

Turkish Journal of Botany

http://journals.tubitak.gov.tr/botany/

Research Article

Turk J Bot (2018) 42: 710-721 © TÜBİTAK doi:10.3906/bot-1802-25

Seed morphology of the genus Astragalus L. from North Asia

Tatyana SHEMETOVA¹, Andrey ERST^{1,2,*}, Wei WANG³, Kunli XIANG³, Cem VURAL⁴, Zeki AYTAC⁵

¹Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

²Laboratory of Phylogeny and Systematics, Tomsk State University, Tomsk, Russia

³State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China

⁴Department of Biology, Faculty of Arts and Sciences, Erciyes University, Kayseri, Turkey

⁵Department of Biology, Faculty of Arts and Sciences, Gazi University, Ankara, Turkey

Received: 14.02.2018	٠	Accepted/Published Online: 15.09.2018	٠	Final Version: 22.11.2018
----------------------	---	---------------------------------------	---	---------------------------

Abstract: Astragalus is one of the largest genera of angiosperms and a characteristic component of the steppes and mountains of North Asia. Here, we used scanning electron microscopy to investigate the seed morphology of 56 species of the genus from North Asia. In Astragalus, seed color varies from yellow-green, greenish brown, reddish brown to grayish brown. Seed shapes include reniformglobose, rombiform, and oblong-elliptical. Seed sizes vary from 1.25×0.88 mm to 4.94×3.29 mm. Anticlinal walls are straight, undulate, or slightly thickened, and the periclinal walls are aveolate, stellate, pectinate, or rugose. We recognized two main types of seed surface in the genus: reticulate (sect. Cystium, Uliginosi, and Heterodontus) and indistinct primary sculpture (sect. Caprini, Craccina, Alopecuroidei, Glycyphyllos, and Komaroviella). This study describes macro- and micromorphological characters of seeds that would be useful for studying systematics, taxonomy, and evolution within Astragalus in the future.

Key words: Astragalus, seed surface, seed morphology, North Asia

1. Introduction

The genus Astragalus L. is one of the largest genera of flowering plants and encompasses about 2500-3000 species that grow mainly in cold arid and semiarid mountain regions of the Northern Hemisphere and South America (Podlech, 2013). The genus is a characteristic component of the steppes and mountains of Asia (Polhill, 1981; Lock and Schrire, 2005), and about 110 species of Astragalus occur in North Asia.

In 1971, Heywood drew attention to the importance of the scanning electron microscope as a tool to study systematic problems. Many taxonomists (Nikolaevskaja and Petrova, 1989; Tantawy et al., 2004; Ovczinnikova, 2007; Svetlova, 2008; Lomonosova, 2009; Kaya et al., 2016; etc.) assert that the data on macro- and microstructure of seeds are crucial for classification of angiosperm taxa. Several authors have studied the seed surface ultrasculpture of species of Astragalus. Engel (1990) reported that taxa from Astragalus have reticulate, multireticulate, and foveolate and multifoveolate seed surface sculpture. Ekici et al. (2005) noted regulate-granulate pitted seed surfaces for Astragalus ovalis Boiss. & Balansa (sect. Ammodendron Bunge). Vural et al. (2008) studied the morphology of seeds from 48 species of the sections Onobrychoidei DC, Uliginosi Gray, and Ornithopodium Bunge, and found two main types of seed surface ultrasculpture: rugose and rugose-reticulate.

This study aimed to investigate the species of Astragalus growing in North Asia to examine the diversity of surface sculpture and assess its taxonomic significance.

2. Materials and methods

A comparative analysis of the microrelief of the seed surface of 56 species from 20 sections of the genus Astragalus growing in the Asian part of Russia was carried out using a scanning electron microscope (SEM). Mature seeds of Astragalus were collected from herbarium specimens stored in the following herbaria: NS and NSK (Table 1). Additionally, some materials were collected from the field during 2009-2011. The sample number for each species was not less than 20 seeds.

To remove the cuticle, seeds were stored in a solution of chloroform and methanol at a ratio of 1:1 for 48 h. After that, the seeds were transferred to a series of alcohols (70% and 90%). Processed dry seeds were fixed to a SEM stub using double-sided insulation tape. The

