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1. Introduction
Agriculture is currently the largest consumer of water 
resources in the world, especially in vast arid and semiarid 
areas (Seckler et al., 1997). Understanding the effects of 
drought on plants is essential for improving management 
practices and breeding strategies in agriculture (Chaves 
et al., 2003). In recent decades many studies have focused 
on plant responses to drought. Such studies have covered 
subjects ranging from the genetics of enhanced water-use 
efficiency to the physiological and biochemical processes 
that reduce the reliance of agriculture on fresh water 
resources (Chaves et al., 2002, 2003; Ashraf, 2010). 

In China, the northwestern region of the Loess Plateau 
is becoming an important area for apple production. The 
vast apple-growing area (1.14 × 106 ha) in this region 
accounts for approximately 22% of the world’s total 
apple growing areas. Malus, an apple genus native to the 
temperate zone of the northern hemisphere, is widely 
used as rootstocks for apple cultivation in the semiarid 
areas of the Loess Plateau. In an effort to improve apple 
production, researchers have focused on improving the 

positive mechanisms of Malus against drought. Various 
studies have focused on elucidating the biochemical 
responses of apple cultivars during drought resistance 
(Bai et al., 2011), on selecting drought-resistant rootstocks 
(Liu et al., 2010), on promoting drought-related gene 
expression (Wang et al, 2011), and on determining the 
effects of exogenous substances, such as abscisic acid, 
jasmonic acid, and glycine betaine, on drought resistance 
(Bai et al., 2009). Application of exogenous abscisic acid 
was shown to increase the drought tolerance of 1-year-old 
Malus sieversii and Malus hupehensis seedlings to drought 
stress (Ma et al., 2008). 

Nitric oxide (NO), a small molecule that is ubiquitous 
in plants, has many physiological roles. As a labile 
free radical, NO can act as an antioxidant to directly 
scavenge reactive oxygen species (ROS), thus protecting 
plants against various environmental stresses (Beligni, 
1999, 2002; Arasimowicz et al., 2007; Lei et al., 2007). In 
plants, NO is involved in regulating tissue growth and 
development (Delledonne et al., 1998; Xu et al., 2010), 
protective response to oxidative stress (García-Mata et al., 
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2001; Wang et al., 2012), organ maturation and senescence 
(Guo et al., 2005; Arasimowicz et al., 2007), and stomatal 
closure (Desikan et al., 2004). 

Application of exogenous NO to whole plants or cell 
cultures has been shown to affect specific physiological and 
biochemical processes. For example, exogenous NO was 
shown to mediate NO synthase-like activity in the water 
stress signaling pathway, induce stomatal closure, and 
enhance the adaptive response to drought stress (García-
Mata et al., 2001; Hao et al., 2008). Exogenous NO was shown 
to have dose-dependent effects on plant physiological 
responses, namely a promoting effect at low concentrations 
and an inhibitory effect at high concentrations (Qiao et al., 
2008). Thus, spraying an appropriate amount of exogenous 
NO could alleviate oxidative damage caused by drought 
stress. In practice it is difficult to measure the amount of 
endogenous NO (Xu et al., 2010). Therefore, to confirm 
the effects of NO in experiments, cPTIO (2-phenyl-
4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been 
used to scavenge endogenous NO (Beligni et al., 1999; 
García-Mata et al., 2002). Although previous studies have 
described NO-based strategies for improving the drought 
tolerance of plants (García-Mata et al., 2001; Zhu et al., 
2002), there have been no studies on whether exogenous 
NO can alleviate drought-induced damage in Malus 
rootstocks. 

The aim of the present study was to determine whether 
the NO donor sodium nitroprusside (SNP) could activate 
protective responses in Malus rootstocks against drought 
stress by increasing the activity of antioxidant enzymes and 
decreasing photosynthesis. To this end, we monitored the 
changes in antioxidant enzyme activities, photosynthetic 
characteristics, and fluorescence parameters in leaves of 
seedlings of two Malus rootstocks treated with SNP, cPTIO, 
or a combination of these compounds under drought 
stress. The results of these experiments provide reference 
data that can be used to develop management strategies for 
Malus rootstocks for improving their drought tolerance in 
arid and semiarid regions.

