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1. Introduction
The genetic diversity of a population or species is the 
foundation of evolutionary change (Darwin, 1859) and 
provides a genetic basis for adaptation to environmental 
change (Markert et al., 2010). The genetic analysis helps 
us to understand the genetic variation within and between 
individuals and populations. This information is useful 
to identify management units for conservation efforts 
and to detect population-level effects of habitat loss, 
fragmentation, and isolation (Palsbøll et al., 2007; Allendorf 
et al., 2013). For rare and endangered species, genetic 
diversity assessment within and between populations is 
an essential step for formulating appropriate management 
strategies for natural populations (Frankham et al., 2002; 
Palsbøll et al., 2007; Gordon et al., 2012; Allendorf et al., 
2013; Ottewell et al., 2015; Frankham et al., 2017). 

In general, the genetic diversity of plant populations 
is determined by population size, mating system, genetic 
drift, gene flow, and evolutionary and life history (Loveless 
and Hamrick, 1984; Hamrick and Godt, 1996; Leimu et 

al., 2006; Dong et al., 2007), and human factors (Qiao et 
al., 2010; Wu et al., 2015). In particular, anthropogenic 
activities, including overexploitation of natural resources, 
habitat degradation, land reclamation, and overgrazing, are 
responsible for reductions in population size (Chiang et al., 
2006; Luan et al., 2006; Qiao et al., 2010; Wu et al., 2015). 
For rare and endangered species with small population 
sizes and narrow ranges of distribution, it has been 
hypothesized that a relatively low level of genetic diversity 
reduces species fitness (Young et al., 1996; Markert et al., 
2010) because species with low genetic diversity are more 
susceptible to genetic drift, founder effect, and inbreeding 
depression (Nei et al., 1975; Hamrick et al., 1992; Hamrick 
and Godt, 1996; Frankham, 1997; Nybom, 2004). However, 
some endangered species (Zawko et al., 2001; Wu et al., 
2015; Feng et al., 2019) and some common species with 
small population size (Luan et al., 2006; Schou et al., 2017) 
have moderate to high genetic diversity. 

The genus Ferula L. (Apiaceae) consists of more than 
170 perennial herbaceous taxa, mainly distributed in the 
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Mediterranean region, Central Asia, and northwest China 
(Pimenov and Leonov, 1993). In this genus, many species 
are used as medical resources (Shen, 1987; Mahendra 
and Bisht, 2012). In China, there are 26 Ferula spp., of 
which seven are endemic (She and Watson, 2005). Ferula 
sinkiangensis K.M.Shen is an herbaceous perennial and 
monocarpic plant growing in semiarid steppe ecosystems, 
and the species is endemic to Xinjiang, China (She and 
Watson, 2005). This species grows for about 7 years before 
flowering and fruiting (Shen, 1987). F. sinkiangensis was 
reported from Yining, Nileke, and Manashi counties in 
Xinjiang, and it has been widely used as a medicinal herb 
in China (Shen et al., 1975). Owing to its narrow range of 
distribution and important medicinal value, F. sinkiangensis 
has been listed as a critically endangered (CR) species 
(Wang and Xie, 2004; Qin et al., 2017) and an important 
wild medicinal plant used to treat stomach disorders 
in Xinjiang District for centuries (Zhang et al., 2019). 
Despite these listings, the distribution of F. sinkiangensis 
is further shrinking, likely due to global climate change, 
overexploitation, habitat degradation, land reclamation, 
and overgrazing in recent years. At the same time, lack 
of enough conservation awareness from the government 
and local people and insufficient basic research limit the 
successful conservation of the species although a small 
nature reserve has been established in Yining county. A 
recent report suggested that F. sinkiangensis has lost its 
ground in Manashi county, and the population size in 
Yining county has been reduced to 1/20th of its size in the 
1980s (Huang et al., 2012). 

