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1. Introduction
Rice (Oryza sativa L.) is one of the oldest cultivated crops. 
It has been cultivated in India and China for several 
thousands of years (Poehlman and Sleper, 1995). The 
major cultivated species of rice, Oryza sativa (2n = 2x = 
24), originated in southern and southwestern tropical 
Asia. The other species of cultivated rice, Oryza glaberrima 
(2n = 2x = 24), is indigenous to the upper valley of the 
Niger River and it is cultivated only in western tropical 
Africa. Twenty-three species and 10 recognized genome 
types (AA, BB, CC, BBCC, CCDD, EE, FF, GG, HHJJ, 
and HHKK; Gramene: http://www.gramene.org/species/
oryza/rice_taxonomy.html) of Oryza are recognized. 
Close relatives of O. sativa are the wild perennial species 
O. rufipogon and the wild annual species O. nivara. Both 
are diploid weedy species with the AA genome. 

Rice is an important food crop and it needs continuous 
improvement due to the continuous increase in 
population. The major objectives to improve rice crops 
using biotechnological techniques include: 1) high yield 
potential, 2) early maturity, 3) resistance to lodging and 
shattering, 4) resistance to stress environments, 5) disease 
resistance, 6) insect resistance, 7) grain quality, and 8) 
enhancement of nutritional components.

2. Economic importance of rice
Rice (Oryza sativa L.) is the most important crop of world. 
About 90% of the world’s rice is grown in China, India, 
Pakistan, Japan, Korea, Southeast Asia, and other adjacent 
areas (USDA, 2014). Outside of Asia, Brazil and the United 
States produce the largest amounts of rice (Poehlman and 
Sleper, 1995). Rice is the staple food for over one-half 
of the world’s people (FAO, 2008). In Pakistan, rice is a 
highly valued food crop and it is also a major export item. 
It accounts for 3.2% of the total value added in agriculture 
and 0.7% of the GDP. Area sown for rice is estimated at 
2.891 × 106 ha and the production was 7.005 × 106 t in 
2014–2015 (Ministry of Finance, 2015). Rice is cultivated 
in diversified climatic conditions of Pakistan. Basmati rice 
(Indica) is grown in the traditional rice-growing belt of 
Punjab Province. In Swat, in high altitude alpine valleys, 
temperate Japonica rice is grown. In the south of Khyber 
Pakhtunkhwa, Sindh and Baluchistan provinces, IRRI-
type long-grain heat-tolerant tropical rice is mainly grown.

3. Transformation of rice crops
The world will need about 25% more rice by the year 2030 
to meet the estimated demand of an increasing global 
population (Wani and Sah, 2014). One way to meet this 
challenge is to grow rice on more area, which is difficult due 
to increasing urbanization and escalating population in 
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underdeveloped countries. The other option is to improve 
varieties and increase per hectare yield by breeding 
efforts through conventional methods as well as modern 
biotechnology. Biotechnology has a promise to increase 
yield as well as decrease crop loss due to various biotic and 
abiotic stresses (Gelvin, 2010; Ozawa and Takaiwa, 2010; 
Mahmood-ur-Rahman et al., 2014b). 

4. Insect-resistant rice
Insect-resistant crops have revolutionized modern 
agriculture and have become a major tool of integrated pest 
management programs, leading to reduction in insecticide 
use while protecting the environment and human health 
(Brooks and Barfoot, 2013). Like in other crops, insect-
resistant rice plants were also developed about two decades 
ago (Fujimoto et al., 1993). Now genetically modified rice 
lines expressing a gene from Bacillus thuringiensis (Bt rice 
plants) are under field trials in various countries (Tu JM 
et al., 2000; High et al., 2004; Wang et al., 2014). There are 
numerous reports indicating that Bt rice can minimize 
losses due to lepidopteran pests in Asia (High et al., 2004). 
Shu et al. (2000) reported that transgenic rice transformed 
with a synthetic cry1Ab gene was found significantly 
tolerant to eight lepidopteran insects, including striped 
stem borer (SSB; Chilo suppressalis) and yellow stem borer 
(YSB; Scirpophaga incertulas). Furthermore, two lines 
from Bt rice plants were highly resistant to lepidopteran 

pests under field conditions (Kumar et al., 2008; Deka and 
Barthakur, 2010; Wang et al., 2014). The major milestones 
in development of insect-resistant rice plants are reviewed 
in Table 1.

