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1. Introduction
Only a green world, rich in plants, can sustain us and 
millions of other species. However, in an era of global 
change, many plant species are becoming rarer, threatened 
even to the point of extinction (Blackmore and Oldfield, 
2017). Chen et al. (2011) and Dobrowski et al. (2013) 
remarked that there is a scientific consensus today that 
species are shifting and declining much faster than in the 
past due to drastic changes in climatic conditions. 

Ecological niche models/habitat suitability models/
species distribution models (SDMs hereafter) have been 
useful for conservation studies and other purposes in 
the scientific world. Species distribution modeling is an 
efficient tool foranswering a variety of questions related 
to species’ geographic distributions (Guisan and Thuiller, 
2005; Elith and Leathwick, 2009; Peterson et al., 2011; 
Peterson and SoberoÂn, 2012). We have a long list of 
questions, which is why attention from the scientific 
community continues to be drawn to the topic (De Marco 
and Nóbrega, 2018). 

The representative concentration pathways (RCPs), 
which are used for making projections, are the latest 
scenarios developed under the Intergovernmental Panel 

on Climate Change (IPCC) (Pachauri et al., 2014). Based 
on all of these scenarios, climate models are designed to 
demonstrate the effect of political decision-making and 
other influences on the environment of the future. The 
Coupled Model Intercomparison Project Phase 5 (CMIP5) 
now includes more than 50 global climate models (GCMs 
hereafter). Although there are several quantitative model 
skill scores that can be calculated for the models, different 
models tend to perform well on some metrics and poorly 
on others. In consequence, the IPCC avoids ranking 
models and treats each equally (Solomon et al., 2007; 
IPCC, 2014).

In their review evaluating 163 climate change modeling 
studies carried out from 1983 to 2013, Porfirio et al. (2014) 
expressed that only 10% of these models stated which 
GCM was chosen, only 40% of them used 2 or more 
GCMs and 1 or 2 emission scenarios, and only 7 studies 
performed more than 10 GCMs. They also criticized that 
each of these 7 articles focused on testing SDM methods, 
rather than applying predictions obtained from SDMs to 
practical conservation problems.

Although one of the most powerful tools for species-
level conservation assessments in more recent years, 
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SDMs are not free from drawbacks. For example, the 
results of SDMs under future climatic conditions are 
affected by a range of factors, including the choice of the 
statistical model, variable selection, climate model range, 
and emission scenarios (Thuiller, 2004; Araújo et al., 
2005; Diniz-Filho et al., 2009). Because predicted suitable 
environments for species would differ among predictions 
obtained from various GCMs, Porfirio et al. (2014) proposed 
some suggestions to researchers that would model future 
distributions of species. One of these recommendations is 
to consider multiple models in order to capture a reasonable 
range for future distributions of species.

On the other hand, although IPCC considers all climate 
models to be equal, certain GCMs better represent some 
climate types. For example, among the GCMs, BCC-
CSM1.1 (Beijing Climate Centre, China Meteorological 
Administration) has higher reliability and has been better 
studied for regions with significant monsoonal precipitation 
(Jena et al., 2016; Sriniyasa and Kumar, 2016; Pramanik 
et al., 2018). In order to find a highly reliable GCM for 
Turkey under the ongoing “Determination of the Impact 
of Climate Change on Snow Melts and Flows Project”, by 
which Regional Climate Model (RegCM4.3) was driven 
by 3 different GCMs, researchers demonstrated that MPI-
ESM-MR was the most reliable GCM among the 3 GCMs 
(CNRM-CM5.1, HadGEM2-ES, and MPI-ESM-MR). 
Among these tested models, MPI-ESM-MR appeared to 
be little affected by systematic errors in climate projections 
and showed the highest performance in general.1 Ferulago 
glareosa Kandemir and Hedge (Apiaceae), which is a rare 
endemic plant species, lives only in young soils and bedrock 
cracks in Kemah, Erzincan, Turkey (Kandemir and Hedge, 
2007); reproductive success of the species is quite low in 
some years (Kandemir and Sarı, 2019) (Figure 1). Although 
some researchers have so far proposed multimodel 
approaches in modeling future distributions of species, in 
this study, we attempt to show how vital the predictions 
obtained from highly reliable GCM would be for any 
region’s climate in the modeling of narrow-spread endemic 
species’ future distribution.

