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1. Introduction
Abiotic stresses are stresses caused by nonliving factors. 
Compared to biotic stress, they are relatively more 
common and pose greater damage to crop yield (Minhas 
et al., 2017). They disrupt the growth and development 
of plants and ultimately lead to decreased yield and 
productivity. Abiotic stresses are particularly harmful to 
the process of photosynthesis. Photosynthesis is tampered 
with during abiotic stresses through a number of ways 
like closure of stomata and decline in the Ribulose-1, 
5-bisphosphate carboxylase/oxygenase (Rubisco) level 
and activity (Hassan et al., 2015; Niinemets et al. 2017). 
Studying Rubisco in relation to abiotic stresses is therefore 
important in the focus of research in the field of plant 
science.

Rubisco (EC 4.1.1.39) is an enzyme that is required in 
the first major step of carbon fixation in the photosynthesis 
of C3 plants. In other words, it is the primary acceptor 
of CO2 during photosynthesis. Rubisco, RuBPcase, and 
RuBPco are the popular abbreviations used to represent 
it. It is a very important enzyme in the photosynthesis 
of C3 plants and considered the most abundant enzyme 
on earth (Raven, 2013). The enzyme requires many 
chaperones for its biosynthesis in plants and is composed 

of 8 large (RbcL) and 8 small subunits (RbcS) (Lin et al., 
2020). The RbcL and RbcS genes could be modified to 
improve photosynthesis efficiency (Chen et al., 2015a). 
The chloroplasts are composed of essential proteins like 
Rubisco-binding protein (RBP, or chaperonin 60–Cpn60) 
and Rubisco activase (Rca) with a chaperone nature, which 
assist in preserving the amount and activity of Rubisco. The 
transport of these particles from chloroplasts to vacuoles 
has been recorded (Buet et al. 2019). Rca plays the role of 
removing sugar phosphate inhibitors in the active sites of 
both carbamylated and decarbamylated Rubisco (Bacu et 
al., 2020).

Rubisco is largely a poor catalyst and can only fix about 
2–10 CO2 per min (Ogbaga et al., 2019). The low turnout 
of Rubisco is because of the complication it undergoes in 
concentrating on carboxylation or oxygenation depending 
on the molecular concentration of CO2 or O2. Rubisco is 
composed of more than 50% of soluble leaf protein which 
justifies its significance in plants. While it is located in the 
stroma of all chloroplasts in C3 plants, its presence in C4 
plants is limited to the bundle sheath cells.  

Due to its importance, many researchers have studied 
Rubisco (level and activity) in relation to abiotic stresses 
in many plants. Some of these researches are captured in 

Abstract: Abiotic stresses are serious environmental factors militating against the production of many crops around the world. The 
consequence of this, is the difficulty of meeting the demands of the increasing world population. Aside from other negative effects, 
reduction in photosynthesis is an important feature of abiotic stresses. Abiotic stresses limit photosynthesis in a number of ways. The 
reduction in ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco) content and activity is one of the paramount ways through which 
abiotic stresses affect photosynthesis. Rubisco is the CO2 fixing enzyme of photosynthesis and also catalyses the photo-respiratory carbon 
oxidation. The enzyme has low turnover and also copes with competitive inhibition by O2. Hence, manipulating the enzyme in order to 
boost photosynthesis has been the target of scientists, especially in stressed environments. Based on recent studies, the mechanism of the 
harmful effects of abiotic stresses on Rubisco is examined in this review. In addition, the prevalent ways through which Rubisco can be 
made to thrive well despite the various abiotic stresses are evaluated. This review paper also outlines practicable approaches to promote 
existing ways of enhancing Rubisco tolerance to abiotic stresses in order to produce more crops with higher stress resilience.

Key words: Abiotic stress, Rubisco, photosynthesis, crop production

Received: 24.03.2022              Accepted/Published Online: 04.07.2022              Final Version: 23.11.2022

Review Article

This work is licensed under a Creative Commons Attribution 4.0 International License.



