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1. Introduction
Environmental stresses represent the most limiting 
conditions for horticultural productivity (Schwarza et al., 
2010). Although greenhouses have been developed for use 
in modern agriculture and may alleviate some damage to 
crops grown inside, stresses such as low temperature and 
weak light still occur frequently. Previous studies indicated 
that stresses of low temperature and weak light resulted 
in growth inhibition, fruit drop, and disease aggravation 
and subsequently reduced productivity of horticultural 
crops (Adams et al., 2001; Allen and Ort, 2001; Ai et al., 
2006; Tazoe et al., 2006). Solar greenhouse is one of the 
main facility types for protected horticulture in northern 
China, where occurrence of low temperature and weak 
light stresses in winter and early spring is more frequent 
due to the simple structure, extensive management, and 
low environmental control level (Meng et al., 1999; Liang 
et al., 2009).

Cucumber (Cucumis sativus L.) is the main of 
thermophilic vegetables cultivated in solar greenhouses 

in China. Low temperature and weak light usually have 
damaging impacts on growth and production of cucumber 
(Zhang and Ma, 1995; Yan et al., 2011). Grafting is nowadays 
widely used to reduce susceptibility to environmental 
stress (Edelstein, 2004). Several studies have demonstrated 
that stress-tolerant rootstocks could improve the growth 
and early yield of cucumber by reducing the degree of 
lipid peroxidation and electrolyte leakage under stress 
conditions (Lee and Chung, 2005; Zhou et al., 2007; Guy 
et al., 2008), and activities of some antioxidative enzymes, 
such as SOD and APX, were observed to increase under 
low temperature and weak light conditions (Feng et al., 
2002; Li and Yu, 2007). 

‘Figleaf gourd’ has long been the main rootstock for 
cucumber grafting in China, but there was an increasing 
proportion of white-seed or yellow-seed squash employed 
to improve the commodity and nutritional quality of 
grafted cucumber in the past few years, and numerous 
rootstock cultivars were applied in production. Moreover, 
there was a great difference in tolerance to stresses among 
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rootstock cultivars (Li et al., 2008; Sakata et al., 2008). It is 
still unclear why cucumber grafted on different rootstocks 
usually show different tolerance levels to low temperature 
and weak light stresses. Therefore, several rootstocks with 
different tolerance levels were used in the present work, 
and the biochemical and molecular responses of the 
antioxidative defense system in grafted cucumber under 
low temperature and weak light stresses were investigated 
to elucidate the reasons for tolerance differences among 
various rootstocks.

2. Materials and methods
2.1. Plant material and experimental design
Based on our previous study, three cultivars with different 
tolerance levels to low temperature and weak light, i.e. 
‘Kilameki’ (Cucurbita moschata × Cucurbita moschata), 
‘Tielizhen’ (C. maxima × C. moschata), and ‘Figleaf gourd’ 
(C. ficifolia Bouche.), were selected. 

Experiments were conducted from May to July 2010 
in a greenhouse situated on the campus of Shandong 
Agricultural University, P. R. China. Cucumber cv. 
‘Xintaimici’ was bred by Xiangyun Seed Co., Ltd. of Xintai. 
Rootstock seeds were germinated at 26 °C for 2 days, and 
then were sown in plastic pots (8 cm × 10 cm) filled with 
sand and daily watered with full-strength Yamazaki’s 
nutrient solution from cotyledon unfolding. When 
rootstock seedlings had developed one true leaf, grafting 
was performed by using the hole insertion method 
described by Lee (1994). 

Fifty uniform seedlings from each treatment were 
selected at the three-true-leaf stage and transferred into 
a growth chamber (RH = 70%) with a photoperiod of 
12-h light (100 µmol m–2 s–1)/12-h darkness, pretreated at 
15 °C/10 °C (day/night) for 2 days with the aim of cold 
acclimation, and then treated at 5 °C/5 °C for another 2 
days (T5 + L100). The same number of ungrafted cucumber 
seedlings was used as controls (CK). After that, the second 
fully expanded leaves from treated seedlings were sampled 
for physiological measures. Each treatment was replicated 
three times with 5 plants per replicate. 

Another thirty uniform seedlings at the four-true-leaf 
stage were treated under the same conditions mentioned 
above. The third functional leaves were sampled 0, 24, 
and 48 h after treatment, frozen immediately in liquid 
nitrogen, and stored at –80 °C for RNA isolation. 
2.2. Plant growth
Plant height and leaf length (L) and width (W) were 
measured with a ruler, and leaf area (LA) was calculated 
as follows: LA = 14.16 – 5.0 × L + 0.94 × L2 + 0.47 × W 
+ 0.63 × W2 – 0.62 × (L × W). The dry weight (DW) was 
determined after deactivation at 105 °C for 15 min, and 
then weighed after oven-drying at 75 °C for 48 h and 
calculated as follows: relative increasing of DW (%) = (FW 
– DW)/FW × 100%.

