation of the canopy makes
the riverbed more exposed to the incoming light. As a
consequence, while the epilithic chlorophyll remained very
low at MU1 and MU2 due to substrate burial, appreciable
amounts of epibenthic algal biomass were detected at the
Cerreto, MU4, and S Martino stations.

The autotrophic index was calculated according to the
formula proposed by Barbour et al. (1999). Interestingly,
the ratio on the basis of sampling dates was always lowest at
the MU1 and M U2 stations, dropping on 5 out of 6 relative
sampling dates below the threshold and indicating a switch
of community dominance from autotrophs to heterotrophs
(Weitzel, 1979). Such a result is further supported by the
negative correlation between the autotrophic index and
the variation in CPOM levels. In fact, it is known that
woody debris decomposition generates the production
of fine particulate organic matter (FPOM) (Allan and
Castillo, 2007), which in river segments with a high density
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