ABDULBAKI et al. / Turk J Bot

542

Table 1. This review focused on the latest studies on the 
topic and outlined the available ways in rescuing Rubisco 
from the various abiotic stresses. Suggestions for future 
research on the topic were proposed since Rubisco is an 
excellent target for enhancing the photosynthesis of plants 
under challenges of abiotic stresses. 

2. Drought stress and Rubisco
Drought as expressed by prolonged water deficit is 
one of the abiotic stresses limiting plant growth and 
productivity. Photosynthesis, the main process driving 
plant growth, requires that Rubisco activity is at its 
maximum potential. In general, water stress has been 
shown to limit photosynthesis on account of the inhibition 
of CO2 metabolism and diminution of leaf proteins such as 
Rubisco (Carmo-Silva et al., 2012: Lyu et al., 2016: Simova-
Stoilova et al., 2020: Wang H et al., 2020). 

In crop plants grown under prolonged water deficit, 
Rubisco activity may be impaired depending on how 
different plant species respond differently to factors 
such as alteration in water status of the cell, low CO2 
concentration, high temperature, stomata limitation and 
mode of CO2 fixation. The foregoing factors have been 
variously established to limit Rubisco activity under 
drought stress. For instance, Khedr et al. (2011) while 
using a xero-halophyte described the ionic imbalance in 
cells occasioned by the diminished cellular water content, 
as the primary causative factor in the fall of not in Rubisco. 
However, while working on a Mediterranean species, 
Galmés et al. (2011) believed that stomatal limitation 
is better correlated with Rubisco reduction than relative 
water content. 

The impact of species and genotypic difference on 
Rubisco activity during drought was also vivid in the 
experiments on different coffee species (Semedo et al., 2021) 
and in wheat varieties under drought stress (Hassan et al., 
2015; Nagy et al., 2013). Furthermore, as stated by Gomes 
et al. (2020), despite that a certain landrace of cowpea is 
drought sensitive, its Rubisco level was rather constant 
under drought stress suggesting that its susceptibility to 
drought is therefore unrelated to Rubisco. Accordingly, 
Lima Neto et al. (2017) demonstrated that the diminution 
in Rubisco content in Ricinus communis is different from 
that of Jatropha curcas despite being put under the same 
during drought scheme. Based on the understanding of 
this relationship between Rubisco activity and species 
difference, Chakhchar et al. (2019) considered Rubisco 
activity as one of the yardsticks in determining tolerance 
to drought in Argan tree. 

Aside the species difference, the severity and duration 
of drought are other factors related to a drought-induced 
reduction in Rubisco activity (Arquero et al., 2006; 
Flexas et al., 2006). Bota and Flexas (2004) concluded 
the arguments on whether Rubisco activity in C3 plants is 

reduced in progressive drought stress or not by stating that 
considerable reduction in the activity of the enzyme only 
occurs when the drought is severe. 

In comparing C3, C4 and CAM plants with regards 
to Rubisco activity and drought stress, current results by 
Shameer et al. (2018) and Gonçalves et al. (2020) have 
established the similarity in C3 and CAM plants with 
respect to carboxylase activity of Rubisco. C4 plants, on 
the other hand, differ. Thus, while the enhancement of 
Rubisco in rice, a C3 plant, did not translate to increased 
photosynthetic activity, the opposite was true for maize, 
a C4 plant (Doron et al., 2020; Suzuki and Makino, 2012). 
It is however worthy of noting that C4 plants largely adopt 
Phosphoenolpyruvate carboxylase (PEPC) for carbon 
fixation. PEPC has been observed to have a higher ability 
of CO2 fixation than Rubisco under drought stress (Jia et 
al., 2015; Kong et al., 2010). 