2.3. Measurement of electrolytic relative leakage rate and 
MDA content
Electrolytic relative leakage rate was determined according 
to the method described by Dionisio-Sese and Tobita 
(1998). The initial electrical conductivity (EC1), the final 
electrical conductivity (EC2), and the electrical conductivity 
when the tissues were killed (ECt) were measured with 
an electrical conductivity analyzer (DDS-307; Shanghai 
Precision Scientific Instrument Co., Ltd., China). It was 
calculated as follows: electrolytic relative leakage rate (%) = 
(EC1 – EC2)/(ECt – EC1) × 100. Malondialdehyde (MDA) 
content was measured by the method described by Cakmak 
and Marschner  (1992).
2.4. Measurement of proline content
Free proline content was estimated by using the second 
functional leaves following the method of Zhang et al. 
(1990).
2.5. Extractions and assays of antioxidative enzymes
SOD activity was assayed by monitoring the inhibition 
of the photochemical reduction of nitro blue tetrazolium 
(NBT), according to the methods of Dhindsa et al. (1981). 
The 1-mL reaction mixture contained 50 mM potassium 
phosphate buffer (pH 7.8), 6.5 mM methionine, 50 
µM NBT, 10 µM EDTA, 20 µM riboflavin, and 20 μL of 
enzyme extract. A reaction mixture lacking enzyme served 
as the control. All mixtures were stirred under darkness 
in small glass test tubes, and then irradiated for 5 min by 
fluorescent lamps (160 µmol m–2 s–1). After the reaction 
mixture turned from yellow to blue-black, its absorbance 
was measured at 560 nm. The mixture lacking enzyme and 
not being irradiated was used to zero the absorbance at 
560 nm. One unit of SOD was defined as the amount of 
enzyme that produced 50% inhibition of NBT reduction 
under assay conditions. 

CAT activity was measured as the drop in absorbance 
at 240 nm due to the decomposition decline of extinction 
of H2O2. The reaction mixture contained 25 mM potassium 
phosphate buffer (pH 7.0), 10 mM H2O2, and 0.1 mL of 
enzyme extracts. (Cakmak and Marschner, 1992).

APX activity was evaluated by monitoring the decrease 
in absorbance at 290 nm as ascorbate was oxidized 
(extinction coefficient: 2.8 mM–1 cm–1; Nakano and Asada 
1981). The 1-mL reaction mixture contained 50 mM 
potassium phosphate buffer (pH 7.8), 0.1 mM EDTA, 0.5 
mM AsA, 1 mM H2O2, and 20 μL of enzyme extract. 

Protein concentration of enzyme extracts was 
determined using Coomassie brilliant blue with bovine 
serum albumin as the standard (Bradford, 1976).
2.6. RNA isolation and quantitative RT-PCR
Total RNA was extracted from cucumber leaves using 
Trizol (Fermentas, Shenzhen, China), and then treated 
with RNase-free DNase to remove contaminating DNA. 
First strand cDNA of the total RNA was synthesized using 
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M-MuLV reverse transcriptase and oligo-(dT) 18 as the 
primers (Fermentas, Shenzhen, China). Quantitative RT-
PCR was performed with the primers in Table 1 to detect 
the level of expression of the target genes and the control 
gene β-Actin. The specific primers (Table 1) used for RT-
PCR were designed based on GenBank accession Nos. 
AAZ74666.1, AY274258, D88649, and EF530128 using 
Primer express 3.0 software. The β-Actin gene was used as 
an internal control. RT-PCR was performed using a Light 
Cycler 480 SYBR Green I master kit (Roche Diagnostics, 
Mannheim, Germany). PCR amplification included a 
5-min preincubation step at 95 °C, followed by 40 cycles 
of 95 °C for 10 s, 58 °C for 15 s, and 72 °C for 20 s. PCR 
products were quantified by the Light Cycler 480 RT-PCR 
detection system with the SYBR Green I master kit.
2.7. Statistical analysis
The data were processed using Origin 7.5 (Microcal 
Software Inc., Northampton, MA, USA). Analysis of 
variance was performed using SPSS 11.0 Software (SPSS 
Inc., Chicago, IL, USA) and presented as means ± standard 
error (SE) of three replicates. Different letters indicate a 
significant difference at a 0.05 level.

