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1. Introduction
Fungi are one of the most important groups of organisms 
on the planet. This is easy to overlook, given their largely 
hidden, unseen actions and growth. Fungi are found 
almost everywhere in very large numbers and inhabit most 
of the water and land ecosystems in the world. Together 
with  bacteria, fungi are responsible for breaking down 
organic matter and releasing  chemical elements (among 
others: carbon,  oxygen,  nitrogen, and  phosphorus)  into 
the soil and the atmosphere. Fungi are essential in many 
household and industrial processes, such as the making of 
bread, beer, wine, and some types of cheeses. In systematics 
mushrooms are classified as a separate kingdom, while 
their participation in the construction and functioning of 
all ecosystems is indisputable. In every ecosystem on earth 
parasitic and saprophytic fungi exist, having a large impact 
on the plants and animals forming those ecosystems. For 
asexual reproduction, fungi produce huge amounts of 
spores, releasing them into the atmosphere. Fungal spores 
are found all over the world in most climate zones and 
ecosystem types. In addition, they can move very long 
distances, even crossing the oceans, by using air currents. 
Spores are found in the highest layers of the troposphere 
and even in outer space. Their ability to survive makes 
them almost perfect objects in many types of research. 
They may live as saprophytes, parasites, or symbionts 
of animals and plants in indoor as well as outdoor 
environments. Outdoor spore concentrations range from 
230 to 106 spores/m3 (Lacey, 1980; D’Amato and Spieksma, 
1995). The atmospheric fungal spore concentration 

exceeds mean pollen concentration by 100–1000 times 
(Burge, 1988). The spore concentration in the air varies 
substantially depending on climatic factors such as air 
temperature, wind speed and direction, and moisture (in 
terms of relative humidity and precipitation). The majority 
of fungal species grow in outdoor environments. Examples 
are Alternaria, Cladosporium, Epicoccum, and Ganoderma 
(Levetin and Horner, 2002).
1.1. How can we consider the presence of spores in the air 
from an aerobiological point of view?
The three most important aspects of research on spores in 
aerobiology are their allergenic and pathogenic properties 
and their presence in the air as pollution. 
1.1.1. As allergens
Research on changes in the concentrations of fungal 
spores causing allergies is carried out all over the world. 
Modern epidemiological studies from various countries 
indicate that currently 15%–20% of the average population 
suffers from allergic diseases (https://www.worldallergy.
org/adrc/). In contrast to pollen, fungal spores and/or 
mycelial cells may cause many allergic symptoms and 
diseases, including allergic bronchopulmonary mycoses, 
allergic sinusitis, hypersensitivity pneumonitis, and atopic 
dermatitis. Sensitization to molds has been reported in up 
to 80% of asthmatic patients. Out of over 100,000 fungal 
species reported, more than 80 mold genera have been 
shown to induce type I allergies in susceptible persons, 
whereas allergenic proteins have been identified in 23 
fungal genera (Simon-Nobbe et al., 2008). Most people 
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hypersensitive to this group of allergens present year-
round symptoms, with periods of seasonal exacerbations. 
In contrast to other allergenic sources, fungi are very 
common in the environment; hence, exposure to airborne 
spores is almost constant throughout the year. A major 
difference to other sources, e.g., house dust mites or pollen, 
is that fungi may colonize the human body, and they may 
damage the airways by the production of toxins, proteases, 
and enzymes (Kauffman et al., 2000) and volatile organic 
compounds (Fischer et al., 1999). Thus, molds have a far 
greater impact on patients’ immune systems than pollen or 
other allergenic sources. It is estimated that sensitization 
to pollen and fungal allergens impacts a growing number 
of people. The necessity of such research results from 
the observed sudden increase in the number of allergies 
to fungal spores in the last decades. This phenomenon is 
particularly intense in industrial areas and in large cities 
(Kurup, 2003).
1.1.2. As biopollutants
Fungal spores in some countries, including Canada, have 
been recognized as biopollutants and special standards 
for their acceptable levels in the air are being developed. 
Accordingly, it must be remembered that a significant 
portion of atmospheric aerosol is of biological origin. 
The consideration of fungal spores as biopollutants is 
closely related to their allergenic properties and to their 
relationships with sources of air pollution like nitrogen 
dioxide (NO2) and trioxide (NO3), sulfur dioxide (SO2), 
ozone (O3), and particulate matter (PM). Therefore, in 
aerobiological analyses and statistical modeling, these two 
aspects are most often combined. Because fungal spores 
are an important component of bioaerosols and are also 
considered to act as indicators of the level of atmospheric 
biopollution, better understanding of these phenomena 
demands a detailed survey of airborne particles (Ščevková, 
2019).
1.1.3. As pathogens
The third important point about fungi is that they are 
plant pathogens. Many of them cause damage to crops 
with serious economic effects. The losses that they can 
cause in various types of crops are so significant that 
preventive actions have become a very important issue. 
Aerial dispersal of spores over short or long distances 
affects the epidemiology of many fungal plant pathogens 
and long-distance dispersal is an important strategy for a 
number of pathogens, which may lead to invasions in new 
areas or the spread of aggressive pathogens on a global 
scale (Brown and Hovmøller, 2002). The most important 
parameter in the infection process is dispersal. Dispersal 
mechanisms can be grouped into two types: one is passive 
dispersal by wind, water, or animals (Inglod, 1953) and the 
other is active dispersal, such as by shooting ascospores 
through the boundary layer of air surrounding the 