The relegation of photosynthetic activities during 
drought was proportional to the down-regulation 
of Rubisco subunits, rbcL and rbcs as seen in wheat 
(Demirevska et al., 2009) and in winter rapeseed (Chen et 
al., 2015a). If these subunits were enhanced, ameliorating 
the activities of Rubisco and photosynthesis would be 
achieved. This was demonstrated by Zhao et al. (2017) 
using 2, 4-epibrassinolide (EBR) applied exogenously 
to wheat plants under the combined stresses of heat and 
drought. In drought-stressed Maize, alpha lipoic acid 
(ALA) application had similar ameliorative results (Sezgin 
et al., 2019). As shown in cotton, decapitalised Potassium 
fertilizer is also one of the agents that have proven 
positive in the enhancement of Rubisco activity despite 
water-deficient conditions (Zahoor et al., 2017). These 
agents could have enhanced CO2 assimilation or reduced 
stomatal closure and hence were able to compensate for 
the drop in Rubisco activity and photosynthesis caused by 
drought. In Camellia oleifera, Mi et al. (2018) had asserted 
the effectiveness of these subunits as a marker in selecting 
drought-tolerant tea oil cultivars. 

Furthermore, through externally applied cytokinin, 
the suppression of Rubisco was reversed in drought-
stressed rice. The feat was achieved as a result of the 
proper management of Rubisco regulatory enzymes; Rca 
and Rubisco accumulation factor 1 (Raf1) ensured by the 
synthetic cytokinin (Gujjar et al., 2020). Rca belonging to 
the AAA+ family, acts as a catalytic chaperone in regulating 
the activity of Rubisco by facilitating the dissociation of 
inhibitory sugar phosphates from the active site of Rubisco 
in an ATP-dependent manner (Perdomo et al., 2017). On 
the other hand, Raf1 is an essential molecular chaperone, 
which aids the gathering of the Rubisco subunits (Vitlin 
et al., 2018).  In the study of Hassan et al. (2020), it was 
discovered that drought stress was against high Rubisco 
levels in wheat and that Polyamines (PA) alleviation of the 
stress was achieved through mechanisms including the 
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Table 1. A list of plants and their abiotic stresses against which Rubisco (level and activity) was reported.
 

Plant Abiotic Stress Reference

Alfalfa Drought Wang H et al. (2020)
Arabidopsis Drought Wijewardene et al. (2020)

Salinity Wijewardene et al. (2020)
Heat Wijewardene et al. (2020)

Argania spinosa Drought Chakhchar et al. (2019)
Azalea sp Heat Wang et al. (2020)
Barley Drought Aliakbari et al. (2021)

Salinity Aliakbari et al. (2021)
Brassica rapa Drought Mi et al. (2018)
Chenopodium quinoa Salinity Delatorre-Herrera et al. (2021)
Chickpea Heat Pipaliya and Gajera (2020)

Cold Poormazaheri et al. (2021)
Coffea spp Drought Dubberstein et al. (2020), Semedo et al. (2021)

Heat Dubberstein et al. (2020)
Cotton Heat Carmo-Silva et al. (2012)

Drought Carmo-Silva et al. (2012), Zahoor et al. (2017)
Cowpea Drought Gomes et al. (2020)
Cucumber Heat Nada et al. (2021)
Glycine max Heat Kuzmina and Wulffraaat (2020)
Grapevine Cold Hendrickson et al. (2004)
Haloxylon salicornicum Salinity Panda et al. (2020)
Hordeum vulgare Cold Jurczyk et al. (2019)
Jatropha curcas Drought Lima Neto et al. (2017)

Salinity Pompelli et al. (2021)
Kandelia obovata Cold Fei et al. (2021)
Maize Drought Doron et al. (2020), Sezgin et al. (2019)

Heat Perdomo et al. (2017)
Cold Salesse-Smith et al. (2020), Turk et al. (2020)
Cadmium Wang et al. (2009)

Miscanthus giganteus Heat Kuzmina and Wulffraaat (2020)
Cold Serrano‐Romero and Cousins (2020)
Salinity Sun et al. (2021)

Morus alba Lead Huihui et al. (2020)
Cadmium Huihui et al. (2020)

Mustard Cadmium Kaur et al. (2021), Per et al. (2016)
Olive  tree Salinity Moula et al., 2020

Potassium Arquero et al. (2006)
Phaseolus vulgaris Salinity ElSayed et al. (2021)
Pyrus ussuriensis Drought Lyu et al. (2016)
Rice Drought Gujjar et al. (2020), Ohno et al. (2018)

Arsenate Mishra and Singh (2021)

Heat Qu et al. (2021), Scafaro et al. (2016)
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elevation of Rubisco levels. These findings point to the fact 
that the manipulation of Rca, giving its closeness to Rubisco 
is, therefore, a sure way in enhancing photosynthesis. 
Unfortunately, bioengineering in that direction has not 
recorded resounding success owing to the complexities 
required in the metabolism and biogenesis of Rubisco 
(Bracher et al. 2017). 