2. Materials and methods 
2.1. Study area and collecting presence points of the species
The study site is located between 39°22′31.70″E 
and 39°9′32.03″E longitude and 39°41′51.14″N and 
1 Ballı C (2019). Analysis of climate projection data [online]. Website https://www.tarimorman.gov.tr/SYGM/Belgeler/Ta%C5%9Fk%C4%B1n%20
SON/%C4%B0klim%20Projeksiyonlar%C4%B1-Veri%20Analizi_CBalli.pdf [accessed 26 12 2019].
2 Environmental Systems Research Institute (ESRI) (2019) [online]. Website https://www.arcgis.com/index.html [accessed 15 09 2019].
3 DIVA-GIS [online]. Website https://www.diva-gis.org/gdata [accessed 15 09 2019].
4 Steven JP, Miroslav D, Robert ES (2019) [online]. Website https://biodiversityinformatics.amnh.org/open_source/maxent/ [accessed 10 10 2019].
5 EnmSdm [online]. Website https://github.com/adamlilith/enmSdm [accessed 10 10 2019].
6 Smith AB (2019). A Hands-on Short Course in Species Distribution Modeling Using R: From Start to Finish [online]. Website http://www.earthskysea.
org/workshops-classes/ [accessed 15 09 2019].

39°39′10.42″N latitude on the hill slopes in the town of 
Kemah. Presence points (records hereafter) of the species’ 
individuals were obtained using GPS in all distribution areas 
of F. glareosa. A total of 159 collected records were converted 
to shape files (.shp). Extent of occurrence (EOO hereafter) of 
the species (in line form) was drawn and converted to raster 
data, and again converted to shape data to obtain EOO (in 
the form of a grid) (Figure 2). All work was executed using 
ArcGis 10.5.1.2

2.2. Preparing and choosing predictor variables
The study used 19 bioclimatic and 4 terrain predictor 
variables for F. glareosa’s species distribution modeling. 
Data for different climate scenarios and years (current 
version 1.4; 2050 and 2070 version 1.4) were downloaded 
from the Worldclim database in the form of 19 bioclimatic 
variables at a resolution of 30 arc-seconds (~1 km × 1 km 
grid resolution). To create terrain variables (altitude, aspect, 
topographic position index, percentage of slope) used in 
modeling, elevation data was downloaded from DIVA-GIS 
data3, then we created terrain data by using Spatial Analysis 
Tools in ArcGis 10.5.1 (Hijmans et al., 2005; Fick and 
Hijman, 2017).

Because Maxent performs best with the least number 
of records in comparison with several other models (Elith 
et al., 2006; Phillips et al., 2006; Pearson et al., 2007; 
Kumar et al., 2009), we used the Maxent 3.4.1 (Maximum 
Entropy) model4 to map the current and future potential 
distribution of  F. glareosa for Turkey. Spearman rank 
correlation was calculated using omnibus, satisfactory, 
legendary, and enmSDM packages in R 3.6.1 for Windows 
to evaluate multicollinearity among all predictor variables.5 
A cross-correlation value (r) > 0.70 was selected as a cut-off 
threshold to remove strongly correlated variables leading to 
the selection of strong variables (Philips et al., 2006; Philips 
and Dudik, 2008). If correlations among variables were 
greater than 0.7, lines between variable names were drawn 
in black; if they were smaller than –0.7, lines were drawn in 
red6 (Figure 3). 

The decision to exclude and include one from each set of 
highly correlated variables was made based on their inherent 
ecological significance to F. glareosa. Because large-scale 
screening studies revealed that germination requirements 
and timing of seedling emergence in a large number of 
Apiaceae species in the northern temperate climate have 

https://www.tarimorman.gov.tr/SYGM/Belgeler/Ta%C5%9Fk%C4%B1n SON/%C4%B0klim Projeksiyonlar%C4%B1-Veri Analizi_CBalli.pdf
https://www.tarimorman.gov.tr/SYGM/Belgeler/Ta%C5%9Fk%C4%B1n SON/%C4%B0klim Projeksiyonlar%C4%B1-Veri Analizi_CBalli.pdf
https://www.arcgis.com/index.html
https://www.diva-gis.org/gdata
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://github.com/adamlilith/enmSdm
http://www.earthskysea.org/workshops-classes/
http://www.earthskysea.org/workshops-classes/
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a chilling requirement (Roberts, 1979; Grime et al., 1981; 
Baskin and Baskin, 1988; Vandelook et al., 2009), Mean 
Temperature of Coldest Quarter (Bio11) was chosen as 
the predictor variable among highly correlated variables. 
Other predictor variables which are not highly correlated 

with Bio11 were Mean Diurnal Range (Bio2), Isothermality 
(Bio3), Temperature Annual Range (Bio7), Precipitation of 
Driest Month (Bio14), Precipitation of Warmest Quarter 
(Bio18), Precipitation of Coldest Quarter (Bio19) Aspect, 
and Percentage of Slope (Percent of Slope hereafter).

