
358

http://journals.tubitak.gov.tr/botany/

Turkish Journal of Botany Turk J Bot
(2019) 43: 358-365
© TÜBİTAK
doi:10.3906/bot-1809-27

* Correspondence: chenxiajlu@163.com

1. Introduction
In the present study, we discovered a unique wrinkle 
surface morphology on helical cell wall thickenings. Cell 
wall thickening is the most important character of botanical 
vessel cells. Cell wall thickening in different tissues shows 
varied surface morphology, such as parallel cellulose fibrils 
in Zinnia elegans leaves (Lacayo et al., 2010) and cellulose 
lamellas in wheat straw stems (Yu et al., 2005). However, 
there are still undiscovered surface morphologies of cell 
wall thickenings. The various morphologies are caused 
by different cellulose synthases’ release, arrangement, 
movement, direction, and lifetime (Wightman and Turner, 
2008). Additionally, different types of cellulose synthases 
can cause different cellulose microfibril structures (Kumar 
et al., 2018).

Wall thickening is a specific cell wall that is widely 
present in tracheary elements. The cell wall outside the 
plant cell membrane usually includes two types: the 
primary cell wall and the secondary cell wall. The primary 
cell wall is a thin layer, whereas the secondary cell wall 
inside the primary cell wall provides more mechanical 
support for cells. Tracheary elements exist in vascular 
plants. Tracheary elements lack contents at maturation 
and transport water for tissues as hollow pipes, utilizing 
wall thickenings as skeletons to hold the outside primary 
cell wall (Rudall, 2007).

Wall thickenings contain cellulose, hemicellulose, 
pectin, and lignin. Cellulose is the skeleton and the 

other components resemble concrete which enwraps the 
cellulose. Wall thickenings increase the surface area and 
promote water conduction (Monniaux and Hay, 2016). 
Pectin is hydrophilic (Bagniewska-Zadworna et al., 2014). 
The cellulose microfibrils in the lignified secondary 
thickening are typically oriented in a preferred direction, 
causing cell walls to be mechanically anisotropic (Nelson 
et al., 2012). 

Helical wall thickenings are most commonly found 
in vessel elements (a type of tracheary element) and can 
mechanically stabilize the tissue, allowing the maximal 
uptake of water (Leroux et al., 2011). The organization 
of cellulose in helical wall thickenings is due to the 
movement of cellulose synthesis complexes (CSCs). In the 
plasma, CSCs are transported by actin and secreted by the 
Golgi apparatus (Derbyshire et al., 2015; Watanabe et al., 
2015). When CSCs reach the right position determined 
by microtubules (Wightman and Turner, 2008), they fuse 
outside the membrane and move to produce cellulose 
along the helical direction of the microtubules (Roberts 
et al., 2004; Vukašinović et al., 2017). Wall thickenings in 
different types of tissues show various patterns of cellulose 
microfibrils (Yu et al., 2005; Lacayo et al., 2010), which 
may be related to the functions of the different tissues.

In the present study, we researched the helical vessel 
elements in the lilac (Syringa oblata Lindl.) style. The 
style is a specialized tissue that interacts with the pollen 
tube and facilitates its access to the female gametophyte 
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in angiosperms (Williams et al., 2010). It contains the 
stigma and transmitting tissues. During angiosperm 
reproduction, pollen grains that are germinated on the 
stigma surface form a pollen tube that grows through the 
transmitting tissues to the ovule micropyle (Palanivelu 
et al., 2003). The style is a fragile and short-lived tissue 
(Gotelli et al., 2017) which grows and wilts fast, within no 
longer than 2 weeks. The helical thickening vessel is the 
only tissue to provide water for the stigma, transmitting 
tissue, female gametophyte, and pollen tube. Additionally, 
helical thickening vessels are the only mechanical tissue in 
the lilac style.

We discovered a unique wrinkled surface morphology 
on the helical cell wall thickenings of vessels in the short-
lived lilac style. We studied the structures of the wrinkles 
and attempted to explain the developmental mechanism 
of the wrinkles. The wrinkles were composed of orderly 
organized crystalline and amorphous cellulose. The style 
morphology is different from the wall thickenings in other 
tissues (e.g., leaves, stems, and pollen). The special wrinkle 
structures were caused by regularly arranged cellulose 
microfibrils. The results might relate to the process of 
cellulose production in helical thickening vessels. The 
strange structure of the helical vessel in the lilac style 
might also be related to the fast growth of the style.