^{*} Correspondence: erst_andrew@yahoo.com

0	Section /species	Collector	Date	Country	Province/region	Locality	Coordinates	Altitude, m	Herbarium
	Caprini DC.								
	A. schanginianus Pall.	Shaulo, D. Krasnikov, A.	22/07/1983	Russia	Altai Republic, Ust-Koksinsky district	Tungur Village	50°10'N, 86°18'E	1345	NS
	A. wolgensis	Fedotov, K.	17/06/1984	Russia	Kurgan Oblast, Pritobolsky district	Berezovka River, Ukrainets Village	54°23'N, 64°48'E	67	NS
	Laguropsis Bunge								NS
	A. arkalycensis Bunge	Zvereva, G.	27/07/1966	Russia	Khakassia Republic, Shirinsky district	Shira Lake	54°28′N, 90°12′E	459	NS
	A. laguroides Pall.	Korolyuk, A.	13/07/2007	Russia	Buryatia Republic, Dzhidinsky district	Dyrestui Village	50°38′N, 106°03′E	585	NS
	A. follicularis Pall.	Myakshina, T.	23/08/2010	Russia	Altai Republic, Kosh-Agachsky district	Taldura River	49°57′N, 87°54′E	2069	NS
	A. lupulinus Pall.	Talalaeva, M., Galaziy, G.	08/12/1954	Russia	Irkutsk Oblast, Olkhon district	Baikal Lake, Zunduk Cape	54°94′N, 83°02′E	652	NSK
	Craccina (Srev.) Bunge								
	A. sulcatus L.	Krasnoborov, I., Shaulo, D.	06/10/1999	Russia	Altai Krai, Slavgorodsky district	Podsosnovo Village	53°22′N, 78°57′E	130	NS
	Cystium Bunge								
8.	A. physocarpus Ledeb.	Vandakurova, E.	31/05/1946	Russia	Altai Krai. Uglovsky district	Shadriha Village	51°31'N, 79°49'E	181	NS
	Uliginosi Gray								
9.	A. schelichovii Turcz.	Koroleva, A.	04/08/1970	Russia	Yakutya Republic, Bulunsky district	Jarjan Village	68°52′N, 124°07′E	98	NS
10.	A. uliginosus L.	Shaulo, D., Artemov, I.	18/09/2002	Russia	Novosibirsk Oblast, Suzunsky district	Inya River	53°31'N, 82°26'E	125	NS
	<i>Helmia</i> Bunge								
11.	A. depauperatus Ledeb.	Krasnoborov, I., German, D.	22/06/2000	Russia	Altai Krai, Loktevsky district	Aley River, Lugovkaya Village	51°10'N, 81°18'E	240	NS
	Onobrychoidei DC.								
12.	A. adsurgens Pall.	Shaulo, D., Nalpina, T.	05/08/1980	Russia	Krasnoyarsk Krai	Zolotaya River	52°02′N, 92°42′E	715	NS
13.	A. austrosibiricus Schischk.	Shaulo, D., Tuller, D.	24/07/1983	Russia	Altai Republic, Ust-Koksinsky district	Katanda Village	50°15′N, 86°10′E	1489	NS
14.	A. inopinatus Boriss.	Korolyuk, A., Korolyuk, E.	09/07/2007	Russia	Buryatia Republic, Dzhidinskiy district	Niznii Torei Mountains	50°32′N, 104°48′E	758	NS
15.	A. onobrychis L.	Krasnoborov, I., Zhirova, O.	04/09/1996	Russia	Novosibirsk Oblast, Karasuksky district	Morozovka Village	53°55'N, 78°20'E	112	NS
	Tanythrix Bunge								
16	A. roseus Ledeb.	Anonim	-/-/1841	Kazakhstan	East Kazakhstan Oblast	Ust-Kamenogorsk City	50°00'N, 82°36'E	306	NS
	Trachycercis Bunge								
17.	A. scaberrimus Bunge	Korolyuk, A., Korolyuk, E.	09/07/2007	Russia	Buryatia Republic, Dzhidinskiy district	Niznii Toray Mountains	50°32′N, 104°48′E	758	NS
18.	A. testiculatus Pall.	Krasnoborov, I., German, D.	20/05/2000	Russia	Altai Krai, Krasnoshchekovsky district	Maraliha Village	51°38'N, 82°56'E	350	NS
19.	A. monophyllus Bunge	Kuminova, A., Linde, S.	31/07/1975	Russia	Tuva Republic, Barun-Khemchiksky district	Kyzyl-Mazhalyk Village	51°08'N, 90°35'E	864	NS

Table 1. Material examined: species, collector, date, country, province/region, locality, coordinates, altitude, and herbaria.