Figure 1. The illustration of F. glareosa (a); bare rocks and young soils in the species’’habitat.

Figure 2. The records and EOO of the species’ individuals [satellite view (a); simple view (b)].
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2.3. Maxent modeling and assessment of the accuracy of 
predicted models
When constructing the model in Maxent settings, we chose 
random seed, write plot data, write background predictions, 
and replicated run type subsample; random test percentage 
was set to 25, replicates were set to 15, maximum iterations 
were set to 5000. We also chose threshold features, 
create response curves, and do Jackknife to measure the 
variables’ importance; remaining settings were left at 
their default values in the Maxent interface (Philips et al., 
2006; Philips and Dudik, 2008; Baldvin, 2009; Süel et al., 
2018). After the initial model was run using 8 variables 
(Bio2, Bio3, Bio11, Bio14, Bio18, Bio19, Aspect, Percent of 
Slope), variables with low contributions to the model were 
eliminated by looking at the jackknife test and analysis of 
variable contribution results. Because it was understood 
that it could not be modeled with these 8 variables, we 
continued the process until 2 variables remained (Süel et 
al., 2018). Therefore, in the final model, we used Bio11 and 
Percent of Slope as predictor variables. Maxent discarded 
redundant records that occurred within the same grid 
cell; thus, 15 records were used for training and 5 records 
for testing. The area under the Receiver Operating Curve 
(AUC) and True Skill Statistic (TSS) were used to estimate 
the model’s performance. The AUC is a single threshold-
independent technique of model performance to 
differentiate presence from absence (Thuiller et al., 2005). 
AUC values vary from 0 to 1; higher AUC values suggest 
7 IBM Corporatiton (2019) [online]. Website https://www.ibm.com/tr-tr/products/spss-statistics [accessed 10 10 2019].
8 Adobe Photoshop CC (2019) [online]. Website https://www.adobe.com/tr/ [accessed 07 08 2019].
9 QGIS Development Team (2019) [online]. Website https://www.qgis.org/en/site/ [accessed 15 09 2019].

superiority. Hence, a value of 0.5–0.7 represents poor 
performance, 0.7–0.9 represents high performance, more 
than 0.9 signifies very high performance, and a value of 1.0 
signifies perfect discrimination (Fielding and Bell, 1997; 
Swets, 1988; Peterson et al., 2011). TSS is the threshold-
dependent measure of model performance. A value closer 
to +1 signifies an agreement between observations and 
prediction; lower value signifies agreement no better than 
random. TSS values >0.8 suggest excellent, 0.4–0.8 useful, 
and <0.4 poor model performance (Allouche et al., 2006). 
TSSs were executed using an Excel sheet. Factor analysis 
based on all predictor variables for all records of the species 
was conducted using IBM SPSS 257 (Hirzel et al., 2002).

In the choice of representative models, models with 
higher training AUC values and with little difference 
between training and test AUC values were preferred in 
each set of the 15 models obtained (Süel et al., 2018).
2.4. Preparation of image files
Current and future potential distribution maps and 3D 
maps of the species’ habitats were created using the 3D 
map generator plugin for Adobe Photoshop CC 20198 and 
ArcGis 10.5.1. All cartography was created using QGIS 
3.4.4.9 

3. Results
The current species distribution model of F. glareosa 
predicted by the model produced very high success rates 
with training and test AUC values of 0.970 and 0.968, 

Figure 3. The correlation lines among the variables used in the modeling study.

https://www.ibm.com/tr-tr/products/spss-statistics
https://www.adobe.com/tr/
https://www.qgis.org/en/site/
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respectively. This signifies that the predictor variables used 
for the species distribution modeling were appropriately 
selected, therefore leading to very high prediction success. 
That there were few differences in the test and training AUC 
values indicates very little overfit in the predicted results. 
The TSS value of the model (0.8245) indicated excellent 
model performance. The results of the AUC curves in 

developing F. glareosa SDM under current conditions are 
shown in Figure 4. 

The TSS and AUC values for F. glareosa under future 
conditions can be found in the Table.

According to the results obtained from the model, 
about 79.822% of the current potential distribution of 
the species was explained by 2 variables. The higher the 

 Figure 4. The ROC curve and AUC values for F. glareosa’s current potential 
distribution.