2. Materials and methods
2.1. Plant materials and growth conditions
In autumn 2010, seeds of drought-sensitive M. hupehensis 
(Pamp.) Rehd. and drought-tolerant M. sieversii (Ledeb.) 
M.Roem (Bai et al., 2011; Liu et al., 2011) were respectively 
collected from Pingyi, Shandong Province (35°07′N, 
117°25′E), and the Gongliu, Xinjiang region (42°07′N, 
86°37′ E), China.

The field experiments were conducted at the Northwest 
Agricultural & Forestry University, Yangling (34°20′N, 
108°24′E), China. Seeds were stratified on sand at 4 °C for 
35–40 days and then planted in plastic pots (12 × 12 cm, 
one seed per pot) filled with sand. The pots were placed 

in a greenhouse under natural light and temperature 
conditions. At the two-true-leaf stage, the seedlings were 
transplanted into larger pots (25 × 35 cm, one plant per 
pot) filled with soil (0–20 cm surface loam soil from 
an area near the university) and a mixture of perlite, 
vermiculite, and manure (volume ratio 1:1:1), and then 
grown as described by Bai et al. (2011). 

In March 2012, we selected 48 M. hupehensis seedlings 
and 48 M. sieversii seedlings at a similar growth stage and 
replanted them in larger plastic pots (40 × 35 cm, one 
plant per pot) filled with a mixture of soil and perlite–
vermiculite–manure (1:1, 28.4% field moisture capacity, 1.4 
kg mixed soil per pot). The plants were grown for another 
4 months under a rain shelter in natural environmental 
conditions. 

We established two soil moisture content treatments 
using the weighing method of Shao et al. (2007): moist 
soil (70%–75% of field moisture capacity, adjusted by 
weighing) and severe drought (40%–45% of field moisture 
capacity, achieved by withholding water for 7 days). The 
upper side of the pots was covered with a white plastic 
bag (45 × 40 cm) to prevent evaporation of soil moisture 
through the soil surface, and the pots were wrapped in 
reflective film to avoid excessive heating of the soil (Zhang 
et al., 2013). 
2.2. Experimental treatments 
Experiment 1: Aqueous solutions of the NO donor SNP 
dehydrate (Sigma, St. Louis, MO, USA) were prepared 
at concentrations of 0, 50, 100, 200, 300, and 400 µmol 
L–1. The concentration range was chosen by referring to 
the literature (Beligni et al., 1999, 2000; Xu et al., 2010). 
Each assay was repeated three times and included a no-
drought control (T0). A total of 18 seedlings were sprayed 
with the SNP solutions on both leaf surfaces until droplets 
formed at 0900 hours, 12 July 2012. Each concentration of 
the solution was applied to the leaves five times a day. The 
leaves were allowed to dry after each application.

The soil moisture content was 72.1% of the field 
moisture capacity before treatment, and it decreased to 
40.7% after 7 days of withholding water. Plants grown with 
drought-stress conditions and under natural humidity 
served as the control. All experiments were carried out in 
a completely randomized block design. Leaves of the same 
age were sampled at three different positions on the plant 
(upper, middle, and lower; two leaves at each position), 
and each replicate was taken from a different plant on day 
7. The leaf samples were detached and wrapped in wet 
absorbent gauze, and were then immediately taken to the 
laboratory to determine membrane permeability (MP) 
and malondialdehyde (MDA) and soluble protein (SP) 
contents. Each assay was repeated four times.

Experiment 2: The optimum concentration of SNP 
(as determined in experiment 1, 300 µmol L–1 SNP) and 
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400 µmol L–1 carboxy-PTIO potassium salt (cPTIO, a NO 
scavenger; 2-phenyl-4,4,5,5-tetramethylimidazoline-1-
oxyl-3-oxide; Sigma) were applied to both leaf surfaces 
on the remaining 30 seedlings at 0900 hours, 22 July 2012. 
Each assay included six replicates. In each treatment, the 
solution was applied to the leaves five times on the same 
day, as described above. SNP and cPTIO were applied 
sequentially. The soil moisture content was 71.6% of 
the field moisture capacity before the treatment, and it 
decreased to 42.3% after 7 days of withholding water. 