	Dissitiflori DC.								
20.	A. angarensis Turcz. ex Bunge	Peshkova, R.	28/06/1956	Russia	Irkutskoblasť, Eherit-Bulagatsky district	Kuda River, Ust-Orda Village	52°50'N, 104°43'E	536	NSK
21.	A. tephrolobus Bunge	Krasnoborov, I., Luzhetsky, V.	03/07/1966	Russia	Tuva Republic	Kyzyl City	51°41'N, 94°27'E	647	NS
22.	A. <i>lenensis</i> Shemetova, Shaulo et Lomon.	Koroleva, A.	18/07/1970	Russia	Yakutya Republic, Yakut district	Yakutsk City	61°59′N, 129°43′E	72	NS
23.	. A. ionae Palibin.	Shaulo, D., Erst, A., Myakshina,T.	20/06/2009	Russia	Khakassia Republic, Ordzhonikidzevsky district	Upper Sutik Village	55°00'N, 89°52'E	388	NS
24	A. suffruticosus DC.	Myakshina, T.	27/08/2010	Russia	Altai Republic, Kosh-Agachsky district	Dzazator Village	49°44'N, 87°18' E	1593	NS
25.	. A. arbuscula Pall.	Vereshchagin V.	17/06/1925	Kazakhstan	Katonkaragay district	Malokrasnoyarsk City	53°30'N, 77°23'E	110	NS
26.	A. stenoceras C.A. Mey.	Shaulo, D., Shaulo, S.	04/07/2010	Russia	Tuva Republic. Piy-Hemsky district	Uyuk Ridge, Kamenistyi kluch brook	51°54'N, 94°25'E	642	NS
27.	A. macroceras Bong.	Shaulo, D., Erst, A., Myakshina, T.	25/06/2009	Russia	Tuva Republic	Uyuk Ridge, Seserlig River	51°52'N, 94°15'E	591	NS
	Alopecuroidei DC.								
28.	A. alopecurus Pall.	Yakubova, A., Smirnov, M.	08/10/1953	Russia	Altai Republic, Onguday district	Chuya River, Belyi Bom Village	50°22'N, 87°02'E	929	NS
	Heterodontus Bunge								
29.	A. dahuricus (Pall.) DC.	Kuminova, A.	08/08/1976	Russia	Tuva Republic, Dzun-Khemchiksky district	Khemchik River, Ak- Dash Village	51°16′N, 91°05′E	763	NSK
	Hypoglottidei DC.								
30.	. A. danicus Retz.	Myakshina, T	17/08/2010	Russia	Altai Republic, Kosh-Agachsky district	Kokorya Village	49°56'N, 88°58'E	2006	NS
31.	A. agrestis G.Don	Krasnoborov, I.	07/07/1993	Russia	Novosibirsk Oblast, Krasnozyarsk district	Mayskoe Village	54°05′N, 79°50′E	120	SN
32.	. A. cicer L.	Shaulo, D.	20/08/2008	Russia	Novosibirsk Oblast, Novosibirsk district	Novosibirsk City	54°50'N, 83°05'E	152	NS
33.	A. tibetanus Benth. ex Bunge	Danilov, M., Meshkova, E.	19/07/1981	Russia	Altai Republic, Kosh-Agachsky district	Kokorya Village	50°N, 89°E	1843	NS
	Cenantrum Bunge								
34.	. A. frigidus (L.) A.Gray	Verkhozina, A.	11/08/2002	Russia	Buryatia Republic, Tunkinsky district	Margasan River	51°42′N, 103°33′E	1992	NSK
35.	A. propinguus Schisch.	Lomonosova, M., Mironov L.	12/08/1981	Russia	Altai Republic, Kosh-Agachsky district	Kokorya Village	49°55′N, 88°59′E	1855	NSK
36.	A. membranaceus (Fisch.) Bunge	Onoeva, E.	07/09/1966	Russia	Irkutsk oblasť	Baikal Lake, Zavorotnaya Bay	54°17′N, 108°27′E	448	NSK
37.	A. saralensis Gontsch.	Malyshev, L.	08/21/1961	Russia	Buryatia Republic	Udinsky Spine, Uda River	52°19′N, 111°05′E	180	NSK
38.	A. sericeocanus Gontsch.	Granina, G.	08/08/1974	Russia	Buryatia Republic	Upper-AngaraRiver, Dagary	55°42'N, 109°55'E	455	NSK
	Glycyphyllos Bunge								
39.	A. glycyphyllos L.	Krasnoborov, I.	24/07/1999	Russia	Novosibirsk Oblast, Novosibirsky district	Klychi Village	54°50'N, 83°08'E	150	NS
	Hemiphaca Gontsch.								

Table 1. (Continued).

