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1. Introduction
Plants have to endure various abiotic and biotic stresses 
as they cannot move to favorable environments. Stresses, 
including salt, drought, cold, low nutrition, viruses, and 
other pathogen attacks, have a great impact on seed 
germination, seedling growth, photosynthesis, and 
biomass accumulation (Zhou et al., 2014). Fortunately, 
plants have acquired the ability to sense, deliver, and 
respond to stresses at the molecular, cellular, and 
physiological levels during evolution (Li et al., 2009). 
External stimuli could change the concentration of 
calcium ion (Ca2+), an acknowledged ubiquitous second 
messenger, which can be perceived by sensor proteins. 
Following sensing, a series of molecular, physiological, 
and biochemical reactions are triggered to cope with 
the stimuli. There are mainly three Ca2+ sensor protein 
families: calmodulins (CaMs), calcineurin B-like proteins 
(CBLs), and calcium-dependent protein kinases (CDPKs) 
(Snedden and Fromm, 2001). CBLs interact and activate 
CBL-interacting protein kinases (CIPKs), forming the 
CBL–CIPK complex, which could help plants cope with 
different stresses. Moreover, the CBL–CIPK module 
plays an important role in plant growth and development 
(Pandey, 2014; Zhang, 2015). 

Comparative analyses have provided detailed 
information of the structure and function of the CBL/
CIPK family in various plants. Recent studies identified 
10 CBLs and 26 CIPKs from Arabidopsis, 10 CBLs and 
33 CIPKs from rice (Oryza sativa) (Kolukisaoglu et al., 
2004; Xiang et al., 2007; Giong et al., 2015), 8 CBLs and 
43 CIPKs from maize (Zea mays) (Chen et al., 2011), 10 
CBLs and 27 CIPKs from poplar (Populus trichocarpa) 
(Yu et al., 2007; Zhang et al., 2008), 6 CBLs and 32 CIPK-
type kinases from sorghum (Sorghum bicolor) (Weinl 
and Kudla, 2009), 8 CBLs and 21 CIPKs from grape (Vitis 
vinifera) (Weinl and Kudla, 2009; Xi et al., 2017), 7 CBLs 
and 20 CIPKs from wheat (Triticum aestivum) (Sun et 
al., 2015), 5 CBLs and 15 CIPKs from eggplant (Solanum 
melongena) (Li et al., 2016), 7 CBLs and 23 CIPKs from 
canola (Brassica napus) (Zhang et al., 2014), 19 CBLs 
and 51 CIPKs from turnip (Brassica rapa var. rapa) (Yin 
et al., 2017), 41 CIPKs from diploid cotton (Gossypium 
raimondii and Gossypium arboreum) (Wang et al., 2016), 
25 CIPKs from cassava (Manihot esculenta) (Hu et al., 
2015), and 1 CBL and 5 CIPKs from the fern Selaginella 
moellendorffii (Weinl and Kudla, 2009), but only 1 CBL 
and 1 CIPK from several charophytes (Ostreococcus 
lucimarinus, Bathycoccus prasinos, Coleochaete orbicularis, 
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Klebsormidium flaccidum, Chaetospheridium globosum, 
Penium margaritaceum, and Chlorokybus atmophyticus) 
(Weinl and Kudla, 2009; Kleist et al., 2014). At the same 
time, the function of the CBL–CIPK system from different 
plants is further investigated widely and in depth. In this 
review, we focus on the function of the CBL–CIPK system 
in response to abiotic and biotic stresses and in plant 
growth and development.