The seedlings were divided into five treatment groups: 
control (T0), no drought or NO; T1, drought; T2, drought 
+ SNP; T3, drought + cPTIO; and T4, drought + SNP 
+ cPTIO. Leaf samples of the same age were collected 
from different positions of each plant at 0900 hours, 29 
July 2012, as described above. Some of the leaves were 
wrapped in wet absorbent gauze and immediately taken 
to the laboratory, and the rest were quickly frozen in liquid 
nitrogen and stored at –80 °C until further analysis.
2.3. MP, MDA, and SP analysis 
We determined MP according to Sairam and Srivastava 
(2002) with slight modifications. Discs were removed from 
fresh leaves using a hole punch (l cm diameter), and 20 leaf 
discs were placed in a glass beaker containing deionized 
water. The solutions were incubated at 25 °C for 2 h, and then 
conductivity was measured using a calibrated conductivity 
meter (HI 8633, Hanna Instruments, Bedfordshire, UK). 
The solutions were boiled for 15 min and cooled to room 
temperature, and then conductivity was measured again. 
The percentage of electrolyte leakage was calculated as 
follows: EC (%) = (C1/C2) × 100, where EC is conductivity 
and C1 and C2 are the electrolyte conductivities measured 
before and after boiling, respectively. 

To determine MDA and SP contents, fresh leaves (0.5 
g) were homogenized in 100 mM potassium phosphate 
buffer (pH 7.0) containing 1 mM EDTA, 0.1% Triton 
X-100, and 2% (w/v) PVP with a chilled mortar and 
a pestle. The homogenates were centrifuged at 14,000 
× g for 30 min at 4 °C, and the supernatants were used 
for analyses. The MDA content in leaf samples was 
determined as described by Hodges et al. (2000). The 
leaves were extracted with 10% trichloroacetic acid, and 
the absorbance of leaf extracts was measured at 450, 532, 
and 600 nm against 0.6% thiobarbituric acid as the blank. 
The SP content in leaf samples was determined using 
Coomassie blue according to the method of Cusido (1987) 
with bovine serum albumin (Sigma) as the standard.
2.4. Measurements of water potential and relative water 
content
We measured leaf water potential (WP) using a pressure 
chamber (Model 100, PMS Instrument Co., Corvallis, OR, 
USA). The leaves were selected from the outside of the 
crown in the middle of an annual shoot. The measurements 

were carried out at 0900 hours, 7 days after spraying with 
SNP + cPTIO, when the soil moisture content was 42.3% of 
the field moisture capacity (severe drought). To determine 
leaf relative water content (RWC), leaves per plant were 
rapidly weighed, floated on the surface of deionized 
water, and allowed to fully hydrate for 3 h; then they were 
reweighed and finally dried to a constant weight at 65 °C. 
Each assay was repeated three times.
2.5. Measurements of photosynthetic characteristics and 
fluorescence parameters
Photosynthetic responses of apple leaves were measured in 
the field using a portable photosynthesis system (CIRAS-2, 
PP System, UK). These analyses were conducted between 
0830 and 1130 hours to avoid photoinhibition resulting 
from high-light stress at midday. Measurements were 
made under saturating photosynthetic photon flux density 
(1800 µmol m–2 s–1) from an LED light source and ambient 
relative humidity. The leaf temperature was controlled at 
approximately 25 °C (similar to the mean daily growth 
temperature). Net photosynthetic rate (Pn), transpiration 
rate (Tr), stomatal conductance (Gs), and intercellular 
CO2 concentration (Ci) were measured.