Insect-resistant hybrid rice plants were evaluated 
in a field in China and were highly tolerant to rice leaf 
folder (RLF; Cnaphalocrocis medinalis) and YSB (Tu 
JM et al., 2000; Deka and Barthakur, 2010; Chen et al., 
2011). Insect-resistant Bt rice has also been produced 
in Pakistan (Mahmood-ur-Rahman et al., 2007) and in 
the Mediterranean region (Breitler et al., 2004). Results 
of recent field trials in both locations showed significant 
resistance against target insects, i.e. YSB and RLF (Breitler 
et al., 2004; Bashir et al., 2005; Mahmood-ur-Rahman 
et al., 2007, 2012, 2013, 2014a, 2014b; Tabashnik et al., 
2009) (Table 2). The rice plants were artificially infested 
(Figures 1A–1C) with the target insects and their attack 
was measured quantitatively. Some transgenic rice lines/
varieties resistant to YSB have also been developed in 
India (Ramesh et al., 2004). Transgenic rice plants have 
also been developed in China and their efficacy was tested 
in the laboratory as well as in the field (Wang et al., 2012; 
Li et al., 2013; Li F et al., 2014).

Pyramiding of multiple genes against the same pest or 
a range of pests has proved to be very effective to induce 
sustainable resistance against insect pests. Research has 
been carried out to pyramid cry1Ab or cry1Ac with either 

Table 1. Genetic improvement of rice for insect resistance.

S. no. Gene(s) Targets References

1 cry1Ab or cry1Ac YSB*, SSB** Shu et al. (2000)

2 cry1Aa or cry1Ab SSB Breitler et al. (2004)

3 cry1Ab and cry1Ac YSB Ramesh et al. (2004)

4 cry1Ab SSB Cotsaftis et al. (2002)

5 cry1Ab YSB and RLF*** Bashir et al. (2005)

6 cry, Xa21, and RC7 YSB, bacterial blight, sheath blight Datta et al. (2003)

7 gna and cry1Ac Homopteran, coleopteran, and 
lepidopteran insects Nagadhara et al. (2003)

8 Itr1 Rice weevil Alfonso-Rubi et al. (2003)

9 cry1Ac and cry2A YSB and RLF Mahmood-ur-Rahman et al. (2007)

10 Bt and CpT1 Insect resistance Rong et al. (2007)

11 Bt, protease inhibitors,
enzymes, and plant lectins Insect resistance Deka and Barthakur 2010

12 cry2Aa Insect resistance Wang et al. (2012)

13 cry1Ab Insect resistance Wang et al. (2014)

*YSB = yellow stem borer, **SSB = stripe stem borer, ***RLF = rice leaf folder.
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cry2A or cry9C for improved and sustainable resistance in 
Bt rice. cry1Ab and cry1Ac have the same binding site in 
insects like SSB and YSB (Alcantara et al., 2004) and may 
be very effective in pyramiding of genes. Use of cry genes 
along with the snowdrop (Galanthus nivalis) lectin gene, 
gna, provided elevated levels of tolerance to a broad range 
of pests, including sucking insects (Ramesh et al., 2004), as 

the Bt genes have no effect on sucking insect pests (Bernal 
et al., 2002). 

It is important to pyramid cry genes with other 
insecticidal genes to induce sustainable resistance. These 
non-Bt insect resistant genes may be obtained from plants 
such as lectins, ribosome-inactivating proteins, or protease 
inhibitors (Sharma et al., 2003). The lectin gene (gna) 

A B C

Figure 1. Artificial infestation by yellow stem borer (YSB) in transgenic and nontransgenic rice plants to evaluate the efficiency of Bt 
genes against target insects. A) Symptoms of YSB attack at the vegetative stage of plant growth; the central tiller is dead due to insect 
attack, which is called “dead heart”. B) Symptoms of YSB attack at the reproductive stage of plant growth; the panicle becomes white 
and there is no grain development inside, a condition called “white head”. C) Artificial infestation by YSB.

Table 2. Field evaluation of transgenic rice.