fruiting body by forcible discharge (Trail, 2007). Similarly, 
spores can be grouped into two types according to their 
motility. In fungi nonmotile spores include sexual spores 
such as ascospores, rust urediniospores, sclerotia, and 
conidiospores, while nonmotile oomycete spores include 
oospores, sporangiospores, and conidia. Motile spores 
with flagella, called zoospores, are ubiquitous among 
oomycetes and are also found in chytrid fungi (James et. 
al., 2006). Pathogens have evolved several mechanisms 
that include structural and/or enzymatic components in 
order to enter their plant hosts (Agrios, 2005). Many fungi 
develop appressoria to directly penetrate plant cuticles 
(Hardham, 2001). Aerobiological monitoring fits perfectly 
with many types of preventive measures. If high levels of 
spores of a particular pathogen appear in the air, farmers 
can be quickly informed and implement protective 
procedures. Such information may appear, for example, in 
everyday online information for farmers, or they may be 
informed by e-mail or SMS.

In all three of the aspects mentioned above, monitoring 
and statistical modeling, and in particular the creation 
of forecasting models, are among the most important 
challenges for statisticians today.

The important issue of aerobiological studies is to find 
correlations among the characteristics of the pollen or 
spore season, weather variables, bioclimatic conditions, 
ecological properties, and selected environmental 
factors. It is important to analyze all factors so that the 
resulting models can accurately describe the complex 
dependencies that occur in nature. Until now, only a few 
forecasting models for selected genera of spores have been 
developed. Most of them are characterized by relatively 
low verifiability, and they do not give the exact values of 
the weather factors that are responsible for causing the 
threshold concentrations or specify which of them is the 
most significant.