opterus DC. Shaulo, D., Shaulo, I. 01/07/1991 Russia Krasnoyarsk Krai, Beysky district Joysky Ridge, Sabinka 53°20'N, 91°01'E 550 Village	NS	NS	NS	NSK	NSK		NS	NS	NS	NS	NS	NSK	NSK		NS		NSK		NS	NS
opterus DC. Shaulo, D., Shaulo, I. 01/07/1991 Russia Krasnoyarsk Krai, Beysky district Joysky Ridge, Sabinka 53°20'N, 91°01'E Village	2153	450	474	1987	427		472	1587	2500	2500	1217	607	312		1161		831		1061	2578
<i>opterus</i> DC. Shaulo, D., Shaulo, I. 01/07/1991 Russia Krasnoyarsk Krai, Beysky district Village Village	50°18'N, 88°15'E	54°30'N, 90°10'E	54°34′N, 89°47′E	51°57′N, 100°57′E	52°15′N, 105°42′E		53°10'N, 106°57'E	50°12′N, 85°38′E	50°49'N, 88°19'E	50°6′N, 89°10′E	50°20′N, 87°30′E	53°24'N, 107°47'E	62°47′N, 150°41′E		52°37′N, 93°46′E		50°40'N, 113°34'E		51°10'N, 93°24'E	49°15′N, 87°35′E
opterus DC. Shaulo, D., Shaulo, I. 01/07/1991 Russia Krasnoyarsk Krai, Beysky district	Ildugem River	Itkul Lake	Saksary Village	White Irkut River	Baikal Lake, Olchon Island, Peschanaya Bay		Baikal Lake, Zugduk Cape	Terektinsky Ridge, Ust- Koksa Village	Kurai Ridge, Mezhtuyaryk Village	Uzuntotygem River	Chibit Village	Baikal Lake, Olchon Island, Khoboy Cape	Izvestkovyi Village, Tascan River		Kurtushibinsky Ridge, Tyhaya River		Duldurga Village		Aktal Village	Ukok Plateau, Cholok-
opterus DC. Shaulo, D., Shaulo, I. 01/07/1991 Russia	Altai Republic, Ulagansky district	Khakassia Republic, Shirinsky district	Khakassia Republic, Askizsky district	Buryatia Republic	Irkutsk Oblast.		Irkutsk Oblast	Altai Republic	Altai Republic	Altai Republic, Kosh-Agachsky district	Altai Republic, Ulaganskiy district	Irkutsk Oblast	Magadan Oblast, Yagodinsky district		Krasnoyarsk Krai		Transbaikal Krai		Altai Republic, Kosh-Agachsky district	Altai Republic
opterus DC. Shaulo, D., Shaulo, I. 01/07/1991	Russia	Russia	Russia	Russia	Russia		Russia	Russia	Russia	Russia	Russia	Russia	Russia		Russia		Russia		Russia	Russia
opterus DC. Shaulo, D., Shaulo, I.	22/07/1984	07/07/1999	25/07/1971	19/07/1986	25/08/1973		02/07/1979	13/08/1984	05/08/1963	30/07/1982	14/07/1989	22/07/2005	21/07/1974		19/07/1979		05/08/1964		20/07/1981	26/07/1955
opterus DC.	Danilov, M., Ostanin, I.	Krasnoborov, I.	Koroleva, A.; Massalikina, M.	Malyshev, L.	Malyshev, L., Vodopyanov, N.		Krasnoborov, I.	Lomonosova, M.	Kuznetsov, G.	Danilov, M.	Krasnoborov, I.	Karnaukhov, D., Selyutin, I.	Berkutenko, A.		Shaulo, D., Kovalev, I.		Peshkova, G., Ovchinnikova L.		Lomonosova, M., Khanminchun, V.	Kuminova, V., Listova, N
A. macr	A. multicaulis Ledeb.	A. rytidocarpus Ledeb.	A. versicolor Pall.	A.bifidus Turcz.	A. olchonensis Gontsch.	Hemiphragmium (Koch) Bunge	A. chorinensis Bunge	A. kaufmannii Krylov	A. pseudoaustralis Fisch. et C.A. Mey.	A. tschuensis Bunge	A. vaginatus Pall.	A. trigonocarpus (Turcz.) Bunge	A. kolymensis Jurtzev	Komaroviella Gontsch.	A. alpinus L.	Melilotopsis Gontsch.	A. tenuis Turcz.	Orobella Gontsch.	A. norvegicus Grauer	A. politovii Krylov
40.	41.	42.	43.	44.	45.		46.	47.	48.	49.	50.	51.	52.		53.		54.		55.	56.

Table 1. (Continued).

samples were sprayed with gold using the SPI MODULE unit and examined using a Philips SEM 515 scanning electron microscope (Eindhoven, The Netherlands) at Tomsk Materials Science Center (Tomsk State University). Scanning was performed on a lateral part of each seed at 55×, 800×, and 2000× magnification. The present paper provides images with 2000× magnification only. Digital images were processed using Adobe Photoshop CS 4 (San Jose, CA, USA).

The terminology proposed by Barthlott (1981) was used to describe surface sculpture. His approach distinguishes three sculpture levels: primary, secondary, and tertiary. Primary sculpture encompasses the outline of exotestal cells—general appearance, the type of anticlinal walls (AW), the relief of cellular boundaries, and the curvature of the outer periclinal walls (OPW). Secondary sculpture considers the features of the OPW surface (reticulate, tuberculate, smooth, etc.). Tertiary sculpture caused by various epicuticular secretions is quite rare on the seed surface (Shemetova, 2014) and was not found in the surveyed species.

3. Results and discussion

The seed shape, color, size, surface sculpture, and hilum position are taxonomically informative. The present study examined the seed morphology from 56 species of *Astragalus*. The surveyed species are characterized by multiseeded, puberulous, or less often glabrous fruits (sect. *Caprini* DC., *Glycyphyllos* Bunge, *Hemiphragmium* (Koch.) Bunge, *Hemiphaca* Gontsch., and *Melilotopsis* Gontsch.). The beans are of various shapes: narrow, oblong or elliptical, ovate, or semiglobose.