With the availability of diverse molecular markers, such 
as allozyme, amplified fragment length polymorphism 
(AFLP), random amplified polymorphic DNA (RAPD), 
inter-simple sequence repeat (ISSR), single nucleotide 
polymorphisms (SNP) and simple sequence repeat 
(SSR) analysis, the genetic diversity of several rare and 
endangered species has been widely studied (Hamrick and 
Godt, 1989; Nybom, 2004). The best molecular markers 
suited for detecting genetic variability should be relatively 
easy to implement, inexpensive, and polymorphic enough. 
As a codominant and polymorphism genetic marker, 
microsatellites (SSRs) have been proven to be a reliable 
technique, capable of detecting the genetic diversity and 
structures of rare and endangered plants (Yang et al., 
2015; Nisar et al., 2017; Bilgen et al., 2019). In order to 
implement reasonable conservation strategies and promote 
effective management practices, the genetic diversity of F. 
sinkiangensis was researched. The aims of this study were 
to develop and characterize microsatellite markers for F. 
sinkiangensis,  to measure and analyze the genetic diversity 
of F. sinkiangensis, and to provide some recommendations 
for the conservation of the species.

2. Materials and methods
2.1. Plant sampling 
In 2017–2018, a total of 65 specimens of F. sinkiangensis 
were collected from Yili Valley. Within the valley, 61 
specimens were sampled from the Yining locality (YN, 
43°44′N, 82°06′E) and 4 specimens were sampled from the 
Nileke locality (NLK, 43°41′N, 82°18′E; just 4 specimens 
were found in 2017 and were lost in 2018 at this locality). 
All fresh plant samples were dried in silica gel and then 
stored at –20 °C until DNA extraction.
2.2. DNA extraction, libraries, and isolation of microsatel-
lite loci
All 65 genomic DNA samples were extracted using the 
Plant Genomic DNA Isolation Kit (Tiangen, Beijing, China) 
following the manufacturer’s instructions. DNA sequencing 
libraries were constructed from one sample from the YN 
locality according to the method used by Li et al. (2019). 
After screening the raw sequences and removing redundant 
sequences, the remaining sequences were assembled using 
PANDAseq version 2.9. Then the microsatellite loci were 
detected by 4 software programs (MISA, http://pgrc.ipk-
gatersleben.de/misa/misa.html; MREP, http://mreps.univ-
mlv.fr/; SSRIT, http://archive.gramene.org/db/markers/
ssrtool; and TRF, http://code.google.com/p/highssr/). 
Primer3 was used to design primers for the sequences 
detected by the 4 software programs simultaneously (Rozen 
and Skaletsky, 2000).
2.3. Amplification and sequencing
Fifty pairs of primers were randomly selected to amplify 15 
samples from the YN locality. The amplification used the 
method of Schuelke (2000), based on the use of a forward 
SSR-specific primer with the M13 universal primer sequence 
(TGTAAAACGACGGCCAGT) at the 5’ end labeled with 
6-FAM. For DNA amplification, the SimpliAmp Thermal 
Cycler (Thermo Fisher Scientific, Waltham, MA, USA) was 
used with initial denaturation at 95 °C for 5 min followed by 
10 cycles at 95 °C for 30 s (denaturation), at 58 °C for 30 s 
(annealing), and at 72 °C for 30 s (extension), then followed 
by 32 cycles at 95 °C for 30 s (denaturation), at 55 °C for 30 s 
(annealing), and at 72 °C for 30 s (extension), with 5 min of 
final extension at 72 °C. The PCR reactions were run with 20 
µL of reaction mixture containing 30 ng of template DNA, 
0.5 mM dNTPs, 2 µL of 10X PCR buffer (TransGen, Biotech), 
10 pmol of each primer, and 0.5 U of Taq DNA polymerase. 
The PCR products were checked on a 1.0% agarose gel. The 
primer set that had a successful amplification was used for 
all collected samples. The PCR products were genotyped on 
an ABI3730 automatic sequencer using mixed molecular 
size markers (10ulLIZ500: 1000ulhi-di, Applied Biosystems, 
USA). GeneMapper 4.0 (Applied Biosystems, USA) was 
used to score the genotypes. In addition, all of the 14 newly 
developed polymorphic microsatellite loci in F. sinkiangensis 