2. Modeling
In statistical modeling of fungal spores, the most common 
input variables are the concentrations of spores in the 
air and environmental factors such as meteorological, 
ecological, and biogeographical parameters. Output 
variables are numbers that determine the extent to which 
environmental variables affect spore concentrations. 
Modeling of the concentration of airborne particles is a 
relatively difficult issue. Due to the complexity of the study 
object (a large number of analyzed variables, very irregular 
changes in the concentrations of airborne pollen or fungal 
spores of a large variety of species, nonlinear correlations 
between parameters), multidimensional techniques 
and other advanced statistical methods of exploring 
data are preferred. Linear models are a commonly used 
mathematical technique for describing various objects 
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and processes. However, there is no basis for using linear 
approximation for a given problem and linear models do 
not work, leading to conclusions being drawn too quickly 
about the “inability” of the mathematical description of 
the system.
2.1. Artificial neural networks
2.1.1. What are neural networks?
Artificial neural network (ANN) models are a very 
sophisticated modeling technique, capable of mapping 
extremely complex functions. They are nonlinear, 
which significantly enriches their applicability, and they 
are among the many combined techniques currently 
being developed. Utilizing models created using neural 
networks may be the fastest and most convenient solution 
to a problem. ANNs also allow control over the complex 
problem of multidimensionality, which with other 
approaches significantly impedes attempts to model 
nonlinear functions with a large number of variables. In 
practice, neural networks construct the models needed 
by the user themselves, because they automatically learn 
from the examples given users. The level of theoretical 
knowledge necessary to successfully build a model is 
much lower when using neural networks than in the case 
of the use of traditional statistical methods. ANNs arose 
as a result of research conducted in the field of artificial 
intelligence (building models of basic structures found in 
the brain). Research carried out in the field of symbolic 
artificial intelligence in 1960–1980 led to the creation of 
so-called expert systems. Characteristics of biological 
nervous systems that were particularly technically 
useful were the resistance of biological systems to the 
damage of even a significant part of their elements and 
their extraordinary ability to learn. The most important 
advantages of this method are the ability to work with 
incomplete information, no requirement to know the 
solution algorithm (automatic learning), and processing 
of information in a highly parallel manner. Additionally, 
they can generalize to unknown cases, they are resistant 
to partial damage, and they can implement associative 
memory, similar to how human memory works, as 
opposed to addressed memory, characteristic of classic 
computers (Osowski, 1996). In addition to aerobiology, 
these methods are used in many other fields of research, 
e.g., forecasting pollution (Feng et al., 2015), ground water 
levels (Daliakopoulus et al., 2005), wind speed (Li and Shi, 
2010), and tourism time series (Palmer et al., 2006).
2.1.2. Network structure and operation
This method can potentially be used wherever problems 
occur with data processing and analysis, prediction, 
classification, or control. The construction of an ANN is 
based on the structure and operation of neurons in the 
human brain. Thus, the question is: how do ANNs learn? 
In Pavlov’s classic experiment on conditional reflexes, in 

which a bell is sounded before serving a dog’s dinner, the 
dog learns to combine the bell’s sound with expectations 
for food very quickly. This is done due to specific synaptic 
connections being strengthened as a result of the learning 
process. First, a number of input signals (values) reach the 
neuron (e.g., N,4 in Figure 1 means that there are 4 input 
variables entering the network). Each value is introduced 
to the neuron by a connection of some strength (Figure 
1; weight: W1, W2, W0); these weights correspond to the 
synapse efficiency in a biological neuron. Each neuron 
also has a single threshold value, determining how strong 
the stimulation must be for excitation to occur. The 
neuron calculates the weighted sum of the inputs (i.e. the 
sum of the values of the input signals multiplied by the 
appropriate weighting factors), and then the threshold 
value is subtracted (Osowski, 1996; Tadeusiewicz, 2001) 
(Figure 1).

The value obtained in this manner determines the 
stimulation of the neuron. This is a very advanced 
approximation of real biological phenomena. The signal 
representing the total stimulation of the neuron is in 
turn transformed by the established function of neuron 
activation (neuron transition function) (Figure 1; ƒ1, ƒ2).

The value calculated by the activation function is 
ultimately the output value (output signal) of the neuron. 
A neural network must have inputs to have value in use 
(used to derive the values of variables observed on the 
outside) as well as output (which means the result of the 
calculation, e.g., N,3 in Figure 1 means that there are 3 
output variables coming out of the network).