2. Materials and methods 
2.1. Materials
The pistil of lilac (Syringa oblata) was treated thoroughly 
using a combination of methods to remove pectin, lignin, 
and other noncellulosic substances completely. The details 
of the purification method have been presented previously 
(Kataoka and Kondo, 1998; Liu et al., 2005; Yu et al., 2005). 
To describe it here shortly, each sample was immersed 
in chloroform–ethanol (1:1, v/v) overnight and then 
transferred into acetone to replace the residual chloroform 
and ethanol. After the acetone was replaced by distilled 
water, the sample was subjected to water extraction at 90 °C 
for 6 h. The sample was then treated with 0.5% ammonium 
oxalate at 70 °C for another 6 h. It was then extracted twice 
with 0.3% dodecyl sulfate for 12 h and with an aqueous 
solution of 50% urea for another 12 h at room temperature. 
The sample was subjected to bleaching at 80 °C for 4 h 
in a 0.3% sodium chlorite (NaClO2) aqueous solution 
buffered with acetic acid at pH 4.9. The helical vessels were 
isolated from the sample with needles under a microscope. 
The dispersed vessel was then transferred into tert-butyl 
alcohol and freeze-dried on a fresh cleaved silicon surface 
for AFM and SEM analysis. All treatments described above 
were achieved by gently shaking. The primary cell wall was 
digested with 2% snail enzyme in 0.1M phosphate buffered 
saline (PBS) (pH 7.2) at 30 °C for 1 h. The reagents were all 
purchased from Sigma-Aldrich (St. Louis, MO, USA). 

2.2. Scanning electron microscopy (SEM) analysis
SEM analysis was performed with a Quanta 200 SEM (FEI, 
Hillsboro, OR, USA), operated at 15 kV. The freeze-dried 
samples were coated with gold using an IB-3 incoater 
(Eiko, Ibaraki, Japan). 
2.3. Atomic force microscope (AFM) analysis
Tapping-mode AFM images were obtained by using 
a NanoScope III Multimode AFM (Vecco/Digital 
Instruments, Santa Barbara, CA, USA). Both topographic 
and phase images were recorded simultaneously. Silicon 
cantilever tips with a resonance frequency of approximately 
300 kHz and a spring constant of about 32 N/m were used. 
2.4. Laser confocal microscope
The method visualizing orientation of cellulose is based 
on the fluorescence dichroism of Congo red (Wood, 1980; 
Verbelen and Kerstens, 2000; Kerstens and Verbelen, 
2003). Cellulose microfibrils in helical cell wall thickenings 
were stained with a 1% aqueous solution of Congo Red 
(Sigma-Aldrich, St. Louis, MO, USA) at 37 °C for 30 min. 
The dyed samples were rinsed with water and studied with 
a laser confocal microscope (Olympus FV300, Tokyo, 
Japan) equipped with a coaxial rotating table. For all 
observations, the 514 nm line of the laser source was used. 
A polarizing filter was inserted into the exciting beam such 
that the vector of the exciting beam was vertical on the 
microscope monitor.
2.5. Fourier transform infrared spectroscopy (FTIR) 
analysis
The samples (1 mg) and potassium bromide (100 mg) 
were mixed using a mortar and pestle, and thereafter 
pressed into a transparent disk. The disk was analyzed 
with a Nicolet 5700 FTIR spectrometer (Thermo Fisher 
Scientific, Madison, WI, USA) in the absorbance mode 
with a resolution of 1 cm–1 in the range 4000–400 cm–1.

3. Results
The surface morphology of cell wall thickenings is caused 
by the arrangement of the cellulose. Cell wall thickening 
usually includes cellulose and noncellulosic components. 
Cellulose is the skeleton of the cell wall thickening. Lignin, 
hemicellulose, and pectin enclose the cellulose skeleton 
and interfere with examination of the surface. Thus, to 
identify the wrinkled surface on the cell wall thickening, 
we removed the noncellulosic components. FTIR was used 
to examine the elimination effect (Figure 1). FTIR showed 
that there were no other cell wall ingredients except for 
cellulose.