LI et al. / Turk J Bot

147

were assessed for cross-amplification with the closely related 
species F. tadshikorum collected from Tajikistan and F. 
fukanensis collected from Fukang, Xinjiang.
2.4. Data analysis 
To assess the level of genetic diversity within each locality 
and SSR locus, the number of alleles (A), effective alleles (Ne), 
observed heterozygosity (Ho), expected heterozygosity (He), 
Shannon information index (I), polymorphism information 
content (PIC), and percentage of polymorphic loci (PPB) for 
all 65 specimens were calculated using GenALEx 6.5 (Peakall 
and Smouse, 2012) and CERVUS v 3.0.7 (Kalinowski et 
al., 2007). Nei’s gene diversity index (h), heterozygote 
deficiency within populations (FIS), and F-statistics values 
(FIS, FIT, and FST) within each locus across all localities were 
calculated using FSTAT 1.2 (Goudet, 1995). The Hardy–
Weinberg equilibrium at each locus of all the localities was 
evaluated with 1000 randomizations and adjustment of 
P-values was done using sequential Bonferroni correction 
in the web version of GENEPOP (Raymond and Rousset, 
1995; Rousset, 2008). BOTTLENECK 1.2.02 was used to 
analyze population bottlenecks with 10,000 replicates (Piry 
et al., 1999). The analyses were performed for the stepwise 
mutation model (SMM) and the two-phase model (TPM). 
The significance level was estimated by the Wilcoxon signed 
rank test (Cornuet and Luikart, 1996). In addition, tests for 
shifted or normal L-shaped distribution of allele frequencies 
were performed (Luikart et al., 1998).

3. Results
3.1. DNA libraries and microsatellite loci
More than 4.4 million reads were obtained based on Illumina 
HiSeq paired-end reads, with a modal read length of 300 bp. 
After cleaning and assembling, about 1.40 million sequences 
were selected that were larger than 300 bp and used to 
detect SSRs. Based on MISA, MREP, SSR, and TRF, 88,738, 
140,607, 25,022, and 655,644 loci were detected, respectively 
(Figure). Among them, there were 3033 microsatellite loci 
detected by the 4 software programs simultaneously (2 
units repeat, 2432; 3 units repeat, 403; and 4 units repeat, 
198) (Figure). Fourteen of the 50 primer pairs showed clear 
polymorphism and amplification in F. sinkiangensis. These 
primers were used in this study to analyze genetic diversity 
(Table 1). In addition, most of the 14 primer pairs were 
effective for closely related species F. tadshikorum and F. 
fukanensis, except one (FS14) in F. fukanensis (Table 2).
3.2. Overall microsatellite diversity 
A total of 92 alleles were detected from 65 specimens of 
F. sinkiangensis using the 14 microsatellite loci. The mean 
number of alleles (A) was 6.571 for all loci, ranging from 3 
(FS40, FS45) to 14 (FS13), and the mean number was 6.000 
and 2.571 for the YN and NLK localities, respectively. The 
mean Ne was 2.250 for all loci, ranging from 1.025 (FS2) 
to 4.790 (FS39), and the number was 2.231 and 2.269 for 

the YN and NLK localities, respectively. The mean Ho was 
0.437 (0.433 for YN and 0.440 for NLK), which was lower 
than He, 0.446 (0.461 for YN and 0.500 for NLK) (Tables 
1 and 3). The I value was 0.821 (0.917 for YN and 0.725 
for NLK). PPB was 100.00% and 85.71% for YN and NLK, 
respectively (Table 3). Three loci (FS2, FS21, and FS40) 
were lowly polymorphic (PIC < 0.2), 4 loci (FS1, FS9, 
FS14, and FS45) were moderately polymorphic (0.2 ≤ PIC 
≤ 0.5), and 7 loci (FS6, FS12, FS13, FS18, FS22, FS36, and 
FS41) were highly polymorphic (PIC > 0.5) (Table 1). Five 
loci (FS1, FS9, FS22, FS36, and FS41) showed a significant 
departure from Hardy–Weinberg equilibrium with the 
deficits of heterozygotes after Bonferroni corrections (P < 
0.001) (Table 1). Within-population genetic diversity (hS) 
was 0.485, and the total genetic diversity (hT) was 0.517. 
The inbreeding level (FIS) for the YN locality was 0.068, 
and for the NLK locality it was 0.140.
3.3. Genetic bottlenecks
The genetic bottleneck test showed a recent bottleneck at 
the YN locality (Table 4). The excess of heterozygosity test 
showed a highly significant excess at the YN locality (TPM 
method (P = 0.005) and SMM method (P < 0.001)). The 
YN locality showed a normal L-shaped allele frequency 
distribution, and the NLK locality showed a shifted allele 
frequency distribution.