Table. TSS and AUC values and their assessments (bold) for F. glareosa under future conditions.

Climate Change Scenarios

Global climate
models - Year

RCP 2.6
TSS values

RCP 2.6
AUC
values

RCP 4.5
TSS values

RCP 4.5
AUC
values

RCP 8.5
TSS values

RCP 8.5
AUC
values

HadGEM2-ES-2050 0.7781
Useful

Training data: 0.973
Test data: 0.964
Very high

0.7768
Useful

Training data: 0.972
Test data: 0.971
Very high

0.7831
Useful

Training data: 0.966
Test data: 0.960
Very high

MPI-ESM-LR-2050 0.7922
Useful

Training data: 0.965
Test data: 0.965
Very high

0.83
Excellent

Training data:  0.973
Test data: 0.970
Very high

0.7748
Useful

Training data: 0.969
Test data: 0.963
Very high

HadGEM2-ES-2070 0.7716
Useful

Training data: 0.973
Test data: 0.960
Very high

0.8319
Excellent

Training data: 0.973
Test data: 0.970
Very high

0.7625
Useful

Training data: 0.971
Test data: 0.950
Very high

MPI-ESM-LR-2070 0.8244
Excellent

Training data: 0.972
Test data: 0.966
Very high

0.8545
Excellent

Training data: 0.971
Test data: 0.966
Very high

0.7842
Useful

Training data: 0.969
Test data: 0.969
Very high
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contribution, the more impact that a variable has on 
predicting the occurrence of the species. In this study, 
Bio11 had the highest predictive contribution of 67.9%; 
Percent of Slope had a predictive contribution of 32.1%. 

The jackknife test results for the current distribution of 
the species are shown in Figure 5.

 The occurrence probability of F. glareosa in its EOO 
rapidly increases at the Mean Temperatures of Coldest 
Quarter ranging between –0.1 °C and –1.8 °C; it decreases 
when temperatures drop toward –3.5 °C and rise toward 
1.5 °C. As can be seen from the Percent of Slope graph of 
the species, the species does not prefer terrain with low 
slopes (below 7%) or high slopes (above 34%) (Figure 6).

In the below maps, red areas indicate highly suitable 
areas for the species, and blue areas denote areas that the 
species does not prefer. Current potential distribution of F. 
glareosa is shown in Figure 7.

HadGEM2-ES and MPI-ESM-LR GCMs-based models 
predicting future habitat suitability of F. glareosa for 2050 
and 2070 are shown in Figures 8 and 9.

Future habitat suitability status of the species’ EOO is 
shown in Figures 10 and  11.  

When we take a look at the above figures, while the 
overall predictions obtained from the HadGEM2-ES 
model show us that the species may have difficulties in its 
current EOO in the near future, the overall predictions 
which can be obtained from the MPI-ESM-LR model 
argue against this.

4. Discussion
The HadGEM2 family of climate models represents the 
second generation of HadGEM configurations. Members 
of the HadGEM2 family were used in the IPCC Fifth 
Assessment Report  (AR5). The  ENSEMBLES  project 
also uses members of this model family.10 MPI-ESM is a 
new version of the global Earth system model developed 
at the Max Planck Institute for Meteorology. It has 3 
configurations: MPI-ESM-LR (Low Resolution), MPI-
ESM-P (Paleo), MPI-ESM-MR (Mid Resolution). Even 
though there are resolution-dependent differences between 
the LR and MR configurations, it is also worth noting that 
the MPI-ESM setups behave rather similarly in many 
respects (Jungclaus et al., 2013). Because only MPI-ESM-
LR was available for making future modeling among these 
setups, we had to model the species’ distribution using 
this configuration. We do not think that the resolution 
differences between MPI-ESM-LR and MPI-ESM-MR 
configurations would be important in our modeling study.

If we were to benefit from predictions obtained only 
from HadGEM2-ES GCM to guide F. glareosa’s future 
conservation efforts, our most optimistic approach would 
10 Collins WJ (2008). Evaluation of the HadGEM2 model [online]. Website https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-
model/climate-models/hadgem2 [accessed 26 12 2019].

be that the current EOO of the species may not be suitable 
in the future (even in the 2050s). However, if we were to 
rely on the predictions obtained only from MPI-ESM-LR 
GCM, our most optimistic approach would be that the 
current EOO of the species will continue to be suitable for 
many years (at least until the 2070s) (see Figures 10 and 11). 
So, will F. glareosa be extinct in the near future? To answer 
this question only with some projections obtained from 
SDMs would depend on our predictions obtained from 
GCM, which can represent Turkey’s climate more strongly 
than MPI-ESM-LR GCM. We find any urgent conservation 
action on behalf of the species to be unnecessary, as we 
rely on the predictions that we have from MPI-ESM-LR 
GCM. However, a more precise answer to the question can 
be given using data on abiotic and biotic factors (especially 
with reproductive ecology data of the species)  affecting 
the species’ survival.   We would like to draw attention to 
the fact discussed below about how we can obtain more 
precise insights into the future distribution of plants on 
our planet.