Inputs and outputs in the brain correspond to selected 
nerves: sensory for input and motoric for output. The 
hidden neurons are important in building the network 
because they perform internal functions in the network, 
mediate in the analysis of information provided by sensory 
nerves, and take part in the processing of sensory signals 
into decisions activating specific executive elements. An 
external observer cannot access them. Input, hidden, and 
output neurons must remain interconnected, posing a 
problem for the network creator in

choosing its structure. The key issue in choosing a 
network structure is the presence or absence of feedback 
in this structure (Osowski, 1996; Tadeusiewicz, 2001).

Simple networks have a one-way structure 
(feedforward): the signal flows in them only in one 
direction, from the inputs through subsequent hidden 
neurons, eventually reaching the output neurons. Such a 
structure is always characterized by stable behavior, which 
is its advantage. The network may also have feedback that 
contains return connections from later to earlier neurons 
and can do more complicated calculations. This is not 
“painless”; due to circulation signals in feedback networks, 
from input to output and via feedback back to the input, 
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it may behave unstably and have very complex dynamics 
in which the most complex forms of behavior can be 
expected, e.g., deterministic chaos.

Quite a lot of practical utility is obtained in networks 
with relatively many feedback loops, specifically in 
networks in which all connections are feedback. Such 
networks are known as Hopfield networks (Osowski, 1996; 
Tadeusiewicz, 2001).

In addition to the results illustrated in the figures in 
this article, based on the data obtained in the process of 
forecasting, they can also be included in tables. In addition 
to the significance of the impact of a given parameter on 
an input variable, a ranking of the most important to least 
significant variables may also be created.
2.1.3. How does a neural network work? 
In a typical case, from a mathematical point of view, a 
single neuron performs the operations of the product of 
the scalar vector of input signals and the weight vector. As 
a result, the neuron response depends on the geometrical 
relationships between signal vectors and weight vectors. 
The correct geometry of the position of the weight vectors, 
which guarantees correct operation, is obtained as a result 
of the learning process (a method of automatic search for 
such a set of weight coefficients occurring in all neurons 
of the entire network that guarantees the lowest value of 
the total error made by the network). As a result of using 
the appropriate learning algorithm (the best known here 
are backpropagation algorithm errors), the network can 

systematically reduce the error during the learning process; 
as a result, a gradual improvement in its performance 
during learning is observed. The network reacts as it is 
commanded by its current knowledge, i.e. some conditions 
are approved while others are not. The “teacher” (i.e. the 
computer conducting the training), having a map of the 
desired behavior of the network, gives it a reference signal.

After completing a set number of steps, the learning 
process is interrupted and the network is tested. During 
this test, grades for all possible points must be provided. 
In each of these applications, the neural network plays the 
role of a universal approximator of multivariable functions, 
implementing a nonlinear function of the form y = f (x), 
where x is the input vector and y is the vector function 
of many variables. The network learns basic features 
such as the geometric mapping of the pixel pattern, the 
distribution of the main components of the pattern, 
Fourier transformation components, and other properties.

The learning emphasizes the differences occurring 
in different patterns, which are the basis for making the 
decision to assign them to the appropriate class. Prediction 
is the task of the network to determine future system 
responses based on a string of values from the past.

Having information about the values of the variable 
x at the times preceding the predictions x (k-1), x (k-2), 
....., x (kN), the network decides what the estimated value 
of x (k) of the tested string at current moment k will be 
(Osowski, 1996; Tadeusiewicz, 2001).

Figure 1. Scheme of building an artificial neural network.
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Adaptation of network weights uses the current 
prediction error and the value of this error in the preceding 
moments. The network is a nonlinear model of control 
and dynamic processes, allowing the development of an 
appropriate control signal. It also acts as a tracking and 
following system, adapting to environmental conditions.

At the end, the ANN allows for two criteria in 
choosing a neural model. The SD ratio is the ratio of the 
standard error deviation to the standard deviation of the 
experimental data (good model: <0.7), while correlation 
refers to Pearson’s linear correlation coefficient between 
data calculated by the network and experimental data 
(good model: >0.7) (Osowski, 1996; Tadeusiewicz, 2001).