S. no. Gene(s) Trait Location References

1 cry1Ab and cry1Ac Insect resistance China Tu JM et al. (2000)

2 cry1Ab Insect resistance China Shu et al. (2000)

3 cry1Ac and cry2A Insect resistance Pakistan Bashir et al. (2005)

4 cry1Aa and cry1B Insect resistance Spain Breitler et al. (2004)

5 cry2A Insect resistance China Chen et al. (2005)

6 cry1Ac and cry2A Insect resistance Pakistan Mahmood-ur-Rahman et al. (2007, 2012, 2014a)

7 cry1Ac and CpT1 Insect resistance China Han et al. (2006)

8 cry1Ab Insect resistance China Wang et al. (2014)
9 Xa21 Bacterial blight resistance China Tu J et al. (2000)

10 bar Herbicide resistance USA Oard et al. (2000)

11 bar Herbicide resistance Spain Messeguer et al. (2004)

12 bar Herbicide resistance USA Zhang et al. (2004)
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has been widely used to develop insect-resistant rice for 
built-in resistance against various species of homopteran, 
lepidopteran, and coleopteran insect pests (Nagadhara et 
al., 2003). Transgenic rice strains producing proteinase 
inhibitor proteins have been developed and evaluated in 
the field (Mochizuki et al., 1999). 

Recent developments such as an inducible and 
tissue-specific expression of the transgene, pyramiding 
of multiple genes for a broader range of protection, and 
delayed resistance development of insect pests could assist 
in the commercial application of genetically modified rice 
(Kumar et al., 2008). Protease inhibitors (Hernandez et 
al., 2003) and lectins are more effective than gna (Lopez et 
al., 2002). The cloning protease inhibitors and lectins have 
the potential to allow the development of insect-resistant 
rice (Kumar et al., 2008), which is more effective against 
sucking insects.

5. Fungus-resistant rice
Genetic improvement of rice for fungus resistance is the 
need of the day due to vulnerability of this crop to various 
pathogens, including fungi, bacteria, and viruses (Gust 
et al., 2010; Miah et al., 2013; Sattari et al., 2014). There 
are several genes that were isolated and cloned, and then 
transformation was carried out in rice plants to confer 
resistance against various species of fungi. The Pi-ta gene 
was recently cloned and reported to have significant 
resistance against rice blast (Dai et al., 2010; Delteil et 
al., 2010). Indigenous resistance to sheath blight was also 
studied and mapped (Liu et al., 2009). The molecular 
markers were also found by crossing between transgenic 
and susceptible/nontransgenic varieties (Liu et al., 2009). 
Indica rice generations harboring the PR-3 rice chitinase 
gene were found tolerant to sheath blight (Datta et al., 
2003). The Rir1b gene is a member of defense-related 
genes family. It has been identified and characterized only 
in cereals (Mauch et al., 1998). Transgenic rice containing 
Rir1b was reported to have an enhanced resistance to rice 
blast (Li et al., 2009). 

Several proteins have also been identified as good 
candidates to confer resistance against various species of 
fungi in rice plants, which are involved in tolerance of 
pathogen attack. Examples include lipid transfer protein 
(Guiderdoni et al., 2002), selenium-binding protein 
homolog (Sawada et al., 2004), genes taking part in 
flavonoid pathways (Gandikota et al., 2001), puroindoline 
proteins (Krishnamurthy et al., 2001), rice homolog 
of maize HC-toxin reductase (Uchimiya et al., 2002), 
defensins (Kanzaki et al., 2002), trichosanthins (Yuan 
et al., 2002), phytoalexins (Lee et al., 2004), protease 
inhibitor protein genes (Qu et al., 2003), genes involved 
in cell death (Matsumura et al., 2003), antifungal protein 
from Aspergillus flavus (Coca et al., 2004), and mycotoxin 
detoxifying compounds (Higa et al., 2003). 

6. Bacteria-resistant rice
Bacterial blight-resistant transgenic rice lines were 
developed by transforming an endogenous gene, Xa21 
(Song et al., 1995). Xa21 has been introduced into different 
rice cultivars by genetic transformation as well as through 
conventional breeding techniques (Tyagi and Mohanty, 
2000). Transgenic plants with Xa21 were evaluated 
under field conditions with promising results (Tu J et 
al., 2000). This gene was found to be the best candidate 
so far to induce resistance against bacterial blight. It was 
also reported that the gene could provide multiple stress 
tolerance along with other genes (Datta et al., 2003). 
Another resistant gene, Xa26, was isolated from rice and 
encodes a similar protein with similar effects in transgenic 
plants as the plants having the Xa21 gene (Sun et al., 2004; 
Zhang, 2009). 

