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1. Introduction
Pistacia vera L. (2n = 30) is a dioecious and wind-
pollinated member of the family Anacardiaceae. It is the 
only cultivated and commercialized species in the genus 
Pistacia (Zohary, 1996). The pistachio tree in Tunisia is 
an ancient crop, particularly in semiarid and arid zones 
(Mlika, 1980). It is found in the north (Ariana, Jendouba, 
Bizerte and Le Kef), the center (Mahdia, Monastir, 
Kairouan, Kasserine and Sidi Bouzid), and in the oases 
of southern Tunisia (Gafsa and El-Guetar). Pistachio 
cultivation is an important economic activity in Tunisia; 
the national production in 2017 reached 3637 t (Faostat, 
2017).

Pistachio trees are currently threatened by genetic 
erosion particularly due to the extension of monovarietal 
orchards using the main variety in Tunisia: “Mateur”. It 
should be noted that the local variety “Sfax” has recently 
been reintroduced in the region of Gafsa, after being grown 
in California (Abdedaeim, 2015). Therefore, it is imperative 
to establish strategies for conservation of pistachio 

cultivars, with the first step being the identification and 
characterization of the remaining traditional accessions 
(Abdedaeim, 2015). Phenotypic diversity has been studied 
using morphological characters derived from the pistachio 
descriptor list (IPGRI, 1997) by Ghrab et al. (2012) and 
Chatti et al. (2017). In addition, inter-simple sequence 
repeat (ISSR), sequence-related amplified polymorphism 
(SRAP), and chloroplastic markers were utilized to 
investigate the genetic variability, population structure, and 
population’s differentiation of this species in Tunisia (Farès 
et al., 2009; Choulak et al., 2015; Guenni et al., 2016).  In the 
world, many studies have described the use of the random 
amplified polymorphic DNA (RAPD), amplified fragment 
length polymorphism (AFLP), ISSR, SRAP methods,  
chloroplastic markers, and microsatellite marker (Katsiotis 
et al., 2003; Golan-Goldhirsh et al., 2004; Baghizadeh et al., 
2010; Talebi  et al., 2012; Ziya-Motalebipour et al., 2016) to 
identify Pistacia vera L. cultivars. These studies confirmed 
the efficiency of the molecular markers used to evaluate 
the genetic diversity within the studied genotypes. Many 
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results proved that chloroplastic noncoding DNA regions, 
like the intergenic spacer between the trnL (UAA) 3’exon 
and the trnF (GAA) and the trnL-F gene can be used to 
answer questions concerning the relationships at intra- 
and interspecific levels (Choulak et al., 2015; Talebi et al., 
2016). In fact, the noncoding regions provide the most 
practical source of data for phylogenetic inference at lower 
taxonomic levels (Morton and Clegg, 1993).

In this study, we took into account the eco-geographical 
distribution of populations and the use of molecular 
markers to estimate intra- and inter-population diversity, 
to evaluate gene flow, and to characterize the individuals 
and the Tunisian pistachio populations genetically and 
with precision.

2. Materials and methods
2.1. Sample collection
Fields visits were made from April 2012 to July 2013 in the 
central southern traditional areas of pistachio culture in 
Tunisia (Gafsa and El-Guetar oasis). 

We also included accessions from Sidi-Bouzid, obtained 
from the pistachio germplasm collection maintained at the 
Regional Center for Agricultural Research of Sidi-Bouzid. 
Overall, thirty-nine accessions, including 30 female and 9 
male trees (Dhokkars) and 2 P. atlantica (Battoum) were 
used in the study (Table 1).  
2.2. DNA isolation, PCR reactions, and DNA sequencing
Total genomic DNA was extracted, from frozen leaves 
of single adult trees, by means of a modified MATAB 
method (Risterucci et al., 2000) and the QIAGEN DNeasy 
Plant Mini Kit (Qiagen, Venlo, the Netherlands). Before 
extraction, leaves were ground in liquid nitrogen using a ball 
mill (type MM2; Retsch, Haan, Germany). The DNA was 
resuspended in molecular biology water after isopropanol 
evaporation. A spectrophotometric measurement and 
electrophoresis checking of the extracted nucleic acid 
were performed (Sambrook et al., 1989). Primers and the 
PCR protocol were previously described by Choulak et al. 
(2015, 2017). Before sequencing, the PCR reactions were 
purified using the Wizard SV Gel PCR Clean-up system 
Kit (Promega, WI, USA). 