3. Salt stress and Rubisco
Salinity or salt stress affects Rubisco activity negatively. In 
fact, according to Lu et al. (2009), there are no biochemical 
limitations to photosynthesis that is as much as salt-stress 
induced fall in Rubisco activity. In addition, Sun et al. (2021) 
while working with C4 Miscanthus sinensis plant depicted 
that the reduction in photosynthesis caused by salt stress was 
partly associated with the diminution in Rubisco activity. 
Hence, in a study analysing the photosynthetic differences 
between two contrasting ecotypes of Quinoa under severe 
salt stress, it was discovered that the ruggedness of the 
tolerant ecotype against the stress is partly from its ability 
to maintain Rubisco activities and other nondiffusional 
mechanisms of photosynthesis (Delatorre-Herrera et al., 
2021).

Salt stress, especially when high, impacts on the level 
and activity of Rubisco adversely through degradation 
and modulation of its biosynthesis (Li et al., 2017; Reddy 
et al., 2017; Xu et al., 2018). The reduction in Rubisco in 
plants under salt stress could also result from the inhibition 
generated by the instability in the folding configuration 

of native proteins (Hasanuzzaman et al., 2020). Since salt-
stressed plants often exhibit relatively low water, they are 
known with a metabolic impairment which is another factor 
related to the diminution of Rubisco (Pompelli et al., 2021).

Based on the discovery through proteomic analysis of 
a xero-halophyte, Haloxylon salicornicum, that salt stress 
induced up-regulation of Rubisco proteins, ameliorating the 
Rubisco activity during salt stress using tolerant organisms 
is, therefore, possible (Panda et al., 2020). Accordingly, in 
the two most important crops affected by salt stress (i.e. rice 
and tomato), the use of Halotolerant bacteria thus aided in 
combating the salt challenge via various means including 
ensuring the carboxylation efficiency of Rubisco and 
photosynthesis (Taj and Challabathula, 2021).    

The overexpression of Rca genes has also assisted in 
the acquisition of tolerance against salinity in transgenic 
plants (Wijewardene et al., 2020). Aliakbari et al. (2021) 
in their experiment on the Barley plant using meta-
analysis observed that the RcaA gene is responsive to not 
only drought stress but to both salt and drought stress. 
The adequate manipulation of the gene was, therefore, 
important to counter the commonly natural condition 
of combined salt and drought stress. During the salinity 
stress of the young wheat plant, the rate of photosynthesis 
was observed to be directly proportional to the amount of 
Rubisco genes. This lends credence to the hypothesis that 
the observed resistance to salinity stress noticed in the plant 
is connected to the heightened level of Rubisco in response 
to the stress (Bacu et al., 2020). 

Salinity Reddy et al. (2017)
Ricinus communis Drought Lima Neto et al. (2017)
Saussurea involucrata Cold Mu et al. (2021)
Sonneratia apetala Cold Shen et al. (2021)
Sorghum bicolor Lead Rathika et al. (2020)

Nickel Rathika et al. (2020)
Soybean Salinity Lu et al. (2009)
Tobacco Cadmium Zhang et al. (2020)

Zinc Zhang et al. (2020)
Tomato Heat Parrotta et al. (2020), Wang et al. (2015)

Cold Zhang L et al. (2020)
Cold Zhou et al. (2020)

Vigna radiata Salinity Hussain et al. (2021)
Watermelon Salinity Li et al. (2017)
Wheat Heat Alsamman et al. (2021), Degen et al. (2021) Kumar et al. (2019)