Chlorophyll fluorescence of photosystem II was 
determined using a chlorophyll fluorescence measurement 
system (CF-1000; P.K. Morgan Instruments, Andover, 
MA, USA). The parameters measured were maximal 
(Fm) and variable (Fv) chlorophyll fluorescence, from 
which photochemical efficiency (Fv/Fm) was obtained. 
Dark-acclimation cuvettes, which had a shutter gate to 
eliminate ambient light when inserting the fiber optic light 
source, were fixed to the same leaf used for gas exchange 
measurements, and leaves were acclimated for at least 15 
min before measurement. The light source was inserted 
into the cuvette from the abaxial side of the leaf, and a 
pulse of 1000 µmol m–2 s–1 of actinic light (680 nm) was 
applied for 60 s. 
2.6. Extraction and assays of antioxidant enzymes
Enzymes were extracted according to Grace and Logan 
(1996) with slight modifications. Frozen leaf tissue (0.5 g) 
was homogenized in 100 mM potassium phosphate buffer 
(pH 7.0) containing 1 mM EDTA, 0.1% Triton X-100, 
and 2% (w/v) PVP with a chilled mortar and a pestle. The 
homogenates were centrifuged at 14,000 × g for 30 min 
at 4 °C, and the supernatants were used for antioxidant 
enzyme activity assays. The specific activity of all enzymes 
was calculated as units g–1 fresh leaf weight.

Superoxide dismutase (SOD) activity was estimated by 
measuring the inhibition of the photochemical reduction 
of nitroblue tetrazolium (NBT) (Dhindsa et al., 1981). 
One unit of SOD was defined as the amount of enzyme 
required to inhibit NBT reduction by 50%, as determined 
by measuring absorbance at 560 nm. 
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Peroxidase (POD) activity was assayed using guaiacol 
as the substrate, as described by Ngo and Lenhoff (1980). 
The change in the absorbance of the assay mixture was 
measured at 470 nm. One unit of POD activity was defined 
as the rate of guaiacol oxidized in 3 min. Catalase (CAT) 
activity was determined by measuring the decrease in the 
absorbance of H2O2 at 240 nm (Deng et al., 2012). One 
unit of CAT activity was defined as the amount of enzyme 
catalyzing the decomposition of 1 µmol H2O2 per minute.

Ascorbate peroxidase (APX) and dehydroascorbate 
reductase (GR) activities were assayed using the method of 
Cheng (2012). The change in the absorbance of the APX 
assay mixture was measured at 290 nm. One unit of APX 
activity was defined as the amount of enzyme catalyzing the 
oxidation of 1 mmol ascorbate per minute. The change in the 
absorbance of the GR assay mixture was measured at 340 nm. 
One unit of GR activity was defined as the amount of enzyme 
that reduced 1 mmol oxidized glutathione per minute.

To determine monodehydroascorbate reductase 
(MDHAR) activity, the 1-mL reaction mixture contained 
50 mM phosphate buffered saline (PBS) (pH 7.8), 1 mM 
coenzyme (NADH), 2.5 mM ascorbic acid (AsA), 25 
units of AsA oxidase, and enzyme extract. The reaction 
was initiated by adding AsA oxidase and the change in 
absorbance at 340 nm was measured. One unit of MDHAR 
activity was defined as the amount of enzyme that oxidized 
1 mmol NADH per minute. 

To measure dehydroascorbate reductase (DHAR) 
activity, the 1-mL reaction mixture contained 50 mM 
PBS (pH 7.8), 20 mM reduced glutathione, 2 mM dihexyl 
adipate (DHA), and 1 mM EDTA-Na2. The reaction was 
initiated by adding DHA and the change in absorbance at 
265 nm was measured (Bai et al., 2009). One unit of DHAR 
activity was defined as the amount of enzyme producing 1 
mmol AsA per minute. 

2.7. Statistical analysis
Each treatment included four replicates. Data shown in 
figures are arithmetic mean values ± standard error of 
replicate measurements. Analysis of variance (ANOVA) 
was performed for group comparisons using SPSS 
17.0 (SPSS Inc., Chicago, IL, USA). The significance of 
difference among mean values was determined at the 95% 
confidence interval.