The trnL-trnF spacer sequences were separately aligned 
and studied. Next, the two matrices (spacer and intron) 
were combined for the final analysis.

The trnL-F marker sequences of all the 39 annotated 
accessions were submitted to NCBI GenBank (accession 
numbers: MK654683-MK654721).
2.3. Sequence analysis
2.3.1. Genetic diversity and phylogenetic analyses 
Chloroplast DNA sequences were confirmed by the BLAST 
database (Altschul et al., 1997). Sequence alignment was 
performed with the ClustalW program executed in Bioedit 

Table 1. Label, sex, and origin of pistachio cultivars studied.  

Geographic origin Cultivars label Sex Species

GT1 ♀ P. vera
GT2 ♀ P. vera
GT3 ♂ P. vera
GT4 ♂ P. vera
GT5 ♀ P. vera
GT6 ♂ P. vera
GT 7 ♀ P. vera
GT 8 ♀ P. vera
GT 9 ♂ P. vera

El Guetar (Tunisia) GT10 ♀ P. vera
GT11 ♀ P. vera
GT12 ♀ P. vera
GT13 ♀ P. vera
GT14 ♀ P. vera
GT15 ♂ P. vera
GT16 ♀ P. vera
GT17 ♀ P. vera
GT18 ♀ P. vera
GT19 ♀ P. vera
GT20 ♀ P. vera
GF1 ♂ P. vera
GF2 ♂ P. vera

Gafsa (Tunisia) GF8 ♀ P. vera
GF9 ♀ P. vera
GF10 ♀ P. vera
Battoum1 P. atlantica
SB1 ♀ P. vera
SB2 ♀ P. vera
SB3 ♀ P. vera
SB4 ♀ P. vera
SB5 ♂ P. vera
SB6 ♂ P. vera

Sidi Bouzid (Tunisia) SB7 ♀ P. vera
SB9 ♀ P. vera
SB10 ♀ P. vera
Matteur1 ♀ P. vera
Mtatteur2 ♀ P. vera
Irani ♀ P. vera
Battoum2 P. atlantica

USA Pell ♀ P. vera
Wen ♀ P. vera

Palestine Golan ♀ P. vera
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software (Hall, 1999). Lengths and polymorphisms of 
the sequences were estimated by the MEGA and DNAsp 
programs (Tamura et al., 2013; Librado and Rozas, 2009). 

The genetic relationships between varieties and the 
evolutionary trees were evaluated using the neighbor-
joining (NJ) and Bayesian inference (BI) reconstructions 
(Saitou and Nei, 1987; Ronquist et al., 2012). The methods 
were applied using MEGA v6.06 and MrBayes v. 3.2.2 
software. Three published trnL-trnF sequences from two 
American varieties (GenBank accessions: KP055540 
(Weeks et al., 2014) and EF193139 (Yi et al., 2008)), and 
a single accession from Palestine (GenBank accession: 
AY677204 (Yi et al., 2008)) were included in our analysis. 
Two sequences of Cotinu scoggygria Scop. (GenBank 
accessions: KF600601 and KF600602) were used as an out-
group.