Drought Alsamman et al. (2021), Demirevska et al. (2009), Hassan et al. (2020)
Salinity Bacu et al. (2020), Talaat (2021)
Cadmium Moussa and El-Gamal (2010)

Table 1. (Continued).
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Furthermore, in boosting the Rubisco activity during 
salt stress to enhance photosynthesis, Jasmonic acid (JA) 
has been proven as a useful agent (Arif et al., 2020). In salt-
stressed green beans, melatonin applied exogenously also 
affected the boosting of Rubisco activity and eventually the 
rate of photosynthesis (ElSayed et al., 2021). Similarly, foliar-
applied salicylic acid in Mentha pulegium and Gibberellic 
acid in Olea europaea were efficient in mitigating reduced 
Rubisco activity triggered by salt salinization (Moula et 
al., 2020; Ghassemi-Golezani and Farhadi, 2021). In the 
wheat plant, when melatonin and salicylic were applied 
jointly, the improved tolerance against salt stress was 
more significant than using any of the agents singly. This 
induced tolerance was made via routes including the 
boosting of Rubisco activity and Rubisco activation state 
(Talaat, 2021). Mung bean showed a reduction in Rubisco 
activity up to 36% but both sulphur and salicylic acid 
effectively helped in mitigating this imbalance in Rubisco 
activity, especially when they are jointly applied (Hussain 
et al., 2021). In not with ginger seedlings, the utilization 
of low pH to improve the salt stress-induced reduction in 
Rubisco activities was achieved (Yang W et al., 2020). 

4. Heat stress and Rubisco
A clear understanding of Rubisco regulation at elevated 
temperatures is of great significance especially as the world 
still contends with the challenge of the warming climate. 
Temperature above the optimal level of plant growth limits 
photosynthesis through the reduction of Rubisco content 
and activity (Kumar et al., 2019; Parrotta et al., 2020; 
Scafaro et al., 2018). 

The inactivation of Rca follows the damage to the 
chloroplast caused by increased temperature (Li et al., 
2018). Shao et al. (2021) in their experiments believed 
that the loss of both initial and total activity of Rubisco 
induced by heat stress could have resulted from rapid leaf 
senescence. It has also been deduced that the heat-stress 
response of Rubisco is connected with its constituent amino 
acids and the association of its RbcL and RbcS isoforms 
(Degen et al. 2020; Perdomo et al. 2021; Scafaro et al 2019). 
In other words, it could be said that, the deactivation of 
Rubisco under high temperature goes in line with the 
inadequacy of Rca or decrease in the Rubisco activation 
(Alsamman et al.,2021; Degen et al., 2021; Dubberstein et 
al., 2020; Galmés et al., 2019; Wijewardene et al., 2021).

Since increasing temperature promotes the 
proliferation of Rubisco inhibitors, therefore the role of 
Rca in reactivating Rubisco requires the removal of these 
inhibitors through remodelling of the active site (Bhat et al., 
2017). Hence, under heat stress, improving the expression 
of Rubisco and Rca has the potential of inducing heat 
tolerance and maintenance of photosynthesis (Scafaro 
et al., 2016). Perdomo et al. (2017) had exemplified this 

with their experiments on cereals under heat stress. 
Coupled with other agents, Wang et al. (2020) recently 
revealed that Rca does not only play an active role in heat-
induced tolerance in Rhododendron hainanense but also 
in achieving heat stress acclimation memory in the plant. 
More recently, Qu et al. (2021) also confirm the claim in 
three heat-stressed rice lines as the joint overexpression 
of both Rubisco and Rca translated to improved CO2 
assimilation and photosynthesis. When the Rca of heat-
tolerant Larrea tridentate (LtRCA) was tested to improve 
the thermo-tolerance of Arabidopsis, it was discovered 
that it greatly aided the activity of Rubisco and over heat 
tolerance of Arabidopsis (Wijewardene et al., 2021). Quite 
surprising, however, despite the overexpression of Rca in 
transgenic rice, there was a fall in Rubisco content and CO2 
assimilation. According to Fukayama et al. (2012), this 
imbalance might have resulted from posttranscriptional 
mechanisms. 