The characteristic bands of lignin at approximately 
1500 cm−1 (K.V. Sarkanen, 1971) and hemicellulose at 
1600 cm–1 (Horikawa and Sugiyama, 2008; Abdul Khalil et 
al., 2010) were not found using FTIR. The peaks assigned 
to the esterified carboxyl groups in pectin at 1734 cm−1 

(Ninan et al., 2013) were also not observed. Therefore, the 
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noncellulosic components had been removed properly. The 
generally accepted characteristic FTIR bands for cellulose 
were monitored as follows: 3317 cm–1 for intrachain 
hydrogen-bond bonds, 1424 cm–1 for CH2 scissoring 
vibrations, 1374 cm–1 for C-H skeletal bending of CH3, 1317 
cm–1 for the CH2 wagging observed in crystalline cellulose, 
and 1156 and 895 cm–1 for the C–O–C movement of the β 
glycoside linkage (Mary and Robert, 1964; Kacurakova et 
al., 2000; Marechal and Chanzy, 2000; Carballo-Meilan et 
al., 2014). The wrinkle structure was completely formed of 
cellulose.

The wall thickening of vessels in the lilac style formed 
a helix (Figure 2a). The vessels were all dead cells and 
transported water for the pistil and pollen tube. The 
diameters of the vessels in the lilac style were 5–7 μm. The 
dead vessels included the primary cell wall on the outside 
and cell wall thickenings under the primary cell wall. The 
width of the helical wall thickenings was between 1200 
and 1500 nm. 

The wrinkled surface that was found existed on the 
cell wall thickening. When noncellulosic components 
have been removed properly, the wrinkled surface can 
be observed by AFM and SEM (Figures 2b, 3a, and 3b). 
The wrinkles can be found on the surface of the cell wall 
thickening. The primary cell wall showed a smooth surface 
without the wrinkled surface. More than 20 samples were 
tested, and the wrinkled surface of the cell wall thickening 
were found in each sample.

To see the wrinkled surface of the secondary wall 
thickening more clearly, we used snail enzyme to 
hydrolyze the cell wall. Snail enzyme can nonselectively 
damage cellulose including the primary cell wall and 
wall thickenings. The primary cell wall was more easily 

hydrolyzed (Figure 3a). When abundant primary cell 
walls were absent, the spatial helix was hard to maintain 
(Figure 4a). Although hydrolysis on the surface of the 
secondary cell wall thickening was impossible to avoid, 
wrinkles on the wall thickening with partial hydrolysis 
were illuminated more clearly (Figures 3b and 4b). 

The wrinkled surface was composed of orderly 
organized cellulose. The width of the wrinkles was 
measured after enzyme hydrolysis. The width was between 
172 nm and 244 nm, with a mean of 207 nm (Figure 
4b). The width corresponded to the crystals of cellulose 
microfibrils in previous studies (Nishiyama et al., 2003; 
Alemdar and Sain, 2008; Elazzouzi-Hafraoui et al., 2008; 
Habibi et al., 2010; Lavoine et al., 2012; Nishiyama et al., 
2012).

To determine the arrangement orientation of cellulose 
in the wrinkled surface, the molecular orientations were 
tested using Congo Red. The molecular orientation of 
cellulose is the growth orientation of cellulose that is 
produced by cellulose synthase complexes. The fluorophore 
Congo Red typically binds to the β 1-4 glucans of cellulose 
(Wood, 1980). When bound to cellulose, the average dipole 
moment of Congo Red can lie parallel to the orientation 
of the cellulose microfibril (Verbelen and Kerstens, 2000). 
The fluorescence of Congo Red is at a maximum when 
the vector of the exciting laser of a confocal microscope 
is parallel to the microfibril orientation, and it is at a 
minimum when the vector of the laser is perpendicular to 
the microfibrils (Kerstens and Verbelen, 2003). In Figure 
5, the orientation of the polarization vector is indicated 
by arrows. Fluorescence was false color-coded to show 
fluorescence intensity, where red indicated the highest 
fluorescence intensity and blue showed the lowest. The 
vessels had a cellulose orientation parallel to the tangential 
direction of the spiral line. The cellulose in the wrinkled 
surface was perpendicular to the grooves in the wrinkles.