The distribution of pairwise sequence differences 
between P. vera populations was considered according to 
the correction model based on the Bayesian Information 
Criterion (BIC) test implemented in jModelTest 0.1.1 
(Posada, 2008). The BIC analysis detects the best-fit 
substitution model for the trnL-trnF sequences. In 
addition, the relationships among the different haplotypes 
were graphically traced by the NETWORK software 
(Bandelt et al., 1999).
2.3.2. Demographic histories 
By means of selective neutrality tests, we checked the 
hypothesis of the mutation/drift equilibrium for a 
supposedly neutral polymorphism. Tajima’s D (Tajima, 
1989), Fu’s Fs (Fu, 1997), and Fu and Li’s (1993) statistical 
tests were conducted to verify this hypothesis, using 
DNAsp program. Complementary  to these  tests, the R2 
statistic, as a detector of population growth, was conducted 
based on the differences between the number of singleton 
mutations and the average of the nucleotide difference 
(Ramos-Onsins and Rozas, 2002). To test the population 
expansion, we examined the distribution of the observed 
number of differences between pairs of haplotypes by 
“mismatch distribution” (Rogers and Harpending, 1992).
2.3.3. Genetic differentiation and gene flow 
Molecular variance analysis (AMOVA) (Excoffier et al., 
1992) was executed by Arlequin (Excoffier and Lischer, 
2010) to evaluate the genetic variation within and among 
populations of the P. vera species. Additionally, we 
measured genetic differentiation between populations 
using Wright’s F-statistics (Wright, 1931). The Arlequin 
(Excoffier and Lischer, 2010) program was, also, used 
to calculate the FST (Excoffier et al., 1992) and the ΦST 
estimators. Based on these parameters (ΦST and FST), 
the pairwise comparisons between populations were 
represented by the ordinal multidimensional scaling 
(MDS) analyses using XLSTAT (AddinSoft, 2007). The 
program IMa2 (Hey, 2010) was used to characterize the 

gene flow between groups in both directions. To do this, 
we performed a series of analyses using sequence data of 
the trnL-F marker. Five simulations were carried out; each 
comprising a step of a burning of 10,000-iteration chains 
followed by 100,000 data collection iterations. These five 
simulations were then combined and analyzed.

3. Results
3.1. Genetic diversity of Tunisian pistachio
The trnL-trnF intergenic spacer PCR fragments were about 
421 bp. The percentage of GC was 37% to 39.5% with an 
average of 38.1%. The AT percentage was 60.5% to 63%. 
Transitional / transversional ratio (R) was low and equal to 
0.689 (Table 2). The multiple sequence alignment showed 
29 highly variable sites (22 informative sites and 7 unique 
sites) (Table 2). The haplotype diversity (Hd) recorded a 
very high value (0.953), as well as the nucleotide diversity 
(Pi) (0.013) (Table 2).

On the other hand, the length of the combined 
region (trnL (UAA) and trnL-trnF spacer) was 927 pb 
for all cultivars. The combined sequences revealed 70 
polymorphic sites and defined 32 haplotypes. Among 
the 70 variable sites, 35 were parsimoniously informative 
and 35 were singletons sites. Throughout the combined 
sequences, 77 mutations were detected. The indices 
of genetic diversity were calculated. The means of the 
haplotype (Hd) and nucleotide (Pi) diversity were higher 
than for trnL (UAA) (Choulak et al., 2015) and the trnL-
trnF spacer taken separately. In fact, these values were 
0.983 ± 0.014 and 0.011 ± 0.001, respectively. The ratio R 
was equal to 0.647 (Table 2).
3.2. Haplotype networks, phylogeographic analyses
Phylogenetic trees and haplotype networks testified 
considerable phylogeographical structures for both 
chloroplastic regions. Sequences of Cotinus coggygria and 
foreign varieties of P. vera were used to root phylogenetic 
reconstructions. Pistacia atlantica (Battoum) sequences, 
which were already sequenced, were only used in 
evolutionary trees. 

The chloroplast DNA sequences made well-resolved 
and well-supported phylogenetic trees (BI / NJ) (Figure 1). 
The phylogeographical structure, with NJ and BI methods, 
was very comparable between the intergenic spacer and 
the combined sequences, in particular: (1) Local varieties 
were distributed in two main clusters; El-Guetar and 
Gafsa/Sidi-Bousid, (2) ‘Mateur’ varieties (1 and 2) were 
grouped in a distinct subgroup, (3) The variety ‘Irani’ was 
clearly discarded from local ones, (4) Foreign varieties of 
P. vera were grouped in a separate cluster, showing a strong 
divergence from autochthonous varieties. 