2. The structure of CBLs and CIPKs
The C-terminus of CBL proteins contains two spherical 
regions, which are connected by a short connecting 
domain. The PFPF domain, which is the binding site of 
CIPKs, is also located at the C-terminus. Each CBL protein 
contains four aligned and spaced high-affinity calcium 
binding EF-hand domains. Based on the number of typical 
EF-hand sites, 10 Arabidopsis CBL proteins are divided 
into three groups: the group with two typical sites (CBL1 
and CBL9), the group with one typical site (CBL8 and 

CBL10), and the group with no typical sites (CBL2, CBL3, 
SOS3, CBL5, CBL6, and CBL7). Each binding site consists 
of 12 relatively conserved amino acids (Batistic and Kudla, 
2009; Sánchez-Barrena et al., 2013). In addition to EF 
hands, another notable structural feature of CBL proteins 
is the presence of the N-terminal sequence of palm 
acylation and cardamom acylation sites that participate 
in subcellular localization of the CBL–CIPK complex 
(Batistic et al., 2008).

The molecular structure of CIPKs includes an 
N-terminal catalytic domain and a C-terminal regulatory 
domain. The catalytic domain is a typical serine/threonine 
protein kinase domain, similar to the SNF1 protein kinase 
domain, containing an ATP binding site and an activation 
loop, which could phosphorylate downstream proteins, 
such as transporters, transcription factors (TFs), channels, 
enzymes, and phosphatases (Figure 1). The regulatory 
domain is functionally and structurally divided into a 
21-amino-acid FISH (also known as NAF) domain and 

Figure 1. General structure of the Ca2+ sensor protein calcineurin B-like (CBL) 
proteins and CBL-interacting protein kinases (CIPKs).
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a PPI region (Figure 1), which is a domain necessary for 
mediating interactions between CIPKs and CBLs (Guo et 
al., 2001).

3. Salt stress
Salt stress is caused by high concentrations of salt in soil. 
Plants respond to salt stress by restricting Na+ uptake 
to maintain the cellular ion homeostasis (Tester and 
Davenport, 2003). The salt overly sensitive (SOS) pathway, 
SOS3/CBL4-SOS2/CIPK24-SOS1, was first identified in 
Arabidopsis (Wu et al., 1996; Liu and Zhu, 1997; Liu and 
Zhu, 1998; Zhu et al., 1998; Halfter et al., 2000; Quintero 
et al., 2002). The structure, function, and mechanism of 
this pathway are well elucidated (Lu et al., 1998; Ishitani 
et al., 2000; Shi et al., 2000; Elphick et al., 2001; Qiu et al., 
2002, 2004; Zhu, 2002; Gong et al., 2004; Guo et al., 2004; 
Sanchez-Barrena, 2005, 2007; Quan et al., 2007; Fujii and 
Zhu, 2009; Ye et al., 2013). The CBL4–CIPK24 complex 
activates SOS1, which is a Na+/H+ antiporter located in 
the plasma membrane (Figure 2a). The activated SOS1 
could pump redundant Na+ back into soil (Zhu, 2003). As 
mentioned by Thoday-Kennedy et al. (2015), a number 
of SOS pathway members have been identified. Recently, 
another SOS pathway, SiCBL4–SiCIPK24, has been 
verified to be involved in salt stress tolerance in foxtail 
millet (Setaria italica) (Zhang et al., 2017).

Besides CBL4, CBL1 and CBL10 can also recruit 
SOS2/CIPK24 to plasma and the vacuole membrane, 
respectively, under salt stress (Kolukisaoglu et al., 2004; 
Kim et al., 2007; Quan et al., 2007). The complexes CBL4–
CIPK24 and CBL10–CIPK24 protect roots and shoots 
from salt stress, respectively (Quan et al., 2007). CIPK24 
can also regulate the vacuolar Na+/H+ exchange (AtNHX) 
by interacting with a vacuolar membrane-localized CBL 
protein (Qiu et al., 2004). Therefore, we speculate that the 
CBL10–CIPK24 complex can activate AtNHX (Figure 2a). 
Formation of the CBL2/CBL3–CIPK21 complex in the 
vacuolar membrane is enhanced by salt stress. The complex 
may target unknown Na+-channels/transporters (Pandey 
et al., 2015). Overexpression of CIPK6 and CIPK16 in 
Arabidopsis improves salt tolerance and knockdown of 
CIPK14 and CIPK16 attenuates tolerance to salt stress (Xu 
et al., 2008; Tripathi et al., 2009; Chen et al., 2013; Roy et 
al., 2013). 