3. Results 
3.1. Effects of SNP application on leaf MP and MDA 
contents in Malus rootstocks under drought stress
Application of SNP resulted in larger decreases in MP 
and MDA contents in the leaves of drought-sensitive M. 
hupehensis (74.94% and 85.01%, respectively) than in 
the leaves of drought-tolerant M. sieversii (17.76% and 
41.10%, respectively) under drought stress (Figure 1). 
Different concentrations of exogenous SNP (50–400 µmol 
L–1) affected leaf MP and MDA contents of the two Malus 
rootstocks to a different extent. Under drought stress, the 
lowest levels of MP and MDA in the leaves of M. sieversii 
and M. hupehensis were in the 300 µmol L–1 SNP treatment 
(Figure 1), suggesting that this SNP concentration had the 
strongest inhibitory effect on drought-related physiological 
responses in these two rootstocks. Thus, 300 µmol L–1 SNP 
was used in the following experiments.
3.2. Effects of NO and cPTIO application on WP and 
RWC in Malus rootstocks under drought stress
To clarify the physiological role of endogenous NO in the 
drought resistance of Malus rootstocks under drought 
stress, cPTIO was applied to leaves to scavenge endogenous 
NO. Exogenous NO and cPTIO had opposite effects on WP 
and RWC in the two Malus species (Figure 2). Under both 
control (no drought) and drought conditions, the relative 

Figure 1. Effect of nitric oxide donor sodium nitroprusside (SNP) on leaf membrane permeability (MP, A) and malondialdehyde 
content (MDA, B) in 2-year-old seedlings of Malus hupehensis and Malus sieversii rootstocks under drought stress (water withheld 
for 7 days). Values are means ± standard error (n = 3).
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values of WP and RWC were higher in drought-tolerant M. 
sieversii than in drought-sensitive M. hupehensis (T0 and 
T1). Application of exogenous NO substantially increased 
WP and RWC in both rootstocks under drought stress 
(T2) compared to those of untreated drought-stressed 
rootstocks (T1). For both rootstocks, the plants treated 
with exogenous NO showed similar WP and RWC under 
drought stress (T2) to those of plants in the no-drought 
control. 

Drought stress suppressed the growth of both Malus 
rootstocks. After 7 days of withholding water, the degree 
of wilting increased to 72% in drought-tolerant M. 
sieversii and to 95.1% in drought-sensitive M. hupehensis. 
Exogenous NO application (T2) alleviated leaf dehydration 
stress (i.e. increased WP and RWC values) to some 
extent, thus reducing the degree of wilting. However, this 
alleviation was inhibited by cPTIO (T4). 
3.3. Effects of NO and cPTIO application on leaf 
photosynthetic characteristics and photochemical 
efficiency in Malus rootstocks under drought stress
The values of leaf Pn, Tr, and Gs were significantly lower 
in plants under drought stress (T1) than in unstressed 
plants (T0). Drought stress significantly increased leaf Ci 
concentration in drought-tolerant M. sieversii (Figure 3). 
Under drought stress, leaf Pn, Tr, Gs, and Ci were lower in 
plants treated with exogenous NO (T2) than in untreated 
plants (T1). For both Malus species, plants treated with 
cPTIO (T3) under drought stress showed higher leaf Pn, 
Tr, Gs, and Ci than plants treated with NO (T2). For both 
Malus species, plants treated with both NO and cPTIO (T4) 

showed lower leaf Pn, Tr, Gs, and Ci than plants treated 
only with cPTIO (Figure 3), suggesting that exogenous 
NO acted as a signal to induce drought tolerance despite 
the inhibitory effect of cPTIO. 