Using the NJ and BI methods, we detected a genetic 
structure according to the geographical origin of pistachio 
trees, sustained by high nodes values (Figure 1). In 

https://fr.wikipedia.org/wiki/Giovanni_Antonio_Scopoli
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addition, Pistacia atlantica (Battoum) haplogroups formed 
distinct clusters and are very well supported. Moreover, 
a haplotype network by the parsimony method was 
produced for P. vera populations (Figure 2). Each disc 
constitutes a haplotype, and the numbers correspond 
to mutational steps between haplotypes. Using trnL-F 
sequences, the haplotype network (Figure 2) revealed two 
major haplogroups (I and II) separated by five mutations. 
The first haplogroup (I) displayed a star-like pattern 
and assembled El-Guetar’s accessions. This pattern is 
indicative of a population expansion during the recent 
history of the Tunisian pistachio (Ray et al., 2003). In 
contrast, the haplogroup II was heterogeneous and could 
be divided into four groups of haplotypes: IIa represented 
only the accessions of Gafsa, IIb reassembled Sidi-Bouzid 
accessions, IIc presented the two ‘Mateur’ varieties, and IId 
represented by Irani haplotype. Several missing haplotypes 
were noticed in this chloroplastic network, corresponding 
to median vectors or mv (black points in Figure 2). The 
haplotypic network confirms the subdivision of the P. vera 
species according to their geographical distribution.
3.3. Neutrality tests and demographic histories
Selective neutrality analyses showed that Tajima’s and Fu’s 
Fs statistical tests were negative and insignificant for each 
population, which favors the hypothesis of a population in 
a stable demographic state (Table 3). These observations 
confirmed that the Tunisian pistachio population has 
not undergone a demographic expansion in the past. 
In addition, low significant values of the Harpending’s 

raggedness index (rg) and R2 statistical test were recorded. 
These analyses support the suggestion of a demographically 
stable population.

Population size changes or “mismatch distributions” 
were constructed for the three different localities. The 
“mismatch distribution” is usually multimodal when we 
analyze stable populations. On the contrary, it is unimodal 
for populations that have experienced population 
expansion. For both localities (Gafsa and Sidi-Bouzid), 
the multimodal curves indicated a demographic stability 
during a long period of their evolutionary history and until 
today (Figure 3). On the other hand, a case of population 
expansion had been suggested for El-Guetar (Figure 3); 
this was indicated by unimodal mismatch distribution. 
The results obtained for El-Guetar appeared contrasted 
according to the tests considered. Indeed, Fu’s Fs and 
Tajima’s tests were insignificant indicating demographic 
stability, whereas R2 parameter was significant. Overall, 
the Tunisian pistachio has a stable population. 
3.4. Population differentiation
Using the combined sequences, AMOVA was tested to 
detect population differentiation. AMOVA of Tunisian 
pistachio revealed that 48.48% (ΦCT = 0.608, P < 0.05) of 
the genetic variation was observed among the two groups 
suggested by the haplotype networks (El-Guetar vs. 
Gafsa/Sidi Bouzid). Intrapopulation and interpopulation 
variances within these groups were also significant (Table 
4). Although the maximum variance was associated at the 
intrapopulation level for two new tested groups (South 

Table 2. Summary of polymorphism of sequences for trnL-trnF spacer and the combined data used in this 
study among the Tunisian pistachio accessions.

trnL-trnF
spacer

Combined: trnL-trnF
spacer and trnL intron

Number of sequences 37 37
Alignment length (bp) 421 927
Conserved sites 392 857
Variable sites 29 70
Parsimony informative characters 22 35
Singleton variable sites 7 35
Total number of mutations 36 77
Number of haplotypes (H) 22 32
Haplotype diversity (Hd) 0.953 0.983
Nucleotide diversity (Pi) 0.013 0.011
Average of pairwise differences (k) 5.556 11.167
Transition/transversion rate ratios for purines (k1) 0.489 1.702
Transition/transversion rate ratios for pyrimidines (k2) 2.820 2.505
Transition/transversionbias (R) 0.689 0.647
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vs. Central Tunisia), the variance associated with genetic 
differentiation was only 15.22% (ΦCT = 0.072, p < 0.05) 
(Table 4).  This value was significant but was three times 
lower than the one found in the first pool. The entire 
pairwise comparisons of populations based on FST and ΦST 
were significant (Table A1). The FST values were very low 
between population pairs and do not exceed 0.049. The 
FST between Gafsa and Sidi-Bouzid did not differ from 
zero; indicating that these two populations were not well 