The seeds of the studied species from the genus *Astragalus* are yellow-green, greenish brown, reddish brown, or grayish brown, sometimes with darker lines in the region of the hilum, which is oval or rounded. The seeds are mostly reniform-globose and slightly flattened near the hilum. Rombiform seeds were observed in a few species (*A. depauperatus* Ledeb., *A. onobrychis* L., *A. tephrolobus* Bunge, *A. macroceras* Bong., *A. dahuricus* (Pall.) DC., *A. glycyphyllos* L., and *A. multicaulis* Ledeb.), and in three species (*A. angarensis* Turcz. Ex Bunge, *A. aveolated* Pall., and *A. olchonensis* Gontsch.) the seeds are oblong-elliptical in shape, with the apex elongated and acute, and the radicle protruding (Figure 1; Table 2).

Seed sizes vary from 1.25×0.88 mm (*A. tenuis* Turcz.) to 4.94×3.29 mm (*A. wolgensis* Bunge). The average seed size is 3.84×3.02 mm. This category includes species of the section *Caprini* DC. (*A. schanginianus* Pall., *A. wolgensis*), section *Alopecuroidei* DC. (*A. alopecurus* Pall.), and two species from the section *Cenantrum* Bunge (*A. propinquus* Schischk. and *A. sericeocanus* Gontsch.). The seeds of most

species are of medium size (with an average of 2.44×1.87 mm) and 23 species have small seeds (with an average of 1.62×1.33 mm) (sect. *Onobrychoidei* DC., *Hemiphaca*, *Komaroviella* Gontsch., *Melilotopsis*, and some species from other sections).

The morphological features of *Astragalus* seed surface depend on the shape of the main epidermal cells, the thickness and curvature of their anticlinal walls, and the relief of the periclinal wall surface. Anticlinal walls in the seeds of species from the surveyed sections can be straight (*A. arkalycensis* Bunge, *A. shelichovii* Turcz., *A. depauperatus* Ledeb., *A. tephrolobus*, and others), slightly undulate (*A. tenuis*, *A. physocarpus*, *A. frigidus*, and others), strongly undulate (*A. trigonocarpus*, *A. saralensis* Gontsch., *A. chorinensis*), slightly thickened, flush with or raised above the periclinal wall surface (Figures 2–4). The relief of the periclinal walls (PW) can be aveolate, stellate, pectinate, or rugose.

In all the studied species, two main types of seed surface ultrasculpture were observed: with a reticulate pattern of seed surface (Type 1) and with an indistinct reticulate surface (Type 2).

In Type 1 morphology, the primary sculpture of seeds is well defined and consists of isodiametric cells of the exotesta. Most species possess straight or slightly sinuous anticlinal walls. Thin, indistinct anticlinal walls are found in A. suffruticosus DC., A. stenoceras C.A. Mey., A. macroceras (sect. Dissitiflori DC.), A. tibetanus Benth. Ex Bunge (sect. Hypoglottidei DC.), and A. kolymensis Jurtzev. (sect. Hemiphragmium). Anticlinal walls are thick in three species of different sections: A. onobrychis L., A. angarensis, and A. chorinensis Bunge (Figures 2 and 3). A particular relief of anticlinal walls can be observed in A. arkalycensis, A. monophyllus Bunge, A. tephrolobus, A. ionae Palib., and A. politovii Krylov; in these species, welldefined anticlinal walls with a double-convex relief were observed, unlike the other species. The secondary level of sculpture is not easily distinguished.

In a small number of species, the seed surface had anticlinal walls with indistinct relief (Type 2) and welldefined secondary sculpture (Figure 4). Type 2 species displayed four types of secondary sculpture: stellatepectinate (*A. laguroides* Pall., *A. follicularis* Pall., *A. sulcatus* L., *A. inopinatus* Boriss., *A. lenensis* Shemetova, Schaulo et Lomon., *A. danicus* Retz., *A. agrestis* Douglas ex Hook., and *A. alpinus* L.), faveolate (*A. schanginianus*, *A. alopecurus*, and *A. propinquus*), rugose (*A. lupulinus* Pall., *A. testiculatus* Pall., *A. glycyphyllos* L., and *A. olchonensis*), and pectinate (*A. wolgensis*, *A. versicolor* Pall., and *A. kaufmannii* Krylov).

Surface characters are of little value within the sections and in some cases, seed sculpture was similar between

Figure 1. SEM-micrographs of seeds in species of the genus *Astragalus*: (A) *A. arkalycensis* (reniform–globose), (B) *A. depauperatus* (rombiform), and (C) *A. arbuscula* (oblong–elliptical).

sections. In all surveyed species of sections *Cystium* Bunge (*A. physocarpus* Ledeb.), *Uliginosi* Gray. (*A. schelichovii* and *A. uliginosus* L.), *Helmia* Bunge (*A. depauperatus*), *Heterodontus* Bunge (*A. dahuricus*), *Melilotopsis* (*A. tenuis* Turcz.), and *Orobella* Gray. (*A. norvegicus* Grauer and *A. politovii* Krylov), the primary sculpture is of isodiametric cells with a reticulate relief. Conversely, a reticulate pattern of seed surface was not seen in species of sections *Caprini* (*A. schanginianus* and *A. wolgensis*), *Craccina* (Stev.) Bunge (*A. sulcatus* L.), *Alopecuroidei* (*A. alopecurus*), *Glycyphyllos* (*A. glycyphyllos*), and *Komaroviella* (*A. alpinus*).