In summary, the most important feature of ANNs, 
which determines their huge advantages and wide 
application possibilities, is the parallel processing of 
information by all neurons. With the mass scale of neural 
connections, this results in a significant acceleration of 
information processing. In many cases real-time signal 
processing is possible. The second equally important 
feature is the ability to learn and generalize the acquired 
knowledge.

 The network has the so-called property of 
artificial intelligence. Trained on a limited group of 
learning data, it can associate acquired knowledge and 
demonstrate expected operations on data not participating 
in the learning process (Osowski, 1996; Tadeusiewicz, 
2001) (Figures 2 and 3).

Figure 2 shows how experimental data—in this case, daily 
Ganoderma concentrations and selected meteorological 
parameters of temperature (mean, min, max, and dew 
point), relative humidity, wind speed, and precipitation—
coincide with the results processed by the model. In other 
words, it reveals the quality of the model. Figure 3 shows 
the influence of the most important parameter, in this 
case the dew point of temperature, on the concentration 
of Ganoderma spores. The obtained results reveal that the 
presence or absence of Ganoderma spores depends mostly on 
dew point temperature, with a threshold value of about 9 °C. 
Similar results were gained for Alternaria and Cladosporium. 
Models created by ANNs for the most important parameters 
affecting the concentrations of both types indicated 4 
temperature parameters and then relative humidity, wind 
speed, and precipitation. This is understandable in this case, 
because the concentrations of both types of spores occur in 
the air in high amounts in similar periods of time.

Models using ANNs with spore concentrations and 
environmental parameters have been described in several 
aerobiological articles (Grinn-Gofroń and Strzelczak, 
2008a, 2008b, 2009, 2011, 2013; Jedryczka et al., 2015).

3. Conclusion
As a general conclusion it may be stated that aerobiology 
is at the beginning of a long road to achieving a method 
of analyzing aerobiological data that allows the creation 
of comprehensive models with high quality, accuracy, and 
verifiability.

Figure 2. Ganoderma sp. spore concentration in the years 2004–2008 (Szczecin, 
Poland); 8 comparisons of experimental and model’s calculated data (Grinn-Gofroń 
and Strzelczak, 2011).
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Figure 3. Response plot for Ganoderma sp. spore concentration dependent on dew 
point temperature from multilayer perceptron 8:8-11-1:1 classification neural model 
(Grinn-Gofroń and Strzelczak, 2011).

References

Agrios GN (2005). Plant Pathology. 5th ed. London, UK: Elsevier 
Academic Press.

Brown JK, Hovmøller MS (2002). Aerial dispersal of pathogens 
on the global and continental scales and its impact on plant 
disease. Science 297 (5581): 537-541.

Burge HA (1989). Airborne allergenic fungi classification, 
nomenclature, and distribution. Immunology and Allergy 
Clinics of North America 9: 307-319.

Daliakopoulus IN, Coulibaly P, Tsanis IK (2005). Groundwater 
level forecasting using artificial neural networks. Journal of 
Hydrology 309: 229-240.

D’Amato G, Spieksma FT (1995). Aerobiologic and clinical aspects of 
mould allergy in Europe. Allergy 50: 870-877.

Feng X, Li Q, Zhu Y, Hou J, Jin L et al. (2015). Artificial neural networks 
forecasting of PM2.5 pollution using air mass trajectory based 
geographic model and wavelet transformation. Atmospheric 
Environment 107: 118-128.

Fischer G, Schwalbe R, Moller M, Ostrowski R, Dott W (1999). 
Species-specific production of microbial volatile organic 
compounds (MVOC) by airborne fungi from a compost 
facility. Chemosphere 39: 795-810.

Grinn-Gofroń A, Strzelczak A (2008a). Artificial neural network 
models of relationships between Alternaria spores and 
meteorological factors in Szczecin (Poland). International 
Journal of Biometeorology 52: 859-868.