Some other genes have also been transformed to 
develop bacterial-resistant rice (Zhou et al., 2011). The 
cecropins are a family of genes having antibacterial 
activity. They express peptides in the hemolymph of 
Cecropia moths. They have been transformed and 
expressed in plants with satisfactory results (Huang et al., 
1997). Transgenic rice plants producing ferredoxin-like 
protein, AP1, expressed tolerance to X. oryzae (Tang et al., 
2001). Rice has also been transformed to induce resistance 
against Burkholderia plantarii. Field studies of rice plants 
expressing Xa21 showed a significant increase in yield 
due to less damage by the pathogen (Tu J et al., 2000). 
Xa21 is a good candidate gene to be transformed in rice 
for sustainable resistance against bacterial diseases and it 
should be released commercially for the general farming 
community (Kumar et al., 2008).

7. Virus-resistant rice
Crop damage due to viruses has been a serious problem 
worldwide for several decades. The risk of damage due to 
rice viruses, especially rice stripe virus (RSV) and rice dwarf 
virus (RDV), which caused greater yield losses in the 1960s 
(Toriyama, 2010), is increasing. The use of insecticides to 
control the vector insects is one possible way to control 
rice crops but the high costs of insecticide and the risk to 
the environment are the major limiting factors. Genetic 
resistance against rice viruses or their insect vectors is also 
one of the most effective methods of protecting rice plants 
from virus infection. Rice plants having resistance against 
RDV (Shimizu et al., 2009; Sasaya et al., 2013) and RSV 
(Xiong et al., 2009) were developed and evaluated.

Rice tungro disease is very dangerous viral disease of 
rice. It is caused by infection by two viruses, rice tungro 
bacilliform virus (RTBV) and rice tungro spherical virus 
(RTSV). Green leafhopper (Nephotettix virescens) is the 
vector of RTSV and assists in the transmission of the 
virus. Rice plants have been transformed by using the coat 
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protein-mediated resistance strategy. Huet et al. (1999) 
produced transgenic rice plants containing the RTSV 
replicase gene. The transgenic plants showed moderate 
resistance to RTSV.

8. Herbicide-tolerant rice
Herbicide tolerance is an important agronomic trait 
that has been used to control weeds very efficiently for 
several decades. Many genes are being used to develop 
herbicide-tolerant plants, including the bar gene and the 
EPSPS gene. The bar gene is isolated from Streptomyces 
hygroscopicus, which detoxifies herbicide glufosinate, 
while the EPSPS gene is isolated from Agrobacterium 
strain CP4 and detoxifies glyphosate herbicides (Kumar 
et al., 2008). Herbicide-resistant GM rice plants encoding 
the bar gene were produced during the early stages of rice 
transformation research (Tyagi and Mohanty, 2000) and 
are currently under field trials (Oard et al., 2000). 

Considerable efforts have been carried out to identify 
other sources of genes that could be used for sustainable 
resistance against herbicides in transgenic rice. One such 
example is Bacillus subtilis protoporphyrinogen oxidase, 
which is transformed in rice plants and is an efficient 
source of resistance against oxyfluorfen herbicide (Jung 
et al., 2004). Other example is human cytochrome P450s; 
overexpression in rice showed variable responses to 
herbicides (Kawahigashi et al., 2003). 

9. Abiotic stress-tolerant rice
Abiotic stresses including drought, high and low 
temperatures, salinity, submergence, and oxidative stress 
contribute significantly to reduce crop yield. More than 
50% crop damage has been reported due to these stresses 
worldwide (Bray et al., 2000; Iqbal et al., 2013; Li Y et al., 

2014). They are often interlinked and cause similar cellular 
as well as physiological damage. Moreover, they also 
activate similar cell-signaling pathways (Nakashima et 
al., 2009; Qin et al., 2011). Several proteins, antioxidants, 
and compatible solutes are produced in response to stress 
conditions. Many crop plants have been developed by 
overexpression of genes responsible for these compounds 
and evaluated for various abiotic stresses under laboratory 
and field conditions (Luo et al., 2010). 