differentiated. Conversely, intermediate genetic values 
were recorded between Gafsa and El-Guetar and between 
El-Guetar and Sidi-Bouzid. ΦST values (0.408–0.723) were 
greater than those of FST. The highest values were obtained 
between El-Guetar/Gafsa and El-Guetar/Sidi-Bouzid. The 
ΦST in Gafsa and Sidi-Bouzid appeared small compared 
to others comparisons. Gafsa and Sidi-Bouzid were not 
very differentiated between them but they were genetically 
distant from the El-Guetar population. To illustrate the 

Figure 1. Phylogenetic reconstruction among trnL-trnF spacer haplotypes (A) and the combined trnL-F region sequences (B).
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Figure 2. Median-joining network of the haplotypes inferred from the trnL-trnF 
marker. Nodes are proportional to haplotypes frequencies and branch lengths are 
proportional to the number of mutations.

Table 3. Demographic parameters and neutrality. Statistical significance: * P < 0.05.  

trnL-trnF spacer

Geographic origin D P Fs P R2 P Rg P

El-Guetar −1.72 0.54 −3.01 0.51 0.08 0.00* 0.02 0.12
Gafsa −1.17 0.58 −2.23 0.39 0.15 0.37 0.05 0.54
Sidi-Bouzid −1.77 0.53 −3.82 0.49 0.10 0.00* 0.09 0.68
Global −1.71 0.09 −6.02 0.00* 0.06 0.19 0.01 0.01*
Combined: trnL-trnF spacer and trnL intron
El-Guetar −1.72 0.51 −3.38 0.45 0.09 0.00* 0.02 0.00*
Gafsa −1.66 0.52 −3.55 0.43 0.09 0.00* 0.02 0.00*
Sidi-Bouzid −1.71 0.54 −3.55 0.46 0.10 0.00* 0.02 0.00*
Global −1.74 0.52 −3.24 0.42 0.10 0.00* 0.02 0.00*

Tajima test: (D), Fu’s Fs test: (Fs), Ramos-Onsins and Rozas test: (R2), Probability (P), raggedness index (rg).
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degree of haplotypic differences between populations and 
geographic areas, MDS analysis was performed on ΦST and 
FST parameters (Figure A1). Clearly, axis 1 (x-axis) separated 
El-Guetar population from the haplogroup formed by 
Gafsa and Sidi-Bouzid. MDS showed a significant genetic 
differentiation, compatible with AMOVA grouping (El-
Guetar vs. Gafsa and Sidi-Bouzid).
3.5. Gene flow in Tunisian pistachio
The isolation with migration rates analyses between 
localities, using IMa2 (Figure 4, Table A2), revealed that 
the best-supported model was bidirectional gene flow 
(2Nm 1-->2 = 3.87 and 2Nm 2-->1 = 3.73) between Gafsa and 
Sidi-Bouzid. The gene flow rate was lower from El-Guetar 
to Gafsa (2Nm 1-->2 = 1.42) and from El-Guetar to Sidi-
Bouzid (2Nm 2-->1 = 1.69). Gene flow can hinder genetic 
diversity by inhibiting genetic drift and natural selection 
from keeping local genetic differences.

4. Discussion and conclusion
The cytoplasmic genome is highly conserved for size, 
sequence, and order. The chloroplastic genome is widely 

used for interspecific genetic diversity studies, given the 
high conservation of its structure within a species (Palmer, 
1986). This conclusion has been tested in 125 species, with 
regulatory sequences (Jansen et al., 2011) and intergenic 
spacers (Saski et al., 2007). However, some regions of the 
chloroplastic genome show extremely high polymorphism 
in several species; the case of the rpl22 sequences (Jansen 
et al., 2011), the atpB-rbcL, matK, rlp16, trnL-trnF, and 
trnH-trnK regions (Reales et al., 2010; Batnini et al., 2014).