3. Results
3.1. Plant growth
The relative increases in plant height from the three 
rootstock-grafted seedlings were significantly higher (P < 
0.05) than those of ungrafted ones after the stresses (Table 
2), being much higher in ‘Figleaf gourd’ and ‘Tielizhen’, and 
slightly higher in ‘Kilameki’. There was a similar variation 
trend in LA. The relative increase in DW was significantly 
higher in grafted seedlings than in ungrafted ones (P < 
0.05); moreover, ‘Figleaf gourd’ had the highest increase, 
significantly greater than the other rootstocks. 
3.2. Electrolytic relative leakage rate and proline content
The electrolytic relative leakage rate in ungrafted seedlings 
reached 24.8% in response to T5 + L100 stresses, being 
remarkably higher than those in grafted plants (Figure 
1). Cucumber grafted on ‘Figleaf gourd’ was the lowest 
(12.6%), followed by ‘Tielizhen’. The electrolytic relative 
leakage rates in both rootstocks were significantly lower 
when compared to those in ‘Kilameki’ and the control (P 
< 0.05).

As shown in Figure 2, no significant difference in 
proline content was found before treatment among grafted 

Table 1. Primers for detecting every enzyme gene expression by real-time quantitative RT-PCR.

Name Cas Oligonucleotide sequence Size (bp)

APX Csa019442
cAPXF:GACTTCTGCAGTTGGCATCA

131
cAPXR:CTCGGAAAGCTTCTGGTGAG

CAT Csa013194
cCATF:ATCACAGTCACGCCACTCAG

128
cCATR:CGTATCCAACGGCTCAAAAT

Cu/Zn-SOD Csa001740
cCuZnSODF:ACGCCTTAGGTGACACAACC

138
cCuZnSODR:TGCCATCTTCACCAACGATA

Mn-SOD Cas004428
cMnSODF:CCTCTGCTTGGGATTGATGT

117
cMnSODR:AATGTCGCCAGCATATTTCC

β-ACTIN AB00192
cACTINF:gctggcatatgttgctcttg

121
cACTINR:gaatctctcagctccgatgg

Table 2. Changes in plant growth in grafted and ungrafted cucumber seedlings under low temperature (5 °C) and weak 
light intensity (100 µmol m–2 s–1) stresses. Different letters indicate significant differences between the treatments at the 
0.05 level. 

Materials Relative height increase (%) Relative leaf area increase (%) Relative dry weight increase (%)

CK (control) 5.95d 4.22c 20.49d

Kilameki 7.58c 8.74b 30.75c

Tielizhen 11.38a 14.87a 54.24b

Figleaf gourd 11.43a 16.96a 60.86a
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and ungrafted seedlings, although the former was slightly 
higher. However, proline content increased significantly 
in both grafted and ungrafted seedlings after stresses (P < 
0.05). The increments in plants grafted on ‘Figleaf gourd’, 
‘Tielizhen’, and ‘Kilameki’ were 172%, 135%, and 127%, 
respectively, and only 108% in the control. There were 
great differences among ungrafted seedlings and seedlings 
grafted onto rootstocks with different tolerance levels.
3.3. MDA content
MDA content was increased during stress treatment in 
both ungrafted and grafted plants (Figure 3), especially 
in the first 24 h after treatment. Grafted seedlings always 
showed lower MDA content compared to ungrafted ones, 
ranked as ‘Figleaf gourd’ < ‘Tielizhen’ < ‘Kilameki’.
3.4. Antioxidative enzymes activity and relative 
expression of related genes
3.4.1. Total activities of SOD
SOD activities rose significantly in both grafted and 
ungrafted seedlings during the stress treatment, being 
greater in the grafted ones (Figure 4). The enzyme activities 
of ‘Figleaf gourd’, ‘Tielizhen’, and ‘Kilameki’ were increased 
by 128.9%, 90.4%, and 84.7% at 24 h after treatment, 
respectively, and only 42.7% in the control. The increment 
became smaller in grafted and ungrafted cucumber at 48 
h, when ‘Figleaf gourd’ had the highest activity.
3.4.2. Relative expression of Cu/Zn-SOD mRNA and 
activities of Cu/Zn-SOD
The expression of Cu/Zn-SOD mRNA was increased at the 
start of treatment, and then declined after 24 h, especially 
at 48 h (Figure 5), with a significantly higher level in grafted 

seedlings than in ungrafted ones (P < 0.05). Transcript 
level of Cu/Zn-SOD in ‘Figleaf gourd’, ‘Tielizhen’, and 
‘Kilameki’ was increased to 2.27-, 2.37-, and 1.95-fold at 
24 h, respectively, while that of ungrafted plant was only 
1.32-fold.