Many studies describe the roles of CIPK genes in 
salt tolerance from other plant species. Li et al. (2012) 
demonstrated that HbCIPK2 regulates salt tolerance 
by maintaining K+/Na+ homeostasis in Hordeum 
brevisubulatum. Overexpression of MdCIPK6L confers 
tolerance to salt, drought, and chilling in transgenic tomato. 
The interaction between MdCIPK6L and SOS3 indicates 
that MdCIPK6L may be involved in the SOS pathway 
(Wang et al., 2012). Autophosphorylation of cowpea 

(Vigna unguiculata (L.) Walp.) VuCIPK1, a homologue 
of CIPK3, is induced by sodium chloride, suggesting that 
CIPK3 is involved in salt tolerance regulation (Imamura 
et al., 2008). The TaCBL3–TaCIPK29 complex plays a 
positive role under salt stress by regulating transporter 
genes and the antioxidant system in wheat (Deng et al., 
2013). PeCBL1 interacts with PeCIPK24, PeCIPK25, and 
PeCIPK26 to maintain the homeostasis of the Na+/K+ ratio 
in Populus euphratica (Zhang et al., 2013). Overexpression 
of AmCBL1 from Ammopiptanthus mongolicus improves 
the tolerance of salt and heat in transgenic tobacco (Chen 
et al., 2011). PeCBL1 and AmCBL1 are homologous genes 
of CBL1, and they show similar functions in drought, 
salt, and cold stress (Albrecht et al., 2003; Yong et al., 
2003). Overexpression of SjCBL1 from Sedirea japonica 
in Arabidopsis cbl1 mutant not only complements the 
hypersensitive phenotype to salt and osmotic stress, but 
also significantly enhances tolerance to salt and osmotic 
stress (Cho et al., 2018). It is demonstrated that the 
BnCBL1–BnCIPK6 complex is required in salt stress in 
Brassica napus (Chen et al., 2012). 

4. Low N/P/K stress 
Nitrogen is a key limiting factor in plant growth. Nitrate 
(NO3

–) is the main nitrogen source for plants. At present, 
the molecular mechanism of NO3

– signal transduction has 
been revealed in Arabidopsis. Three nitrate transporter 
families, NRT1, NRT2, and CLC, have been identified in 
Arabidopsis (De Angeli et al., 2009). Among them, four 
plasma membrane-localized transporter members of the 
NRT1 and NRT2 families absorb NO3

– in root cells (Tsay 
et al., 1993). NRT1.1 (CHL1) is an amphiphilic transporter 
and NRT1.2 is a low affinity transporter. CHL1 shows 
high affinity for nitrates when the threonine residue at 
position 101 (T101) is phosphorylated; otherwise, it has 
low affinity for nitrates when dephosphorylated; NRT2.1 
and AtNRT2.2 are high affinity transporters (Li et al., 
2007; Ho et al., 2009). The Arabidopsis CBL1/9-CIPK23 
complex mediates the phosphorylation of CHL1 (Figure 
2d), thereby responding to nitrate at a high affinity level 
(Vert and Chory, 2009). Transcriptome studies show that 
CIPK8 acts as a positive regulator in nitrate low-affinity 
responses under low nitrogen stress (Hu et al., 2009).