In furtherance, since it is assumed that the manipulation 
of the Rubisco isoforms would be vital in regulating 
Rubisco under heat stress (Figure 1), Degan et al. (2020) 
successfully carried out the substitution of a single amino 
acid (methionine) with isoleucine in the Rca2β  isoform 
to improve the Rubisco activation and heat stability of the 
wheat plant. However, in C4 plants under heat stress, it is 
the Rca-α isoform that showed better thermos-stability and 
was more related to Rubisco activation and photosynthesis 
(Kim et al., 2021). 

Despite the advantages manipulating the Rca offer in 
improving the Rubisco activity and photosynthesis, the 
challenges of its complex structure, the requirement of 
expansive labour and time, and the dangerous impacts 
associated with the manipulation limited research in that 
area (Wilson et al., 2019). Experiments like those of Daki 
et al. (2021) and Kuzmina and Wulffraaat (2020) involving 
the exploitation of the relatively large quantity of Rca 
isoforms, in addition to the introduction of superior forms 
of Rca via genetic engineering or breeding to induce the 
maintenance of Rubisco and make it more tolerant to the 
prevailing warming climate, are therefore more required.

Some chemical agents and priming techniques have 
been used in alleviating heat-induced reduction in 
Rubisco. For instance, chickpea showed reduction in 
Rubisco activity following the onset of heat stress at the 
flowering stage but was rescued under the influence of 
salicylic acid (Pipaliya and Gajera, 2020). In the same 
pattern, magnesium-treated wheat under heat temperature 
was able to maintain stable photosynthesis during grain 
filling through the enhancement of Rubisco activation 
(Shao et al., 2021). In cucumber leaves, Nada et al. (2021) 
also showed that thermal acclimation was effective in 
alleviating the reduced photosynthesis caused by heat 
stress.
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Some researchers have made outstanding efforts in 
detecting proteins related to Rubisco activity during heat 
stress. The proteins identified to be of considerable influence 
in maintaining Rubisco activity during heat stress are 
SlCDJ2 and TaRCA1 (Wang et al., 2015).

5. Cold stress and Rubisco
Like heat stress, cold or low-temperature stress also induces 
Rubisco inactivation, limits photosynthesis, and adversely 
affects the general crop growth and yield (Hendrickson et al., 
2004; Ohno et al., 2018; Wang et al., 2021b). In fact, according 
to Chen et al. (2015b), the main factor in the reduction of 
photosynthesis in cold-stressed rice is the degradation of 
Rubisco. In plants generally, Hashida and Kawai-Yamada 
(2019) established that the fall in photosynthesis rate and 
disruption of the photosystem due to cold are significantly 
connected with the impairment of Rubisco activity and its 
abundance. 

It is a common belief that C4 plants like 
Miscanthus  giganteus  coordinate chilling-tolerance via 
improved activities of Rubisco and other biochemical 
agents (Serrano‐Romero and Cousins, 2020). However, 
according to Iniguez et al. (2020), C3 plants tend to adapt to 
cold environments better than C4 plants because the former 
achieves the saturation of Rubisco better than the latter in 
cold temperatures. 

Current findings confirmed that both the RbcS and RbcL 
subunits are down-regulated following cold stress. Therefore, 
the overexpression of the Rubisco subunits and the Rca show 
great efficiency in achieving stability in Rubisco activity 
despite chilling conditions (Salesse-Smith et al., 2018, 2020).

In addition, since experiments like Poormazaheri et 
al. (2021) and Fei et al. (2021) have revealed that proteins 
relating to the abundance and activities of Rubisco were 

the most significantly enhanced proteins in cold-tolerant 
plants, researchers like Mu et al. (2021), therefore induced 
overexpression of cold-responsive factor like SiFBA5 
(Fructose-1, 6-bisphosphate aldolase from Saussurea 
involucrata) in enhancing photosynthesis and tolerance 
against low temperature. Zhang L et al. (2020) reported 
a similar enhancement in Rubisco and photosynthesis in 
chilled-stressed tomatoes via the overexpression of SikRbcs2.