The Fv/Fm value reflects the photochemical efficiency 
of photosystem II. The Fv/Fm value was significantly lower 
in drought-stressed plants (T1) than in unstressed plants 
(8.84% lower in M. sieversii and 10.38% lower in M. 
hupehensis). For both rootstocks, exogenous NO increased 
the Fv/Fm value of drought-stressed plants, with or without 
cPTIO (T2 and T4), to a level similar to that of control 
plants (Figure 4). 
3.4. Effects of NO and cPTIO on leaf MP, SP, and MDA 
levels in Malus rootstocks under drought stress
As compared to the unstressed plants (T0), plants under 
drought stress (T1) showed significantly higher leaf MP. 
Under drought stress, the leaf MP was higher in drought-
sensitive M. hupehensis than in drought-tolerant M. 
sieversii (Figure 5A). Under drought stress, M. sieversii 
and M. hupehensis plants treated with exogenous NO (T2) 
showed lower MP than that of untreated plants under 
drought stress (T1). The decreasing effect of exogenous 
NO on MP under drought stress was largely diminished 
when cPTIO was applied (T4) (Figure 5A).

Application of exogenous NO also decreased SP and 
MDA contents in M. sieversii and M. hupehensis leaves 
under drought stress (Figures 5B and 5C). The effect of 
exogenous NO (T2) to decrease leaf SP content was barely 
affected by cPTIO (T4). In contrast, the effect of exogenous 
NO to decrease leaf MDA content was significantly 
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diminished by cPTIO in both Malus rootstocks under 
drought stress (Figure 5B). 
3.5. Effects of NO and cPTIO on leaf antioxidant enzyme 
activities under drought stress
In all treatments, the SOD activity was higher in drought-
tolerant M. sieversii leaves than in drought-sensitive 
M. hupehensis leaves (Figure 6A). Drought stress (T1) 
increased leaf SOD activity by 4.9% in M. sieversii rootstocks 
and by 8.5% in M. hupehensis rootstocks, as compared 
with the unstressed control (T0). In both rootstocks, 
exogenous NO (T2) further increased leaf SOD activity to 
levels significantly higher than in untreated plants under 

drought stress (T1). Application of cPTIO significantly 
decreased leaf SOD activity in M. sieversii, but not in M. 
hupehensis. The effect of cPTIO to decrease SOD activity 
under drought stress was largely overcome by exogenous 
NO (Figure 6A). With a few exceptions, the activities 
of SOD, POD, CAT, APX, DHAR, GR, and MDHAR 
showed similar responses to the various treatments, albeit 
on different scales (Figures 6A–6G). This study showed 
significant effects of different treatments and species 
on most leaf parameters measured, as determined with 
ANOVA. However, the effects of the different treatments 
on MDA, Gs, Ci, and CAT activity were not significant.
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4. Discussion
Water shortages and the resulting losses in plant production 
are major problems in North China, an important 
agricultural region (Xia et al., 2007; Ashraf, 2010). Plants 
usually respond to drought stress by suppressing specific 
types of growth and accumulating ROS. ROS can cause 
lipid peroxidation and membrane disruption, resulting 
in oxidative damage (Liu et al., 2000; Jiang et al., 2001). 
Membrane permeability and the lipid peroxidation 
product MDA are commonly considered as important 
indexes of drought stress (Bai et al., 2011). Thus, they 
have been used to distinguish between drought-tolerant 
and drought-sensitive plant genotypes in many studies. In 
the present study, the MP and MDA content increased in 
two Malus rootstocks under drought stress, and there was 
greater accumulation of MDA and MP in M. hupehensis 
leaves than in M. sieversii leaves (Figure 1). These results 
might be related to the stronger drought tolerance in the 
latter species than in the former rootstock, consistent with 
previous findings (Bai et al., 2011; Wang et al., 2012).

Drought stress resulted in decreased WP and RWC 
in the two Malus rootstocks (Figure 2). This could be 
interpreted as a mechanism to concentrate solutes in 
the cell sap, thereby lowering the osmotic potential and 
contributing to osmotic adjustment (Lissner et al., 1999). 
Nitric oxide is one of the key elements in the complex 
signaling pathway leading to stomatal closure: it induces 
reversible protein phosphorylation and Ca2+ release from 
intracellular stores (Lamattina et al., 2003; Ördög et al., 
2013). Therefore, under drought stress, plants treated with 
NO showed WP and RWC values similar to those in the 
control (no drought). In the present study, application 
of 300 µmol L–1 SNP to leaf surfaces enhanced the 
drought tolerance of both Malus rootstocks by alleviating 
dehydration stress and decreasing ion leakage, lipid 
peroxidation, water potential, and the degree of wilting in 
the leaves (Figures 2 and 5). 