Chen et al. (2012) reported that the expression 
of BnCBL1 and BnCIPK6 is upregulated under low-
phosphorus conditions. Yeast two-hybrid results show 
that the two proteins interact with each other. Under 
low phosphorus conditions, Arabidopsis thaliana plants 
overexpressing BnCBL1 or BnCIPK6 show more vigorous 
lateral root growth and more biomass accumulation than 
wild type. Therefore, BnCBL1 and BnCIPK6 may be 
involved in plant response to low phosphorus stress.
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Potassium ion (K+) is one of the most abundant cations 
in plant cells and has important physiological functions 
in organisms. Potassium acquisition, redistribution, and 
homeostasis are mainly regulated by potassium channels 
and secondary potassium transporters (Xu et al., 2006). 
Many studies describe the link between the CBL–CIPK 
system and potassium channels and transporters. Almost 
at the same time, two studies reported that the CBL1/9–
CIPK23 complex interacts and phosphorylates AKT1 
(Figure 2b), an inward K+ channel taking up K+ under 
low-K+ conditions (Li et al., 2006; Xu et al., 2006). Cheong 
et al. (2007) confirmed that the pathway exists in both roots 
and stomatal guard cells. Lee et al. (2007) also examined 
other CBL–CIPK complexes (CBL1/2/3/9-CIPK6/16/23) 
that interact with AKT1. Furthermore, AIP1 negatively 
regulates the activity of AKT1 (Lee et al., 2007; Lan et al., 
2011). However, instead of the CBL–CIPK complex, Ren 
et al. (2013) found that CBL10 regulates the AKT1 activity 
directly. The activity of another potassium channel, 
AKT2, is regulated by CBL4–CIPK6 through mediating 
translocation from the endoplasmic reticulum membrane 
to the plasma membrane (Figure 2b) (Held et al., 2011). 
CIPK9 and CIPK23 are also reported to be involved in 
low K+ stress (Pandey et al., 2007; Xue et al., 2016). The 

upstream component of CIPK9 in low K+ regulation is 
CBL3, since CIPK9 interacts with CBL3 in Arabidopsis 
mesophyll protoplasts by BiFC assays, overexpression 
of CIPK9 and CBL3 exhibits a similar low K+-sensitive 
phenotype, and cbl3 and cipk9 mutants show a similar low 
K+-tolerant phenotype (Liu et al., 2013). By interacting with 
CBL1/8/9/10, CIPK23 activates HAK5 (Figure 2b), a high-
affinity K+ transporter (Ragel et al., 2015). The relationship 
between CBL–CIPK complexes and K+ channels is also 
uncovered in other plants. Zhang et al. (2010) isolated 
two shaker-like potassium channels PeKC1 and PeKC2 
in Populus euphratica, which could complement the 
Arabidopsis akt1 mutant and could be phosphorylated by 
PeCIPK10, PeCIPK17, and PeCIPK24. Similarly, Cuéllar 
et al. (2013) identified a K+ channel VvK1.2 from grape 
(Vitis vinifera), which could be activated by the VvCBL01–
VvCIPK04 and VvCBL02–VvCIPK03 complex. 

5. Cold stress
To date several studies have revealed the association 
between the CBL–CIPK system and cold stress. Cheong 
et al. (2003) demonstrated that CBL1 negatively regulates 
the cold stress response. Huang et al. (2011) discovered 
that the expression of CIPK7 is influenced by CBL1 under 

Figure 2. Schematic representation of the functions of calcineurin B-like (CBL) proteins interacting with CBL-interacting protein 
kinases (CIPKs) in regulating plant (Arabidopsis) response to abiotic stress. a, high Na+; b, low K+; c, high Mg2+; d, low N; e, high pH; f, 
cold stress.
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cold stress. Both in vitro and in vivo interactions between 
CBL1 and CIPK7 indicate that the CBL1–CIPK7 complex 
may play an important role in cold stress response 
(Figure 2f) (Huang et al., 2011). The expression of cold- 
and salt-responsive genes (such as RD29A, KIN1, and 
KIN2) is different between wild type and cipk3 mutant, 
suggesting CIPK3 may be involved in the regulation of 
cold stress response (Kim et al., 2003). In other plants, 
overexpression of MdCIPK6L confers tolerance to chilling 
stress in transgenic tomato (Wang et al., 2012). Ectopic 
expression of BdCIPK31 improves ROS detoxification and 
osmoprotectant biosynthesis in transgenic tobacco under 
cold stress (Luo et al., 2018). 