Tolerance to water shortage and salt stress are the 
most damaging factors that inhibit yield in rice crops. 
GM technology is one of the available options to increase 
abiotic stress tolerance in crop plants (Flowers, 2004). 
Development of transgenic plants containing various 
genes that induce tolerance to drought and/or salinity 
tolerance in different plants (Tyagi and Mohanty, 2000; 
Iqbal et al., 2013) has been extended to crop species such 
as rice (Table 3). Furthermore, many new genes have been 
identified and isolated that are responsible for providing 
salt and drought stress tolerance in model plants (reviewed 
by Flowers, 2004; Zhang et al., 2004).

Hoshida et al. (2000) transformed rice with the 
chloroplastic glutamine synthase (GS2) gene and 
successfully developed transgenic plants. Transgenic 
plants with high GS2 levels demonstrated an enhanced 
photorespiration capability and they were highly tolerant 
to salt stress and chilling stress (Hoshida et al., 2000). 
Xiong and Yang (2003) isolated and characterized a 
stress-responsive MAPK gene, OsMAPK5, from rice 
whose expression could be regulated by ABA and various 
other biotic and abiotic stresses. Plants overexpressing 
OsMAPK5 showed elevated tolerance to drought, salt, and 
cold stress (Xiong and Yang, 2003; Osakabe et al., 2014; 
Savchenko et al., 2014).

Table 3. Abiotic stress-tolerant genes in rice.

S. no. Gene(s) Function Source Characteristics of transgenic plant References

1 GS2 Glutamine synthase Rice Tolerant to salt and cold stresses Hoshida et al. (2000)

2 OsCDPK7 Calcium-dependent protein kinase Rice Tolerant to salt and drought stresses Saijo et al. (2000)

3 OsMAPK5 MAP kinase Rice --- Xiong and Yang (2003)

4 Adc, Samdc Polyamine biosynthesis Datura, oat Tolerant to salt and drought stresses Capell et al. (2004)

5 HVA1 LEA protein Barley, wheat Tolerant to salt and dehydration stress Babu et al. 2004

6 OtsA Trehalose biosynthesis E. coli Tolerant to salt, drought, and cold stress Jung et al. (2003)

7 p5cs Proline biosynthesis Moth bean Transgene expressed when stress induced Hur et al. (2004)

8 pdc1, adc Pyruvate decarboxylase Rice Submergence tolerance Rahman et al. (2001)

9 AGPAT, SGPAT Fatty acid biosynthesis Arabidopsis, spinach Improved photosynthesis at low temperatures Ariizumi et al. (2002)

10 Cat Catalase Wheat Cold-tolerant Matsumura et al. (2003)

11 spl7 Heat-stress transcription factor Rice Tolerance to heat stress Yamanouchi et al. (2002)
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 The dehydration-responsive elements (DREs) regulate 
the expression of various genes under abiotic stress 
conditions (Nakashima et al., 2014; Wani and Sah, 2014). 
Dubouzet et al. (2003) isolated 5 rice DREB homologs 
of Arabidopsis, OsDREB1A, OsDREB1B, OsDREB1C, 
OsDREB1D, and OsDREB2A, and characterized them 
in Arabidopsis. Researchers generated transgenic rice 
plants overexpressing various OsDREB genes driven by 
the combination of several promoters. They suggested 
that OsDREB1A proved very useful for the development 
of transgenic dicot and monocot plants with increased 
tolerance to drought, salt, and/or cold stresses (Wang et 
al., 2007; Nawaz et al., 2014).

The ACS gene is responsible for submergence resistance 
in rice plants. The mRNA level was found to be higher under 

completely submerged conditions in vascular bundles of 
young stems and leaf sheaths. Overexpression of the YK1 
gene in rice also resulted in the same results (Uchimiya et 
al., 2002). A transcription factor (Spl7) was identified and 
cloned in rice plants. Its overexpression in spl7 mutants 
inhibited leaf spot development induced by high temperature 
(Yamanouchi et al., 2002). Heat-tolerant rice plants have also 
been developed by overexpressing either heat shock proteins 
(Murakami et al., 2004) or enzymes involved in oxidative 
stress tolerance (Kouril et al., 2003).
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