Also, using proteomic analysis, it has been illustrated 
that the induction of chilling tolerance through prior cold-
acclimation promotes the increase in the expression of 
proteins related to photosynthesis like Rubisco proteins 
(Jurczyk et al., 2019; Shen et al., 2021; Zhou et al., 2012). In 
the study of Inal et al. (2021) on Chlamydomonas reinhardtii, 
the external application of Putrescine was enough to counter 
the reduction in Rubisco proteins. The same positive boosting 
of Rubisco was observed in chilled maize seedlings following 
the application of carnitine (Turk et al., 2020). 

6. Heavy metal stress and Rubisco
Heavy metals lower the activity of Rubisco level and activity 
in many different ways. These metals generally interfere with 
the oxygenation and structure of Rubisco (Amari et al., 2017; 
Huihui et al., 2020; Manna et al., 2021; Wang et al., 2009). 
Incredibly, some other heavy metals stresses like lead (Pb), 
Nickel (Ni), and copper (Cu) stresses have recorded an 
increase in the Rubisco activity (Arena et al., 2017; Rathika 
et al., 2020; Singh and Singh, 2020; Son et al., 2014; Yang et 
al., 2020). Other heavy metals like decapitalize Zinc (Zn) had 
little impact on the Rubisco subunits and Rca (Zhang et al., 
2020). 

Considering that heavy metals had been proven generally 
to down-regulate Rubisco, it is thus not surprising that up-
regulating Rubisco using chemical agents plays a vital role in 

Figure 1. Probable ways of using Rca to enhance photosynthesis at high temperatures 
(Wijewardene et al., 2021). Rca = Rubisco activase. 3’ UTR = 3’ untranslated region. 

 

Figure: Probable ways of using Rca to enhance photosynthesis at high temperatures 

(Wijewardene et al., 2021). 
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achieving better photosynthesis under metal toxicity (Moussa 
and El-Gamal, 2010). For example, citric acid and vermi-
wash had been used to further the enhancement of Rubisco 
activity in both Pb and Ni-stressed Sorghum plants (Rathika 
et al., 2020). Salicylic acid (SA) and hydrogen sulphide (H2S) 
were used to assist the modulation of the photosynthesis of 
the Mustard plant under Cadmium stress via routes including 
majorly the up-regulation of Rubisco activity (Kaur et al., 
2021). Same as SA and H2S, gibberellins (GAs), nitric oxide 
(NO), methyl jasmonate (MeJA) and Brassinosteroids (BRs) 
also help in ensuring tolerance against heavy metals through 
mechanisms involving the maintenance of the Rubisco 
activity (Arif et al., 2021; Emamverdian et al., 2020; Mishra 
and Singh, 2021; Per et al., 2016; Xia et al., 2009).  Glutathione 
is another agent, that when externally applied had great 
results in alleviating the heavy metal stress as exemplified in 
Tobacco (Son et al., 2014). 

7. Conclusion and future prospects
The dearth of information on the detailed mechanisms 
of Rubisco in higher plants has made the progression 
in the enhancement of Rubisco against abiotic stresses 

rather slow. Studies like those of Ng et al. (2020) revolving 
around the sites of interaction between Rubisco and Rca 
are regarded as useful in solving this challenge and hence 
more studies in that direction are needed. 

Also, at present only a few plants like Tamarindus 
indica (Ogbaga et al., 2019) have their Rubisco gene 
characterized and thus in the coming years, advancement 
in the characterisation of the Rubisco and interaction with 
the activase should be a point of focus, especially using 
‘omic’ approaches. 

Lastly, like Lin et al. (2020), experiments revealing the 
kinetic ability of the Rubisco subunits of different plants 
are also handy in improving the photosynthetic ability 
of Rubisco. It is concluded that all these suggestions will 
ensure actualizing resilience of Rubisco in the face of 
unfavourable abiotic conditions and ultimately enhance 
the sustainability of world agriculture.
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