6. Drought stress
Very few CBLs and CIPKs are implicated in drought 
stress. In Arabidopsis, only CBL1 and CBL5 are proven 
positive regulators in drought stress (Albrecht et al., 
2003; Cheong et al., 2003, 2010). In rice, suppression of 
OsCIPK23 expression leads to hypersensitive response to 
drought stress, but enhanced cold resistance is found in 
OsCIPK23-overexpressing plants. Moreover, expression 
induction of drought-related genes is also observed in 
OsCIPK23-overexpressing plants (Yang et al., 2008). In 
wheat (Triticum aestivum), heterologous expression of 
TaCIPK2, TaCIPK23, or TaCIPK27 enhances the drought 
resistance of the transgenic plants in an ABA-dependent 
pathway (Wang et al., 2016, 2017; Cui et al., 2018). In 
addition, overexpression of BdCIPK31 in tobacco reduces 
water loss under dehydration conditions and maintains 
the homeostasis of Na+/K+ and root K+ loss under salt 
stress (Luo et al., 2017). MdCIPK6L from apple (Malus 
domestica), a homologue of CIPK6, plays a positive 
regulatory role in drought stress responses in transgenic 
tomato plants (Wang et al., 2012). 

7. High Mg and pH stress
An adequate and balanced supply of mineral nutrients is 
essential for plant growth and development. Magnesium 
(Mg2+) is essential for chlorophyll synthesis, enzyme 
activation, and cation balance (Gao et al., 2015). However, 
a high level of Mg2+ in soil does harm plants. Tang et 
al. (2015) demonstrated that the Arabidopsis cbl2cbl3 
double mutant and cipk3cipk9cipk23cipk26 quadruple 
mutant plants retain lower Mg2+ content than WT under 
normal and high Mg2+ conditions and exhibit similar 
Mg2+ hypersensitivity phenotypes. However, the two 
double mutants cipk9cipk23 and cipk3cipk26 show slight 
sensitivity to a high level of Mg2+. Furthermore, CBL2/
CBL3 could recruit CIPK3/CIPK9/CIPK23/CIPK26 on 
the vacuole membrane. It is speculated that the CBL2/
CBL3–CIPK3/CIPK9/CIPK23/CIPK26 complex targets 
tonoplast-localized Mg2+ transporters, which contribute to 
vacuolar Mg2+ uptake (Figure 2c) (Tang and Luan, 2017). 

Plant cells are under changing pH conditions. They use 
phosphorylation and dephosphorylation of H+-ATPase 
to regulate the concentration changes of intracellular 
and extracellular ions. The CBL2–CIPK11 complex can 
phosphorylate the plasma membrane H+-ATPase AHA2 
at Ser-931. Phosphorylation inhibits the activity of AHA2 
(Figure 2e) and then impedes the interaction with 14-3-
3 proteins, resulting in loss of capacity of 14-3-3 proteins 
to transport protons. However, in the cipk11 mutant, the 
dephosphorylated AHA2 interacts with 14-3-3 proteins 
and enhances the ability of 14-3-3 proteins to transport 
protons, thus promoting intracellular H+ efflux (Fuglsang 
et al., 2007). It is reported that J3, a chaperone, can interact 
with and repress the kinase activity of CIPK11 and then 
activate the activity of AHA2 (Yang et al., 2010). 

8. Conclusion and future prospects
In summary, the structure and interaction mechanism of 
CBL and CIPK have been extensively elaborated. Great 
progress has been made in functional studies on the 
effects of CBL and CIPK single proteins and complexes 
on different physiological processes. The research mainly 
focuses on salt and cold tolerance, nutrient element 
deficiency, and pH stress as shown in the Table. Recently, 
several articles report that the CBL–CIPK complex plays 
important roles in biotic stress resistance (Liu et al., 2017, 
2018; Sardar et al., 2017), but the mechanism is still far 
from understood. In addition to the responses to abiotic 
and biotic stresses, CBL–CIPK also plays important roles 
in flower development (Yang et al., 2008; Yuasa et al., 2012; 
Park et al., 2013), pollen tube germination and growth 
(Mahs et al., 2013), and root growth and seed development 
(Tripathi et al., 2009; Piao et al., 2010; Zhao et al., 2011). 
These studies are mainly conducted in Arabidopsis. In other 
plant species, the research on the CBL and CIPK family 
is still in its infancy, and the interaction and expression 
analyses between them are very limited. 