In this context, our study investigated the development 
of the trnL-trnF intergenic spacer and the combined trnL-F 
to disclose polymorphism in Pistacia vera L. The intergenic 
spacer trnL-trnF had an average length of 421 bp for all 
studied accessions. Comparable sizes have been reported 
in the genus Pinus and Ficus species (426–471 pb and 
430–474 bp, respectively) (Chen et al., 2002; Baraket et al., 
2009). Chloroplast combined sequences (trnL inton and 
trnL-trnF intergenic spacer) were examined in multiple 
studies which showed variable sizes according to the 
species. The sequencing generated an alignment of 927 bp. 
Numerous Angiosperms taxa registered similar size such 

A B

Figure 3. Pairwise mismatch distribution among trnL-trnF spacer (A) and the combined trnL-F region sequences (B). a: El-Guetar, b: 
Gafsa, c: Sidi-Bouzid, and d: Mismatch Global.

Table 4. AMOVA of the pistachio populations, * P < 0.05.  

AMOVA groups Fixation index
Percentage of variance (%)

Intergroup Among populations 
within groups Intrapopulation

El-Guetar vs. Gafsa and Sidi-Bouzid
(groups inferred by the haplotype networks)

ΦSC= 0.608
ΦST= 0.688
ΦCT= 0.203

48.48* 20.36* 31.16*

El-Guetar and Gafsa vs. Sidi-Bouzid 
(South vs. Center of Tunisia)

ΦSC= 0.662
ΦST= 0.686
ΦCT= 0.072

15.22* 41.43* 43.35*

https://www.google.tn/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwib7-uriIXYAhVBBBoKHQTZB9MQFggnMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFixation_index&usg=AOvVaw3AyhbJFsIKqmUhLnvHNNnm
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as Pinus (866 bp), Araucaria (961 bp), and Ceratophyllum 
(971 bp) (Borsch et al., 2003). The transition/transversion 
(ti/tv) ratio has been commonly computed in genetic 
studies; this ratio is helpful to better understand the 
patterns of cpDNA sequence evolution.  However, an 
inverse relationship existed between the genetic distance 
and the observed value of R (ti/tv). The ratio R was high 
at low rates of divergences, whereas it becomes lower for 
strong divergences (Purvis and Bromham, 1997). The 
calculated ti/tv ratios for the chloroplastic markers did not 
exceed 0.7. This conclusion agrees with those of several 
studies of angiosperm species, which had ti/tv ratios of less 
than 1 (Bakker et al., 2000; Baraket et al., 2009; Batnini et 
al., 2014; Benabid et al., 2014).

Species are usually subdivided into populations in which 
the allelic and genotypic frequencies differ from one region 
to another. This variation and its origin were the objects of 
population genetics studies (Ramanatha-Rao and Hodgkin, 
2002). Cytoplasmic markers, relative to nuclear markers, 
usually showed a significant geographic distribution in both 
plants and animals (Ennos, 1994). Pistachio trees, generally 
encountered in arid and semiarid climates of Tunisia, shaped 
a distinct pattern that was further differentiated according 
to geographic origin. Phylogenetic trees, the AMOVA, as 
well as haplotypic networks, advanced this conclusion. In 
fact, the studied populations were always subdivided into 
two major clusters; “El-Guetar” and “Gafsa/Sidi-Bouzid”. 
The cluster Gafsa/Sidi-Bouzid was heterogeneous, forming 

distinct geographical subgroups. Guenni et al. (2016) have 
observed similar results, where El-Guetar’s varieties were 
often differentiated from other populations. On the other 
hand, the different accessions of P. atlantica formed a 
clade in the trnL-F data, which is consistent with previous 
analyses: plastid and nuclear DNA data sets all suggested 
that P. atlantica formed a monophyletic group with P. vera 
(Yi et al., 2008; Xie et al., 2014). Our results indicating that 
‘Wen’ and ‘Golan’ (from the USA) varieties are most closely 
related to germplasm from Asia (Pell) than Tunisian ones. A 
similarity data obtained using the RAPD analysis confirmed 
this classification (Hormaza et al., 1994). Hormaza et 
al. (1994) related this finding to the hypothesis that the 
American cultivars derive from seeds originating from 
the Caspian/Caucasus region and carried to California by 
immigrants from that area.