As a NO scavenger, cPTIO can reverse the effects of NO 
donors on plant physiology (Beligni et al., 2002; Piterková et 
al., 2012). Thus, we used cPTIO to verify the physiological 
role of endogenous NO in the drought tolerance of the 
two Malus rootstocks. Treatment with cPTIO exacerbated 
membrane damage and lipid peroxidation to some extent 
in both M. sieversii and M. hupehensis leaves, with greater 
responses in M. sieversii than in M. hupehensis rootstocks 
(Figure 6). This result is consistent with the fact that NO 
reacts with cPTIO to give NO2, which is very reactive and 
can cause severe damage (Shao et al., 2007). Plants resist 
stress-induced ROS production by increasing the amounts 
and/or activities of various components of their defensive 
systems. Plant cells are normally protected against the 
effects of ROS by a complex antioxidant system, which 
includes enzymatic antioxidants (Cheng et al., 2004; Bai 
et al., 2009). 

Application of exogenous NO to both Malus rootstocks 
significantly decreased drought-related ion leakage, lipid 
peroxidation, and SP content (Figure 5) and enhanced leaf 
water attributes (Figure 2) and photochemical efficiency 
(Figure 4), thus alleviating leaf dehydration stress and 
scavenging more ROS. The activity of SOD is induced by 
the substrate. O2– is generated by drought stress and then 
induces a significant increase in SOD activity (Beligni 
et al., 2002; Zhu, 2002). After exogenous SNP, SOD 
activity increased significantly, so drought stress was 
largely released (Figure 6A). Under drought conditions, 
the activities of POD, CAT, APX and other antioxidant 
enzymes that can degrade H2O2 were decreased, while NO 
significantly promoted SOD, POD, CAT, and APX, thereby 
strengthening the capabilities of the defense system to 
scavenge free radicals (Figure 6). Moreover, the harmful 
effects of drought oxidative stress on Malus seedlings 
were alleviated, membrane permeability was reduced, 
and MDA content was decreased (Figure 5). Exogenous 
NO also changed the photosynthetic characteristics and 
photochemical efficiency of the two Malus rootstocks. 
These changes could explain the increased drought 
tolerance of the rootstocks (García and Lamattina, 2001; 
Ma et al., 2005). However, the application of cPTIO 
inhibited the beneficial effects of NO, thus decreasing 
the drought tolerance of Malus rootstocks. These results 
concurrently suggest that NO, produced in the two Malus 
rootstocks under drought stress, might serve as a signal to 
induce drought tolerance.  

The results of this study provide evidence that NO 
increased the antioxidant capacity of apple rootstocks 
under drought stress. Although we did not measure the 
amount of endogenous NO released by SNP treatments 
in these experiments, there were significant effects at 
very low SNP concentrations (Delledonne et al., 1998). 
Our results showed that drought stress adversely affected 
the leaf water attributes of two Malus rootstock species 
(the drought-sensitive M. hupehensis and the drought-
tolerant M. sieversii) that are widely grown in semiarid 
areas of the Loess Plateau. Exogenous application of an 
appropriate amount of the NO generator SNP (300 µmol 
L–1 SNP) to leaf surfaces effectively enhanced the drought 
tolerance of both Malus species by increasing the activities 
of antioxidant enzymes and enhancing photosynthetic 
performance under drought conditions. Compared with 
other exogenous substances, NO (i.e. SNP) is considerably 
less expensive and is suitable for universal application in 
plant production. By determining the appropriate amount 
of NO generator for each species or variety, this leaf-
spraying method could be used to overcome the adverse 
effects of drought stress on apple trees by enhancing 
their photosynthesis and antioxidant responses. To better 
understand the role of exogenous NO in ameliorating 
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oxidative stress in Malus rootstocks, in our future research 
we plan to analyze the transcript levels of genes involved in 
NO metabolism by quantitative PCR.
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