The variations in Cu/Zn-SOD activities were similar to 
those in relative expression of Cu/Zn-SOD mRNA during 
stress treatment, but a lower reduction was detected in 
both grafted and ungrafted seedlings at 48 h. ‘Figleaf gourd’ 
exhibited the greatest activity, followed by ‘Tielizhen’ and 
‘Kilameki’. Compared to the control, the stronger Cu/Zn-
SOD activities in grafted seedlings were due to the higher 
expression of Cu/Zn-SOD mRNA.
3.4.3. Relative expression of Mn-SOD mRNA and 
activities of Mn-SOD
The relative expression of Mn-SOD mRNA was increased 
significantly in both grafted and ungrafted seedlings after 
stress treatment (Figure 6). More expression was observed 
in ‘Figleaf gourd’ and ‘Tielizhen’ at 24 h, i.e. 132.5% and 
149%, respectively, but just 108.8% and 97% in ‘Kilameki’ 
and ungrafted seedlings. 

Mn-SOD activities changed less in both grafted and 
ungrafted seedlings at 24 h, but rose sharply at 48 h. 
Mn-SOD activity in grafted plants was higher than that 
in ungrafted ones, of which ‘Figleaf gourd’ exhibited the 
highest, followed by ‘Tielizhen’ and ‘Kilameki’. These 
results indicated that higher activities of Mn-SOD in 
grafted cucumber were probably correlated with the 
greater transcript levels.
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Figure 1. Changes in electrolytic leakage rate in grafted and 
ungrafted cucumber seedlings under low temperature (5 °C) and 
weak light (100 µmol m–2 s–1) stresses. Vertical bars represent 
the standard errors (n = 3). Different letters indicate significant 
differences between the treatments at the 0.05 level. 

Figure 2. Changes in proline content in grafted and ungrafted 
cucumber seedlings under low temperature (5 °C) and weak light 
(100 µmol m–2 s–1) stresses. Vertical bars represent the standard 
errors (n = 3). Different letters indicate significant differences 
between the treatments at the 0.05 level.
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3.4.4. Relative expression of CAT mRNA and activities of 
CAT
As revealed in Figure 7, a reduction in CAT transcript 
was observed in both grafted and ungrafted plants under 
stresses; ‘Kilameki’ and ungrafted seedlings decreased 
more when compared to ‘Figleaf gourd’ and ‘Tielizhen’. At 
48 h after treatment, the lowest expression of CAT mRNA 
was found in ungrafted seedlings, followed by ‘Kilameki’; 
there was no significant difference between ‘Figleaf gourd’ 
and ‘Tielizhen’.

CAT activities followed similar variations with its 
mRNA expression, and the activities were greater in 
grafted seedlings than in ungrafted ones. 
3.4.5. Relative expression of APX mRNA and activities 
of APX
Transcript level of APX went up at 24 h, and then fell at 
48 h in both grafted and ungrafted seedlings (Figure 8). 
The expression was significantly higher in grafted plants 
than in the control, with the greatest level in ‘Figleaf gourd’. 
Compared with the transcript levels at 24 h, 25.7% and 
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Figure 3. Changes in MDA content in grafted and ungrafted 
cucumber seedlings under low temperature (5 °C) and weak light 
(100 µmol m–2 s–1) stresses. Vertical bars represent the standard 
errors (n = 3). Different letters indicate significant differences 
between the treatments at the 0.05 level.

Figure 4. Changes in SOD activities in grafted and ungrafted 
cucumber seedlings under low temperature (5 °C) and weak light 
(100 µmol m–2 s–1) stresses. Vertical bars represent the standard 
errors (n = 3). Different letters indicate significant differences 
between the treatments at the 0.05 level.
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and weak light (100 µmol m–2 s–1) stresses. Vertical bars represent the standard errors 
(n = 3). Different letters indicate significant differences between the treatments at the 
0.05 level.
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21% reductions were detected in ungrafted seedlings and 
‘Kilameki’, and 15.4% and 10.5% in ‘Figleaf gourd’ and 
‘Tielizhen’, respectively.

The APX activity was not consistent with the 
expression of APX in grafted and ungrafted plants under 
stress conditions. The variations in APX activities were 
consistent with expression in ‘Kilameki’ and ungrafted 
seedlings. However, expression of APX mRNA declined 
significantly in ‘Figleaf gourd’ and ‘Tielizhen’ at 48 h, while 
APX activities increased continuously. 