Future research should focus on the mechanisms 
of interaction between CBLs and CIPKs, identifying 
components in the respective signaling pathways and 
analyzing the genetic functions, which will enable us to 
better understand how plants respond to abiotic stresses. 
The availability of whole genome sequences of more and 
more species and the advancement of more technologies 
and methodologies will contribute to the study of the 
evolution, functional diversity, and interaction networks 
of CBL–CIPK complexes (Zhou et al., 2014). Therefore, 
challenges in the future are not only in the functional 
analysis but also in the clarification of the details of 
synergistic effects and the molecular mechanism of the 
complex regulation of target proteins. 

Therefore, comprehensive analysis and identification 
of plant CBL–CIPK signal components and signaling 
pathways of plant response to stresses, particularly the 
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excavation of special habitats of plant CBL–CIPK signal 
components, will provide important insights into quickly 
and efficiently improving plant stress tolerance through 
genetic engineering in combination with molecularly 
designed breeding strategies.
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Table. Summary of the function of CBLs, CIPKs, and CBL–CIPK complexes.

Gene or CBL–CIPK 
complex Localization Substrate Function

CBL1 plasma membrane 
positively regulates drought and salt stress, 
negatively regulates cold stress (Albrecht et al., 
2003; Cheong et al., 2003; Batistic et al., 2010)

CBL1–CIPK7 ? ? negatively regulates cold stress
(Huang et al., 2011)

CBL1/9–CIPK1 plasma membrane ? ABA-dependent and ABA-independent stress 
responses (Angelo et al., 2006)

CBL1/9–CIPK23 plasma membrane AKT1 K+ uptake and transport (Cheong et al., 2007;
Li et al., 2006; Xu et al., 2006)

CBL1/8/9/10–CIPK23 ? HAK5 mediates high-affinity K+ uptake in Arabidopsis 
roots (Ragel et al., 2016)

CBL2–CIPK11 plasma membrane AHA2
negatively regulates the activity of plasma 
membrane H+-ATPase, AHA2
(Fuglsang et al., 2007; Yang et al., 2010)

CBL2/3–CIPK9 tonoplast ? function in K+ homeostasis under low-K+ stress 
(Liu et al., 2013)

CBL2/3–CIPK3/9/23/26 tonoplast unknown tonoplast-localized 
Mg2+ transporters

protects plants from high Mg2+ poison
(Tang et al., 2015)

CBL4–CIPK6 plasma membrane AKT2
mediates endoplasmic reticulum to plasma 
membrane translocation of AKT2
(Held et al., 2011)

CBL4–CIPK24 plasma membrane SOS1
known as SOS pathway, response to salt stress 
and control long-distance Na+ transport from 
root to shoot (Lin et al., 2009; Qiu et al., 2002)

CBL5 cytoplasm and 
nucleus ?

functions as a positive regulator of salt or 
drought responses (Batistic et al., 2010;
Cheong et al., 2010)

CBL10–CIPK24 plasma membrane SOS1 functions mainly in the shoot response to salt 
toxicity (Quan et al., 2007)

CIPK6 nucleus, cytoplasm, 
and cytosol ?

positively regulates salt stress as well as root 
development (Chen et al., 2013; Tripathi et al., 
2009)

CIPK8 ? ? involved in the low-affinity system
(Hu et al., 2009)

CIPK16 ? ? positively regulates salt stress
(Roy et al., 2013)

CIPK23 protoplast CHL1 response to low nitrate concentrations
(Ho et al., 2009)
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