Various types of sculpture can be found in species of sections Laguropsis Bunge, Onobrychoidei, Trachycercis Bunge, Dissitiflori, Hypoglottidei DC., Cenantrum, Hemiphaca, and Hemiphragmium. Species with reticulate surface sculpture predominate among other species of these sections. The primary sculpture cannot be distinguished in some species, such as A. inopinatus (Onobrychoidei), A. testiculatus (Trachycercis), A. lenensis (Dissitiflori), A. danicus and A. agrestis (Hypoglottidei), A. propinquus (Cenantrum), A. versicolor and A. olchonensis (*Hemiphaca*), and *A. kaufmanni* (*Hemiphragmium*). Only *A. arkalycensis* Bunge of section *Laguropsis* exhibits a reticulate pattern of seed surface. The primary sculpture of the other three species (*A. laguroides*, *A. follicularis*, *A. lupulinus*) is indistinct.

Our data are consistent with those of other studies on seed surface sculpture in the Fabaceae. Similar types of seed surface sculpture in other species of *Astragalus* were described by Engel (1990), Ekici et al. (2005), and Vural et al. (2008), and were observed in species of the genus *Ebenus* L. (Bayrakdar et al., 2010). For the surveyed species, the authors noted reticulate, multireticulate, striate, and rugose seed patterns.

Our results indicate that seed shapes, colors, sizes, surface sculptures, and hilum positions are very diverse. Some characters seem to have systematic value, such as the types of seed surface, whereas others are apparently associated with particular habitats. However, the systematic importance of seed characters needs to be evaluated in a phylogenetic context. Unfortunately, there is still a lack of robust phylogenetic framework for *Astragalus*. In the

Table 2. Size and ultrasculpture of seed surface in Astragalus L.

Species	Seed length	Seed width	Seed shape	Seed surface sculpture
Sect. Caprini				
A. schanginianus	3.38 ± 0.21	3.49 ± 0.16	Reniform-globose	Faveolate
A. wolgensis	4.94 ± 0.03	3.29 ± 0.11	Reniform-globose	Pectinate
Sect. Laguropsis				
A. arkalycensis	2.64 ± 0.23	1.98 ± 0.14	Reniform-globose	Reticulate
A. laguroides	2.24 ± 0.09	1.88 ± 0.07	Reniform-globose	Stellate-pectinate
A. follicularis	2.66 ± 0.19	1.83 ± 0.07	Reniform-globose	Stellate-pectinate
A. lupulinus	3.01 ± 0.18	2.21 ± 0.21	Reniform-globose	Rugose
Sect. Craccina				
A. sulcatus	1.75 ± 0.36	1.21 ± 0.03	Reniform-globose	Stellate-pectinate
Sect. Cystium				
A. physocarpus	2.27 ± 0.07	1.77 ± 0.09	Reniform-globose	Reticulate
Sect. Uliginosi				
A. schelichovii	1.9 ± 0.21	1.3 ± 0.14	Reniform-globose	Reticulate
A. uliginosus	1.51 ± 0.14	1.59 ± 0.12	Reniform-globose	Reticulate
Sect. Helmia				
A. depauperatus	1.36 ± 0.06	1.4 ± 0.17	Rombiform	Reticulate
Sect. Onobrychoidei				
A. adsurgens	1.51 ± 0.11	1.29 ± 0.11	Reniform-globose	Reticulate
A. austrosibiricus	1.75 ± 0.17	1.54 ± 0.12	Reniform-globose	Reticulate
A. inopinatus	1.61 ± 0.12	1.65 ± 0.10	Reniform-globose	Stellate-pectinate
A. onobrychis	1.38 ± 0.05	1.25 ± 0.03	Rombiform	Reticulate
Sect. Tanythrix				
A. roseus	2.06 ± 0.02	1.59 ± 0.01	Reniform-globose	Reticulate
Sect. Trachycercis				
A. scaberrimus	1.63 ± 0.23	1.29 ± 0.19	Reniform-globose	Reticulate
A. testiculatus	1.65 ± 0.13	1.55 ± 0.11	Reniform-globose	Rugose
A. monophyllus	2.41 ± 0.19	1.76 ± 0.06	Reniform-globose	Reticulate
Sect. Dissitiflori				
A. angarensis	2.09 ± 0.13	1.36 ± 0.11	Oblong-elliptical	Reticulate
A. tephrolobus	$1.77 \pm 0,08$	1.38 ± 0.12	Rombiform	Reticulate
A. lenensis	2.16 ± 0.06	1.53 ± 0.13	Reniform-globose	Stellate-pectinate
A. ionae	2.59 ± 0.32	1.64 ± 0.21	Reniform-globose	Reticulate
A. suffruticosus	2.26 ± 0.13	1.58 ± 0.07	Reniform-globose	Reticulate
A. arbuscula	2.88 ± 0.29	1.44 ± 0.19	Oblong-elliptical	Reticulate
A. stenoceras	3.13 ± 0.11	1.09 ± 0.11	Oblong-elliptical	Reticulate
A. macroceras	2.44 ± 0.17	1.77 ± 0.09	Rombiform	Reticulate
Sect. Alopecuroidei				
A. alopecurus	3.75 ± 0.22	2.58 ± 0.021	Reniform-globose	Faveolate
Sect. Heterodontus				
A. dahuricus	1.27 ± 0.18	1.02 ± 0.03	Rombiform	Reticulate

Table 2. (Continued).