4. Discussion
Compared with ungrafted cucumber, the growth of grafted 
ones was less inhibited when subjected to low temperature 
and weak light stresses in this study. Seedlings grafted on 
‘Figleaf gourd’ exhibited the highest stress tolerance. Many 
studies have shown a correlation between adaption to 
environmental stress and efficiency of osmotica (Shi et al., 
2007; Khan and Panda, 2008; Yang et al., 2010). Proline, as 
a major osmoprotectant, increased significantly in grafted 
cucumber compared with ungrafted cucumber under the 
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stresses of low temperature and weak light, and ‘Figleaf 
gourd’ exhibited the highest level, followed by ‘Tielizhen’ 
and ‘Kilameki’, indicating that cucumber seedlings grafted 
on high stress-tolerant rootstocks possess strong ability of 
osmotic regulation.

Large amounts of ROS were induced and lipid 
peroxidation was aggravated when plants suffered 
from abiotic stresses, which resulted in damage to the 
membrane systems, and consequently an increment in 
both electrolytic relative leakage rate and MDA (Karabal 
et al., 2003; Liu et al., 2013; Li et al., 2014). In the present 
study, electrolytic relative leakage rate and MDA content 
were significantly lower in grafted seedlings than they 
were in ungrafted ones, similar to previous reports (Tajvar 
et al., 2011; Zhen et al., 2011). Moreover, seedlings grafted 
on ‘Kilameki’ exhibited significantly a higher electrolytic 
relative leakage rate and MDA content, followed by 
‘Tielizhen’, and those on ‘Figleaf gourd’ were the lowest, 
which meant that grafting with rootstocks could improve 
the stress tolerance of cucumber by alleviating membrane 
lipid peroxidation. 

Antioxidative enzymes are an important ROS 
detoxification system in plant cells, and the induced 
increment in enzyme activity was considered as the plant’s 
mechanism against oxidative stress (Xu et al., 2008; Zhang 
et al., 2012). In the present study, despite the reduction 
in CAT activity following the prolonged low temperature 
and weak light stresses, the activities of SOD, Cu/Zn-SOD, 
Mn-SOD, CAT, and APX in grafted cucumber seedlings 
were always significantly higher than those in ungrafted 
ones, and the seedlings grafted on ‘Figleaf gourd’ exhibited 
the highest level, followed by ‘Tielizhen’ and ‘Kilameki’. 

Based on the results, the lower damage to the membrane 
system in grafted cucumber was attributed to the higher 
activities of defense enzymes under low temperature and 
weak light stresses.

The increment in expression of some antioxidant 
enzyme genes could enhance the cold tolerance of plants 
(Ke, 2007). In the present study, the relative expression 
levels of Cu/Zn-SOD and Mn-SOD mRNAs were higher 
in grafted cucumber than they were in the ungrafted one, 
especially in ‘Figleaf gourd’, and their expression levels 
were consistent with the activities of Cu/Zn-SOD and 
Mn-SOD. These data suggested that strengthened stress 
tolerance in grafted cucumber was caused by increased 
expression of Cu/Zn-SOD and Mn-SOD mRNAs, which 
enhanced the activities of corresponding enzymes. 
Furthermore, compared with the relative expression 
of Cu/Zn-SOD at 48 h during stress treatment, a lower 
reduction in activity of Cu/Zn-SOD was detected in 
both grafted and ungrafted seedlings; this might be due 
to the delaying of translation, and it needs further study. 
Although more CAT and APX transcripts were detected 
in grafted seedlings compared to ungrafted ones, the 
expression of CAT and enzyme activity decreased 
gradually during the stress treatment, indicating that 
other pathways besides CAT enzyme, such as catalysis of 
APX, may play a more important role in ROS scavenging 
in cucumber (Miyake and Asada, 1994; Noctor and Foyer, 
1998). APX mRNA expression and APX activity were 
not completely consistent in seedlings grafted on ‘Figleaf 
gourd’ and ‘Tielizhen’ at 48 h after treatment, implying 
that other factors might be involved in the regulation of 
CAT and APX activities.
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In conclusion grafted cucumber had improved 
tolerance to low temperature and weak light stresses 
by strengthening the activities of antioxidative defense 
systems, and the differences in rootstock-mediated 
tolerance improvement in cucumber were mainly 
attributed to the different stimulation of antioxidative 
defense systems. 
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