4. Discussion
4.1. Polymorphic and highly informative 14 microsatel-
lite loci for F. sinkiangensis
Due to their codominant, hypervariable, and reliable 
scoring characteristics, SSR markers have high efficiency 
in population genetic studies (Yang et al., 2015; Nisar et al., 

Figure. Wayne diagram of microsatellite loci of F. sinkiangensis 
detected by 4 software programs.
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2017; Bilgen et al., 2019). In this study, a set of microsatellite 
loci was developed to examine the population genetics 
of F. sinkiangensis. Among the explored loci, 14 of them 
were shown to be highly polymorphic and informative, 
and thus were selected to study genetic diversity (Table 
1). It is noteworthy that these 14 primer pairs were also 
successfully amplified in F. tadshikorum and F. fukanensis 
(Table 2), indicating successful use for cross-amplification 
with closely related species in the future. In addition, many 
of the loci detected by the 4 software programs (Figure) 

can be used to assess cross-species amplification for future 
population genetics studies within the genus Ferula.
4.2. Moderate to high level of genetic diversity but small 
population size
A moderate to high level of genetic diversity in F. 
sinkiangensis was detected, in spite of the small population 
size and narrow geographic distribution. These results 
might indicate that the species can adapt to changing 
environmental conditions and has great evolutionary 
potential. This study showed that the genetic diversity of 

Table 1. Characteristics of 14 microsatellite loci of F. sinkiangensis. GenBank accession numbers, primer sequences, repeat motifs, allele 
size range (bp), and genetic diversity index are given. Fragment sizes are based on 65 specimens from two localities.

Locus Primer (5’-3’) Repeat
motif Size (bp) A Ne Ho He PIC GenBank

accession no.