The arrangement of cellulose microfibrils in the wrinkle 
structure was tested by AFM. The wrinkled surface formed 
a ridge–groove structure on the cell wall thickenings 
(Figures 3b and 4b). A 3D representation showed 
concave grooves between convex ridges (Figure 4c). The 
direction of the cellulose microfibril was perpendicular 
to the grooves and ridges. Conformation of cellulose in 
the ridges was apparent in the phase image (Figure 4d). 
In this image, lighter regions corresponded to crystalline 
regions with higher stiffness; these regions were associated 
with aggregative cellulose (Zimmermann et al., 2006). The 
crystalline cellulose all aggregated in the convex ridge. The 
darker areas in the image were composed of amorphous 
regions, which had lower density and more disordered 
cellulose. The groove was composed of amorphous 
cellulose with an average width of approximately 10 nm. 
The ridge mainly comprised aligned crystalline regions. 
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Figure 1. FTIR spectra of the cell wall thickenings treated to 
remove noncellulosic substances. FTIR was used to examine 
the components of the sample. Only the characteristic bands 
of cellulose were found. There were no characteristic bands of 
noncellulosic components, such as pectin, hemicellulose, and 
lignin. Thus, the sample contained cellulose without noncellulosic 
components. The wrinkle structures were formed by cellulose.
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Figure 2. The wrinkled surface of helical cell wall thickening with primary cell wall. Before the snail 
enzyme digestion, both primary cell wall and secondary cell wall thickenings were integrated. (a): the 
samples were tested with SEM. (b): the samples were observed with AFM. The wrinkles (black arrow) 
existed on the cell wall thickenings. The primary cell wall showed a smooth surface without wrinkles. 
Because the primary cell wall was above the secondary thickenings, the wrinkles of the cell wall 
thickenings observed with AFM were indistinct. 

Figure 3. The wrinkled surface of helical cell wall thickening with partially digested primary cell wall. 
The samples had been treated with snail enzyme. Part of primary cell wall had been digested. (a): the 
samples were tested with SEM. (b): the samples were observed with AFM. Compared with the samples 
before enzyme digestion, the wrinkles (black arrow) on thickenings were illuminated more clearly. It 
was proved that the wrinkles existed on the thickenings, not on the primary cell wall. 
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In the ridge, the adjacent crystalline regions of microfibrils 
were arranged in sequence and were parallel to each other. 
The crystalline cellulose was approximately 207 nm in 
average length and 66 nm in average width. 

4. Discussion
Wrinkles on the surface of cell wall thickenings are a special 
topology of cellulose crystal. The crystalline microfibrils in 
the lilac style were arranged more regularly than those in the 
common secondary cell wall (Yu et al., 2005; Lacayo et al., 

2010). The convex ridges of the wrinkles were composed of 
orderly crystalline cellulose. The grooves were amorphous 
cellulose and the molecular orientation of the cellulose 
was consistent with the direction of helix wall thickenings. 
Thus, we have attempted to determine and discuss how the 
wrinkles developed in the lilac style.

Previous studies have proven that the construction 
of secondary cell walls is different from the mechanism 
observed in primary cell walls (Lei et al., 2012). Cellulose 
is a major component of plant cell walls, together with 

Figure 4. The wrinkled surface of helical cell wall thickening without the primary cell wall. Most of 
the primary cell wall of the sample had been digested with snail enzyme. (a): the samples were tested 
with SEM. Without the primary cell wall between the helical thickenings, the spatial helix was hard to 
maintain. The region in the black frame was tested with AFM. (b): the sample was observed with AFM. 
The wrinkles on the cell wall thickening are indicated with black triangles. (c): a 3D rendering of the 
wrinkles on the thickened cellulose surface. The wrinkles consisted of a convex ridge region (white 
arrow) and concave groove region (black triangle). The direction of the spiral line was perpendicular 
to the grooves and ridges. (d) The local magnified phase image of the wrinkle structures. There was 
crystalline cellulose (lighter areas) and amorphous cellulose (darker areas). The crystalline cellulose 
(white triangle) was approximately 207 nm in average length and 66 nm in average width. The 
amorphous cellulose in the groove of the wrinkle structures (black triangle) was about 10nm in width.
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hemicellulose and lignin. In secondary cell walls, several 
cellulose molecules are brought together into larger units 
known as microfibrils (Lavoine et al., 2012). These packed 
microfibrils are strings of crystalline cellulose that are 
connected along their length by amorphous cellulose 
(Azizi Samir et al., 2005). For primary cell wall synthesis, 
microtubules mark the site for the delivery of CSCs to the 
plasma membrane (Crowell et al., 2009; Gutierrez et al., 
2009). 