Sect. Hypoglottidei				
A. danicus	1.49 ± 0.27	1.13 ± 0.19	Reniform-globose	Stellate-pectinate
A. agrestis	1.37 ± 0.15	1.25 ± 0.17	Reniform-globose	Stellate-pectinate
A. cicer	2.31 ± 0.14	1.87 ± 0.07	Reniform-globose	Reticulate
A. tibetanus	2.1 ± 0.37	1.45 ± 0.026	Reniform-globose	Reticulate
Sect. Cenantrum				
A. frigidus	2.35 ± 0.19	2.01 ± 0.14	Reniform-globose	Reticulate
A. propinquus	3.63 ± 0.24	3.49 ± 0.13	Reniform-globose	Faveolate
A. membranaceus	2.53 ± 0.23	1.76 ± 0.21	Reniform-globose	Reticulate
A. saralensis	2.36 ± 0.15	1.66 ± 0.05	Reniform-globose	Reticulate
A. sericeocanus	3.49 ± 0.12	2.25 ± 0.08	Reniform-globose	Reticulate
Sect. Glycyphyllos				
A. glycyphyllos	2.06 ± 0.36	1.98 ± 0.17	Rombiform	Rugose
Sect. Hemiphaca				
A. macropterus	1.58 ± 0.19	1.25 ± 0.13	Reniform-globose	Reticulate
A. multicaulis	1.72 ± 0.09	1.66 ± 0.06	Rombiform	Reticulate
A. rytidocarpus	2.04 ± 0.11	1.12 ± 0.13	Reniform-globose	Reticulate
A. versicolor	1.51 ± 0.17	1.41 ± 0.11	Reniform-globose	Pectinate
A. bifidus	1.42 ± 0.21	1.07 ± 0.17	Reniform-globose	Reticulate
A. olchonensis	2.66 ± 0.28	1.55 ± 0.17	Oblong-elliptical	Rugose
Sect. Hemiphragmium				
A. chorinensis	2.13 ± 0.16	1.93 ± 0.09	Reniform-globose	Reticulate
A. kaufmannii	2.33 ± 0.07	2.26 ± 0.10	Reniform-globose	Pectinate
A. pseudoaustralis	2.43 ± 0.31	2.5 ± 0.23	Reniform-globose	Reticulate
A. tschuensis	2.27 ± 0.29	2.21 ± 0.27	Reniform-globose	Reticulate
A. vaginatus	2.36 ± 0.09	2.43 ± 0.03	Reniform-globose	Reticulate
A. trigonocarpus	2.42 ± 0.12	2.14 ± 0.13	Reniform-globose	Reticulate
A. kolymensis	2.57 ± 0.25	2.49 ± 0.18	Reniform-globose	Reticulate
Sect. Komaroviella				
A. alpinus	1.83 ± 0.12	1.42 ± 0.14	Reniform-globose	Stellate-pectinate
Sect. Melilotopsis				
A. tenuis	1.25 ± 0.17	0.88 ± 0.5	Reniform-globose	Reticulate
Sect. Orobella				
A. norvegicus	2.07 ± 0.19	1.66 ± 0.10	Reniform-globose	Reticulate
A. politovii	2.97 ± 0.26	2.43 ± 0.19	Reniform-globose	Reticulate

Mean value \pm standard deviation.

Figure 2. SEM-micrographs of seed surfaces in species of the genus *Astragalus*: (1) *A. arkalycensis*, (2) *A. physocarpus*, (3) *A. schelichovii*, (4) *A. uliginosus*, (5) *A. depauperatus*, (6) *A. adsurgens*, (7) *A. austrosibiricus*, (8) *A. onobrychis*, (9) *A. roseus*, (10) *A. scaberrimus*, (11) *A. monophyllus*, (12) *A. angarensis*, (13) *A. tephrolobus*, (14) *A. ionae*, (15) *A. suffruticosus*, (16) *A. arbuscula*, (17) *A. stenoceras*, and (18) *A. macroceras*. Scale bar is 30 µm.