FS1 F:AGCCTTGGTAGAAGCTCAGA
R:TGCTACAAGATGACTTCACGACA (AAG)10 254–338 5 1.734 0.891 0.527 0.416*** MK920973

FS2 F:ACAATCACCTACCTTCCCGG
R:TCTTGGTGAGCATGGCCATT (AAT)8 156–282 4 1.025 0.031 0.047 0.046 MK920974

FS6 F:AAGCGCTTCTTGGGAGGC
R:CCTCACTTTGGGCAGCCATA (ATT)11 115–267 8 2.598 0.785 0.674 0.619 MK920975

FS9 F:CAGAGGAGGAGGCTGTTGC
R:AGACTCATAGCTGCTCGTAGA (GTT)10 252–429 5 2.362 0.908 0.531 0.418*** MK920976

FS12 F:ACAAAAGGGTGGATGAGATGGT
R:TTGATTAGGTCAACTGCTGTCC (TGG)7 105–310 9 3.388 0.585 0.591 0.559 MK920977

FS13 F:ATGCACTTCTTGGGAGGCAA
R:TCAGACCTTCTATTTACACAGCA (TTA)9 111–296 14 4.790 0.538 0.717 0.67 MK920978

FS14 F:GCTCGTAACCCTAGCAGCAA
R:GGACACATCCTCATAATACTTTGCA (TTG)7 250–329 8 1.708 0.234 0.393 0.363 MK920979

FS18 F:AGTCTATAAAGTGCATGCTCTCA
R:TGCTTTAAAAGATGTTTGTGGAGT (TATC)6 224–247 7 2.526 0.746 0.673 0.61* MK920980

FS21 F:AGCCTCTCCAATGCCATCTC
R:TCGCCCCATTCTTAAGACTGT (ATTT)5 112–288 4 1.174 0.046 0.075 0.074 MK920981

FS22 F:ACTGTGAACAAACAAACGGATG
R:GTGATAATTTGACCAGCGCCA (AC)9 234–252 11 2.529 0.246 0.706 0.674*** MK920982

FS36 F:TGCAGGTAGATGGCAGTTTGT
R:TGTTGTGCGTATGGGTTGGA (GA)9 226–270 7 2.619 0.095 0.708 0.659*** MK920983

FS40 F:CCAACTCCATTTGTCGTTGCA
R:GAATCCCCATTGCACCACCA (GT)13 122–258 3 1.334 0.015 0.09 0.087 MK920984

FS41 F:AGAGTTGTGCTACCGGATGT
R:AAACGGTCCATCAACGTCCA (TA)9 262–311 4 2.557 0.862 0.678 0.617*** MK920985

FS45 F:ACCTAGTTGCCACCTCTCTTC
R:TGGCAAAATCCATATATCGCACA (TC)9 264–269 3 1.155 0.092 0.225 0.212 MK920986

A, number of alleles; Ne, effective number of alleles; Ho, observed heterozygosity; He, expected heterozygosity; PIC, polymorphic 
information content; P-values for Hardy–Weinberg equilibrium tests are given for each locus, *P < 0.05, **P < 0.01, ***P < 0.001.
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F. sinkiangensis (hS = 0.485, hT = 0.517, Ho = 0.437, He = 
0.446, I = 0.821, PPB = 92.86%) was lower than the genetic 
diversity of widespread species (He = 0.58) and higher 
than the genetic diversity of endemic species (He = 0.42) 
(Nybom, 2004). The genetic diversity of F. sinkiangensis 
was also higher than that of some other species of Ferula, 
such as F. loscosii (He = 0.125, hT = 0.152) (Pérez-Collazos 
and Catalań, 2008), F. communis (Hpop = 0.320) (Rahali 
et al., 2016), F. communis complex (Hw = 0.263, hT = 
0.317) (Dettori et al., 2016), F. arrigonii (Hw = 0.317, hT = 
0.336) (Dettori et al., 2013), and F. asafetida (hT = 0.34, I = 
0.51) (Tajbakht et al., 2018). Compared to other rare and 
endangered species, F. sinkiangensis showed a moderate 
to high level of genetic diversity, which was higher than 
Nuphar submersa (He = 0.42) (Shiga et al., 2017) and 
Ottelia acuminata var. jingxiensis (He = 0.441, I = 0.781) 
(Li et al., 2019), and lower than Ruta oreojasme (He = 

0.687) (Meloni et al., 2015), Vincetoxicum atratum (He = 
0.67) (Yamashiro et al., 2016), Ammi seubertianum (He = 
0.66, I = 1.28), A. trifoliatum (He = 0.67, I = 1.35) (Vieira 
et al., 2018), and Tapiscia sinensis (He = 0.6904, I = 1.4368) 
(Zhou et al., 2016). The moderate to high level of genetic 
diversity within F. sinkiangensis contradicted the general 
hypothesis that small and narrowly distributed species 
have low levels of genetic diversity (Frankham, 1997; 
Leimu et al., 2006; Flight, 2010).

Several factors contribute to a high level of genetic 
diversity in rare and endangered plants, including species-
specific factors (e.g., mating system, genetic bottleneck, 
evolutionary and life history) and anthropogenic factors 
such as overexploitation of natural resources, habitat 
degradation, land reclamation, and overgrazing (Loveless 
et al., 1984; Hamrick et al., 1996; Leimu et al., 2006; Dong et 
al., 2007; Qiao et al., 2010; Wu et al., 2015). It has also been 
suggested that selfing species usually have considerably 
lower levels of genetic diversity than outcrossing species 
(Hamrick and Godt, 1989; Nybom, 2004). Although 
there is not information on the mating system of F. 
sinkiangensis, outcrossing may be happening in the species 
because insect pollination has been observed in other 
species of the genus Ferula (Koul et al., 1993; Yaqoob and 
Nawchoo, 2016). Therefore, moderate to high levels of 
genetic diversity in F. sinkiangensis may be explained by 
the cross-pollination within the species. Research on the 
mating system of F. sinkiangensis is necessary in future. The 
overlapping of generations in F. sinkiangensis (perennial 
and monocarpic) is highly advantageous to retain genetic 
variation (Shen et al., 1975). In addition, a recent decline 
in the F. sinkiangensis population has been reported by 
scientists, local individuals, and literature records (Shen, 
1987; Huang et al., 2012). Though F. sinkiangensis were 
described as a new species in 1975, the collection and 
utilization of Ferula resin started much earlier. In 1958, 
about 4000 kg of Ferula resins from F. sinkiangensis was 
collected by a local company and individuals (Shen, 1987), 
indicating that the species had a larger population in 
the 1950s. However, overexploitation (collecting Ferula 
resin before seeds mature, and land being reclaimed for 
farming) led to habitat and population size reduction 

Table 2. Results from cross-species amplification for Ferula 
tadshikorum and F. fukanensis.