AMOVA, applied for the two groups inferred by the 
haplotype networks (El-Guetar vs. Gafsa-Sidi/Bouzid), 
showed that the majority of the variance was at the 
intergroup field. Despite that, the two megapopulations: 
El-Guetar and Gafsa/Sidi-Bouzid showed large 
intrapopulation diversity. This confirmed a substantial 
interindividual diversity of the studied pistachios. Similar 
results have already been reported in Iranian pistachio 
nuts (Pazouki et al., 2010) and also in Tunisian pistachio 
trees using nuclear markers (SRAP) (Guenni et al., 2016). 

Moreover, the ΦST and FST genetic distance matrices 
per pair of populations, as well as MDS illustration, were 

Figure 4. Graphic representation of gene flows between different populations.
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in line with phylogenetic analyses and the AMOVA. 
Two significantly differentiated haplogroup classes 
(I and II) were inferred by the used cpDNA regions. 
Different interpretations could be proposed to explain 
this conclusion. Population polymorphisms were 
generally correlated with the accumulated mutations by 
an advantageous selection (Castric et al., 2008), whereas 
the DNA regions, selected for this analysis, were a neutral 
molecular marker (intron and spacer). Thus, the observed 
dimorphism cannot be the result of a natural selection. 
Moreover, in this research, Tajima’s D test was negative 
and nonsignificant. In fact, negative Tajima’s D values 
were more correlated to demographic factors (like the 
population expansion) than other selective events (Beck 
et al., 2008).

Secondly, the cytoplasm dimorphism could be related 
to the breeding methods practiced in horticulture, which 
was a major key to determine the differentiation between 
the prospected areas (Ramanatha-Rao and Hodgkin, 
2002). Vegetative reproduction allows, in allogamous plant 
species, to maintain elite genotypes of agronomic interest 
for the next generation and to avoid the disadvantages 
of Mendelian segregation associated with sexual 
reproduction (Zohary and Hopf, 2000). Consequently, 
the existences of multiple domestication events caused, 
certainly, the structuring of populations in numerous 
plant species (McKey et al., 2010). Another explication 
of the chloroplast dimorphism is factors of evolution, like 
the gene flow migratory model. Within a species, genetic 
diversity generally has geographic variation (Ramanatha-
Rao and Hodgkin, 2002). This variation is the result of 
the equilibrium between evolutionary forces tending to 
generate a divergence between populations and those 
tending to create a genetic homogeneity. The forces creating 
homogenization are gamete or variety movements, these 
factors contribute to gene flow between populations. 

Gene flow estimates maintain this observation, the 
number of migrants per generation 2Nm value was 
elevated among these populations (Sidi-Bouzid and 
Gafsa), signifying high connectivity between them. High 
2Nm estimates were generally related to high levels of 
genetic variability (Wade and McCauley, 1988). The 
prospected geographic areas involved a very interesting 
gene flow model, which was an important mechanism 
for transferring genetic diversity among populations. 
The proximity on the regional scale of Gafsa and Sidi-
Bouzid may explain this conclusion. Nevertheless, genetic 
diversity was higher than genetic differentiation. The FST 
and ΦST values supported this connection; these estimators 
were negligible among Sidi-Bouzid and Gafsa. 

Gene flow is a process that occurs both in time and in 
space, through pollen, seeds, and other propagules which 
strongly interacts with the local farming systems (Hamrick 

et al., 1993). Theoretically, in Pistacia vera as angiosperm 
species, markers of chloroplast genome are only maternal 
transmission markers. Consequently, seeds are implicated 
in this gene transfer between populations (Heredia and 
Ellstrand, 2014), while pollen grains have no role in the 
observed migration pattern.

Practically, in cultivated Tunisian pistachio, seeds are 
rarely exchanged among growing regions, for the reason 
of the large use of vegetative propagation (Maggs, 1973). In 
these localities, female varieties are exchanged in order to 
provide a guarantee of production in unfavorable growing 
areas. 