Figure 3. SEM-micrographs of seed surfaces in species of the genus *Astragalus*: (1) *A. dahuricus*, (2) *A. cicer*, (3) *A. tibetanus*, (4) *A. frigidus*, (5) *A. sericeocanus*, (6) *A. macropterus*, (7) *A. multicaulis*, (8) *A. rytidocarpus*, (9) *A. bifidus*, (10) *A. chorinensis*, (11) *A. pseudoaustralis*, (12) *A. tschuensis*, (13) *A. vaginatus*, (14) *A. trigonocarpus*, (15) *A. kolimensis*, (16) *A. tenuis*, (17) *A. norvegicus*, and (18) *A. politovii*. Scale bar is 30 µm.

Figure 4. SEM-micrographs of seed surfaces in species of the genus *Astragalus*: (1) *A. wolgensis*, (2) *A. schanginianus*, (3) *A. laguroides*, (4) *A. follicularis*, (5) *A. lupulinus*, (6) *A. sulcatus*, (7) *A. inopinatus*, (8) *A. testiculatus*, (9) *A. lenensis*, (10) *A. alopecurus*, (11) *A. danicus*, (12) *A. agrestis*, (13) *A. propinquus*, (14) *A. glycyphyllos*, (15) *A. versicolor*, (16) *A. olchonensis*, (17) *A. kaufmannii*, and (18) *A. alpinus*. Scale bar is 30 µm.

future, an integration of seed morphology and molecular phylogenetics will lead to a better understanding of the evolutionary history of *Astragalus*.

Acknowledgments

We thank Colin Pendry for discussion and suggestions regarding some parts of the article. The study was financially supported by the scientific program 031220160005 (№

References

- Barthlott W (1981). Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspect. Nord J Bot 1: 345-355.
- Bayrakdar F, Aytaç Z, Suludere Z, Candan S (2010). Seed morphology of *Ebenus* L. species endemic to Turkey. Turk J Bot 34: 283-289.
- Ekici M, Yüzbaşıoğlu D, Aytaç Z (2005). Morphology, pollen, seed structure and karyological study on *Astragalus ovalis* Boiss. and *Balansa* (sect. *Ammodendron*) in Turkey. International Journal of Botany 1: 74-78.
- Engel T (1990). Dornenanatomie und Samenmikromorphologie der kleinasiatischen Vertreter der Gattung *Astracantha* Podl. Sowie der dornigen Arten der Gattung *Astragalus* L. (Fabaceae). In: Cramer J, editor. Dissertationes Botanic Band 151. Berlin, Germany: pp. 264-280 (in German).
- Heywood VH (1971). Scanning Electron Microscopy. Systematic and Evolutionary Applications. London, UK: Academic Press.
- Kaya A, Satıl F, Aslan M (2016). Seed morphology of the genus *Hyoscyamus* L. in Turkey and its systematic significance. Acta Microsc 25: 48-55.
- Lock JM, Schrire BD (2005). Tribe Galegeae. In: Lewis G, Schrire B, Machinder B, Lock M, editors. Legumes of the World. England: Royal Botanic Gardens, Kew, pp. 475-481.
- Lomonosova MN (2009). Morphology and ultrasculpture of the seed surface in the subfamily *Suaedoideae* (Chenopodiaceae). Botanical Journal 5: 736-744.

AAAA-A17–117012610055–3) of the Central Siberian Botanical Garden, SB RAS (field work in North Asia), and the Russian Science Foundation, project № 16–34–50284 (SEM microphotographing). The study was supported by the Tomsk State University competitiveness improvement program (revision in the herbaria LE, MO).

- Nikolaevskaja TS, Petrova LR (1989). Struktura perikarpija zernovki i cvetkovyh cheshuj zlakov. Nauka p. 87 (in Russian).
- Ovczinnikova SV (2007). Ultrasculpture of fruits in some genera of the tribes *Eritrichieae* (subtribe *Eritrichiinae*) and *Trigonotideae* (Boraginaceae). Botanical Journal 2: 228-240.
- Podlech D, Zarre S (2013). A taxonomic revision of the genus *Astragalus* L. (Leguminosae) in the Old World, Vol. 1. Vienna, Austria: Natural History Museum, pp. 1-822.
- Polhill RM (1981). Galegeae. In: Polhil RM, Raven PH, editors. Advances in legume systematics. Part 1. England: Royal Botanical Gardens, Kew, pp. 357-363.
- Shemetova TA (2014). Ultrasculpture of the seed surface of some species of the section *Xiphidium* Bunge genus *Astragalus* L. (Fabaceae). Turczaninowia 17: 154-164.
- Svetlova AA (2008). Ultrasculpture of the seeds and anatomical structure of seed coat in species of different sections of the genus *Linum* (Linaceae). Botanical Journal 11: 1760-1771.
- Tantawy M, Sayed F, Soad A, Ghalia T (2004). Seed exomorphic characters of some Brassicaceae (LM and SEM Study). Int j Agric Biol 1560: 821-830.
- Vural C, Ekici M, Akan H (2008). Seed morphology and its systematic implication for genus Astragalus L. sections Onobrychoidei DC., Uliginosi Gray and Ornithopodium Bunge (Fabaceae). Plant Syst Evol 274: 255-263.