Grinn-Gofroń A, Strzelczak A (2008b). Artificial neural network 
models of relationships between Cladosporium spores and 
meteorological factors in Szczecin (Poland). Grana 47: 304-
314.

Grinn-Gofroń A, Strzelczak A (2009). Hourly predictive artificial 
neural network and multivariate regression tree models of 
Alternaria and Cladosporium spore concentrations in Szczecin 
(Poland). International Journal of Biometeorology 53: 555-562.

Grinn-Gofroń A, Strzelczak A (2011). The effects of meteorological 
factors on the occurrence of Ganoderma sp. spores in the air. 
International Journal of Biometeorology 55: 235-241.

Grinn-Gofroń A, Strzelczak A (2013). Changes in concentration of 
Alternaria and Cladosporium spores during summer storms. 
International Journal of Biometeorology 57 (5): 759-776.

Grinn-Gofroń A, Strzelczak A, Wolski T (2011). The relationships 
between air pollutants, meteorological parameters and 
concentration of airborne fungal spores. Environmental 
Pollution 159: 602-608.



GRINN-GOFRON / Turk J Bot

709

Hardham AR (2001). The cell biology behind Phytophthora 
pathogenicity. Australasian Plant Pathology 30: 91-98. 

Ingold GT (1953). Dispersal in Fungi. New York, NY, USA: 
Clarendon Press.

James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter 
D et al. (2006). A molecular phylogeny of the flagellated 
fungi (Chytridiomycota) and description of a new phylum 
(Blastocladiomycota). Mycologia 98 (6): 860-871.

Jedryczka M, Strzelczak A, Grinn-Gofron A, Nowak M, Wolski T et 
al. (2015). Advanced statistical models commonly applied in 
aerobiology cannot accurately predict the exposure of people 
to Ganoderma spore-related allergies. Agricultural and Forest 
Meteorology 201: 209-217.

Kauffman HF, Tomee JF, van de Riet MA, Timmerman AJ, Borger 
P (2000). Protease-dependent activation of epithelial cells by 
fungal allergens leads to morphologic changes and cytokine 
production. Journal of Allergy and Clinical Immunology 105: 
1185-1193.

Kurup VP (2003). Fungal allergens. Current Allergy and Asthma 
Reports 3: 416. 

Lacey L (1981). The aerobiology of conidial fungi. In: Cole GT, 
Kendrick B (editors). Biology of Conidial Fungi. New York, 
NY, USA: Academic Press, pp. 123-128.

Levetin E, Horner WE (2002). Fungal aerobiology: exposure 
and measurement. In: Breitenbach M, Crameri R, Lehrer 
SB (editors). Fungal Allergy and Pathogenicity. Chemical 
Immunology, Vol. 81. Basel, Switzerland: Karger, pp. 10-27.

Li G, Shi J (2010). On comparing three artificial neural networks for 
wind speed forecasting. Applied Energy 87 (7): 2313-2320.

Osowski S (1996). Algorithmic Approach to Artificial Neural 
Networks. Warsaw, Poland: WNT (in Polish).

Palmer A, Monatonó JJ, Sesé A (2006). Designing an artificial 
neural network for forecasting tourism time series. Tourism 
Management 27 (5): 781-790.

Ščevková J, Hrabovsky M, Kováč J, Rosa S (2019). Intradiurnal 
variation of predominant airborne fungal spore biopollutants 
in the Central European urban environment. Environmental 
Science and Pollution Research (in press). doi: 10.1007/
s11356-019-06616-7

Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M (2008). The 
spectrum of fungal allergy. International Archives of Allergy 
and Immunology 145: 58-86.

Tadeusiewicz R (2001). Introduction to Neural Networks. Krakow, 
Poland: Statsoft Polska (in Polish).

Trail F (2007). Fungal cannons: explosive spore discharge in the 
Ascomycota. FEMS Microbiology Letters 276: 12-18.