In contrast, 2Nm values were lower between population’s 
pairs El-Guetar/Sidi-Bouzid and El-Guetar/Gafsa. In fact, 
gene flow was generally restricted by geographic barriers.  
El-Guetar oasis had a specific geographic location and 
geomorphologic limits, which make it a relatively isolated 
area. The Mountain chain ‘Orbata’ (a national park of 5700 
ha and 1165 m) is located in the east of the Gafsa city, 
between El-Guetar and Gafsa farms. In a natural way, this 
geographic factor could be a crucial barrier to the long-
distance dispersal of propagules (pollen, seeds). For P. vera, 
natural pollination is most likely exclusively anemophilic, 
honey bees play no role in pollination due to the absence 
of nectar in female flowers (Zuang et al., 1988).  However, 
it has been noted that some Diptera insects sometimes 
contribute to the pollination of this species (Evreinoff, 
1955). This physical barrier could avoid gene exchange 
among areas situated on both sides of the mountains. 
Indeed, the oasis of El-Guetar is structured around two 
geomorphologic compartments; the mountainous terrain 
of the Orbata range and Chott El-Guetar on an area of 3730 
ha. The oasis benefits of particular climatic conditions 
with regard to the direction of dominant winds, since it is 
naturally protected in the North by the Jebel Orbata. Thus, 
El-Guettar Pistachio belongs to the group of mountain 
oases. They are closely associated with specific geology, 
geomorphology, and water supply with the accumulation 
of salts in the environment (Hachicha and Ben Aissa, 
2014). The Chott acts as an evaporative system of various 
salts, including gypsum, which is scattered by the wind 
while the more soluble salts (NaCl, MgSO4, Na2SO4) 
concentrate on the soil. These salts, during massive rains, 
were invading the lower parts of the oasis (Job, 1992).

The null hypothesis of molecular evolution (Kimura, 
1968), and specifically, the neutral theory gives precise 
predictions about patterns and structure of sequence 
variation expected under the null hypothesis. This 
hypothesis suggested that genetic polymorphisms may not 
always have effects on phenotypes. The Tajima’ D statistics, 
Fu’s Fs and R2, supported the hypothesis of a population 
in a stable demographic state.  Mismatch distributions 



CHOULAK et al. / Turk J Bot

746

were multimodal with significant values of the raggedness 
index (rg). The findings were coherent with the suggestion 
of the demographic stability (Rogers and Harpending, 
1992) of the Tunisian pistachio population. The absence 
of demographic expansion signatures seems to be mainly 
due to the large divergence between inferred haplogroups. 
Mismatch distribution and haplotype network shape (star-
like pattern), for El-Guetar, propose a recent population 
expansion or a selective sweep in this locality. Therefore, 
an excess of singletons (Fu and Li, 1993; Tajima, 1989) and 
of haplotypes (Fu, 1997) can be the cause of a demographic 
expansion.

The pistachio tree is one of the symbols of horticulture 
and landscapes of the Mediterranean basin. The rich 
heritage of pistachio in Tunisia proves the great potential 
for a local selection. In an ecosystem already modified 
by human activity, many conservation strategies must 
be applied. These molecular tools will significantly 
promote breeding programs, genetic conservation, and 
management of the species. 
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Table A2. Isolation template settings with migration from the combined dataset. 
Confidence intervals are given in parentheses. Ne: effective population size; 2NM: 
migration parameter in number of gene copies per generation.

Population 1 Population 2 Ne1 Ne2 2NM1-->2 2NM2-->1

El-Guetar Sidi-Bouzid 2607 322
1.42 0
(0–8) (0–1)

El-Guetar Gafsa 1178 411
1.69 0
(0–10) (0–1)

Sidi-Bouzid Gafsa 1392 668
3.87 3.73
(0–33) (0–26)

Table A1. FST (above the diagonal) and ΦST (below the diagonal) 
between different populations, * P < 0.05.

El-Guetar Gafsa Sidi-Bouzid

El-Guetar - 0.033* 0.049*
Gafsa 0.723* - 0.000*
Sidi-Bouzid 0.699* 0.408* -

Figure A1. Nonparametric multidimensional scaling analyses (MDS) based on FST and ΦST distances between populations for trnL-F 
marker.