It has been emphasized by many researchers that it may 
be difficult to find suitable new areas for endemic plants as 
the climate changes, because they have narrow tolerance 
ranges for many abiotic factors (Primack, 2006; Işık, 2011;  
Wamelink et al., 2014) and they may be able to grow only 
under certain conditions (Kempel et al., 2018). As stated by 
Blackmore and Oldfield (2017), only by looking at species-
level conservation assessments across the board are we able 
to get a larger picture of the status of plants on our planet. 
We had 2 reasons for taking a closer look at the species’ 
EOO. The first is that because the species belongs to the 
Apiaceae family, its dormant seeds are hard to germinate. 
Therefore, future habitat suitability of the species’ current 
EOO is very important for breaking seed dormancy. The 
second reason is that the species never lives in the clay soils 
adjacent to the species’ current EOO. Thus, if the species 
loses its current EOO for any reason and cannot adapt to 
new edaphic conditions, it will probably become extinct. 
The following map shows that the current EOO of the 
species is seen usually in the areas that are gray  (due to 
the colors of bare rocks and young soils), and unsuitable 
areas on account of soil quality for the species are usually 
in the green and brown areas (due to the colors of clay soils 
and other plants that live there) (Figure 12). Briefly, it is 
unlikely that areas adjacent to the species’ current EOO 
will be suitable in the near future from the results of many 
GCMs for the species, because it needs specialized habitat 
conditions. 

Although Akçakaya et al. (2014) stated that climate 
change is quantitatively considered in Red List assessments 
for only a small number of species, Attorre et al. (2018) 

http://ensembles-eu.metoffice.com/
https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/hadgem2
https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/hadgem2
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emphasized that determining the applicability of SDMs 
to Red Lists is difficult due to model uncertainties, as 
many biotic and abiotic factors cannot be included (or 

are difficult to include) in these models. For this reason, 
they suggested that SDMs and Red List assessments could 
play a complementary role in conservation efforts, such 

 

 
Figure 5. The jackknife test result for indicating the relative contribution of predictor variables for the current 
distribution of F. glareosa.

Figure 6. The response of F. glareosa to two predictor variables  [Temperature 
unit: C° (Values/10)].
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as Red List categories providing information on both the 
current and future extinction risk for a target species, 
while SDMs may provide warnings on the magnitude of 

future extinction risk.  Attore et al. (2018) also showed a 
good example of the studies performed in this direction by 
evaluating some ecological characteristics of Italian plant 

Figure 7. Current potential distribution of F. glareosa.

 
Figure 8. The maps show HadGEM2-ES (He) (left) and MPI-ESM-LR (Mp) (right) GCMs based predicted future suitability of F. 
glareosa for 2050.
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Figure 9. The maps show HadGEM2-ES (He) (left) and MPI-ESM-LR (Mp) (right) GCMs based predicted future suitability of F. 
glareosa for 2070.
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Figure 10. Future habitat suitability status of the species’’EOO for 2050 according to predictions 
obtained from HadGEM2-ES (left) and MPI-ESM-LR (right) GCMs. 
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Figure 11. Future habitat suitability status of the species’ EOO for 2070 according to predictions obtained 
from HadGEM2-ES (left) and MPI-ESM-LR (right) GCMs. 
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species policy together with the predictions they obtained 
about the future distributions of these species. Even though 
we share the same view on assessing species’ vulnerability 
to climate change as Attorre et al. (2018), we also want to 
draw attention to the use of predictions obtained from 
GCMs, whose reliability for any region’s climate has 
been analyzed/tested with the help of Regional Climate 
Models and meteorological data. We think that this is 
an overlooked but important point in assessing species’ 
vulnerability to climate change. Thus, we recommend 
that conservationists should benefit from the best GCM 
by ranking many of the available GCMs according to their 
ability to simulate the climate of the region where the 

species to be modeled live. This may play a role in reducing 
uncertainties in future plant conservation studies.
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