Previous studies have found that actin microfilaments 
are correlated with cellulose deposition during the synthesis 
of secondary walls (Seagull, 1990; Mutwil et al., 2008; 
Wightman and Turner, 2008). The arrangement of cellulose 
in helical vessels is predetermined by the movement of the 
Golgi apparatus (Habibi et al., 2010; Lei et al., 2012). The 
Golgi apparatus transports CSCs along thick actin cables in 
xylem vessels and remains at a particular position for 2–4 
s to secrete CSCs to the membrane (Gardiner et al., 2003; 
Wightman and Turner, 2008; Wightman and Turner, 2010). 
The end points of deposition are determined by the crossing 
points of actin fibers and cable, where there are several 
linear regions along the long axis of the vessel (actin cables) 

(Gardiner et al., 2003; Wightman and Turner, 2008; Carpita, 
2012; Worden et al., 2012). CSCs produce microfibrils along 
the short axis (actin fibers) (Wightman and Turner, 2010). 

Therefore, it was hypothesized that there was a great 
chance that the microfibril ends (the crossing points) might 
be aligned with the actin cables, which were along the long 
axis of the vessel cells. Because microfibrils have periodically 
arranged crystalline regions and amorphous regions, the 
aligned microfibrils may form regular structures. However, 
there have been no detailed studies of microfibril structures 
to test this hypothesis to date. 

The wrinkle structure reported in the present study 
could be the evidence to support this hypothesis. The 
convex ridges were aligned crystalline regions of cellulose 
microfibrils, because the aligned microfibrils had an 
approximate length of the crystalline regions (207 nm 
on average) and periodic disordered regions (10 nm on 
average). Therefore, the aligned microfibrils must have 
been the aligned starting points. The starting points were 
thought to be where CSCs began to deposit cellulose and 
form microfibrils (Wightman and Turner, 2010). Thus, 
CSCs should be secreted at several aligned positions. The 
initial microfibrils should be near these positions. Because 
the Golgi apparatus transported and released CSCs along 
the long axis of vessel cells, the starting points of the 
microfibrils were aligned to the long axis (Gardiner et al., 
2003; Wightman and Turner, 2010; Carpita, 2012; Worden 
et al., 2012). Additionally, the speed of CSCs was almost 
the same (Paredez et al., 2006; Guerriero et al., 2010; Lei 
et al., 2012), and the lengths of the crystalline regions in 
one plant tended to be equal (Habibi et al., 2010). Therefore, 
the aligned release and movement of CSCs caused the 
crystalline regions to be aligned with each other and form 
regular ridge–groove structures (i.e., wrinkles).

The wrinkles in the lilac style might be a special example 
of helical vessel development because the lilac style grew 
and wilted more quickly than other tissues, such as stems or 
leaves. Therefore, the helical vessel developed and formed 
faster than that of helical vessels in other tissues. In the 
faster developing rates, the Golgi apparatus might transport 
and secrete CSCs more intensely. The helical thickenings 
had more obverse aligned microfibrils than other tissues.

Consequently, a wrinkled surface on secondary cell walls 
was discovered for the first time and investigated in helical 
vessels of the lilac style. The wrinkle morphology was due 
to the aligned crystalline region of cellulose microfibrils. 
The regular structure might be caused by regular release of 
CSCs.
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Figure 5. The orientation of cellulose microfibril in the wrinkles 
on helical cell wall thickenings. The confocal micrographs 
showed differences of fluorescence intensity of cellulose after 
Congo Red staining with different directions of polarization 
vector. Fluorescence intensity was coded with false color. Red 
showed the highest fluorescence intensity and blue showed the 
lowest. The orientation of polarization vector is indicated by the 
white arrows. The fluorescence of cellulose microfibrils on the 
left side was at a maximum when the polarization was parallel to 
the spiral line. The lowest fluorescence intensity was on the right 
side when the polarization vector was perpendicular to the spiral 
line. The middle picture showed the direction of wrinkles of 
helical thickenings in the black frame. The fluorescence showed 
that cellulose microfibrils in the wrinkles were parallel with the 
tangential direction of the spiral line.
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