Locus
Species

F. tadshikorum F. fukanensis

FS1 + +
FS2 + +
FS6 + +
FS9 + +
FS12 + +
FS13 + +
FS14 + -
FS18 + +
FS21 + +
FS22 + +
FS36 + +
FS40 + +
FS41 + +
FS45 + +

Table 3. Genetic diversity of F. sinkiangensis localities.

Pop N A Ne I Ho He PPB

YN 60.571 6.000 2.231 0.917 0.433 0.461 100.00%
NLK 3.643 2.571 2.269 0.725 0.440 0.431 85.71%
Total 32.107 4.286 2.250 0.821 0.437 0.446 92.86%

A, number of alleles; Ne, effective number of alleles; Ho, observed heterozygosity; He, expected 
heterozygosity; I, Shannon’s information index; PPB, percentage of polymorphic loci.
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in recent years (Shen, 1987; Huang et al., 2012). The 
surviving population of F. sinkiangensis harbors part of 
the genetic variation detected in this study. Compared to 
species factors, human factors might be dominant for F. 
sinkiangensis, similar to Tupistra pingbianensis (Qiao et al., 
2010) and Rhododendron protistum var. giganteum (Wu et 
al., 2015).

In general, when mating among close relatives 
increases the population size decreases, resulting in a 
high inbreeding coefficient and inbreeding recession 
(Frankham et al., 2002). The inbreeding coefficients for 
the YN and NLK localities were positive (FIS = 0.068 and 
0.140, respectively), suggesting that there were excessive 
homozygotes in the species. The positive index of an 
inbreeding coefficient suggests the risk of inbreeding 
recession in rare and endangered F. sinkiangensis.
4.3 Conservation strategies
The results from the genetic diversity of endangered F. 
sinkiangensis provide valuable insight for the conservation 
and management of the species. The moderate to high 
level of genetic diversity in F. sinkiangensis contrasts 
with and challenges the general hypothesis that small 
and narrowly distributed species usually have a low 
level of genetic diversity. Our results also suggest that F. 
sinkiangensis might have great evolutionary potential and 

can adapt to various environmental conditions (Markert 
et al., 2010). Based on the results, it was inferred that not 
genetic factors but rather a sharp decline in the abundance 
of the species due to human-related factors, such as habitat 
degradation and fragmentation and overexploitation and 
land reclamation, may have contributed to the endangered 
status of the species. However, due to small population 
size and narrow geographic ranges, the species faces a 
growing risk of genetic drift and inbreeding recession (Nei 
et al., 1975; Hamrick et al., 1992; Hamrick and Godt, 1996; 
Frankham, 1997; Nybom, 2004). Therefore, to protect 
and increase viable populations of the species, some 
conservation strategies should be proactive. Here, in situ 
and ex situ conservation and restoration were suggested 
for simultaneous utilization. In situ conservation, which 
may maintain an appropriate, effective population size of 
F. sinkiangensis, can be achieved by expanding the existing 
protected areas and the reclamation and restoration of 
habitats destroyed by farmland expansion. For ex situ 
conservation, seeds or seedlings should be collected for 
germplasm storage and to maximize the protection of 
existing genetic diversity. In addition, artificial breeding 
should be encouraged for regression and population 
reconstruction. Finally, strengthening public outreach 
and conservation education should enable science-based 
conservation of rare and endangered species in China and 
other places.
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Table 4. Tests for mutation drift equilibrium and mode shift 
using BOTTLENECK.

Locality

Wilcoxon signed rank test
(one-tailed P-value) Mode-shift test
TPM SMM

YN 0.005 <0.001 Normal L-shape
NLK 0.050 0.053 Shifted
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