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1.  Introduction
Chenopodium quinoa has been grown and consumed by 
humans in the Andean region for almost 7,000 years. It 
is categorized as a pseudo cereal crop (Bhargava et al., 
2006), along with domestic chenopods, amaranths, and 
buckwheat. Since 1980, quinoa cultivation has generated 
considerable attention in a number of countries due to its 
morpho-physiological properties (Hinojosa et al., 2018). It 
is regarded as a multipurpose crop since it includes a wide 
range of essential components, including vitamins, protein, 
fatty acids, carbohydrates, and dietary fiber (Bastidas et al., 
2016). Also, a large number of micronutrients, phenolic 
compounds, minerals, and antioxidant substances are 
present (Nowak, 2016). However, because of the ever-
increasing global population and the severe effects of 
climate change, this crop is facing various challenges 
(Fahad et al., 2017). Changes in ecosystems and human 
activities are generating numerous problems in the form 
of environmental stresses, which are causing severe 
concern (Bajwa et al., 2016). Different approaches, such 
as allelopathy, are used to protect plants from a variety of 
environmental challenges. Evidence suggests that quinoa 
has great allelopathic potential, by significantly affecting 

the biological and physiological functions of other plants 
(Bajwa et al., 2018). The review’s aim is to provide an 
overview of current knowledge about quinoa’s allelopathic 
potential, chemical composition, and nutritional qualities 
as well as its tolerance to various abiotic stressors.

2.  Morphological characterization of quinoa
Quinoa cultivars differ enormously in morphology, 
phenology, and chemical composition (Bertero et al., 2004). 
Seeds are flattened and spherical, with diameters ranging 
from 1.5 to 4 mm; around 350 seeds weigh 1 g and appear 
in a range of colors, including white, yellow, purple, and 
black (Hussain et al., 2021). Inside seeds, a core perisperm 
is surrounded by a peripheral embryo as shown in Figure 
1. One to two cell layers thick endosperm protects the 
micropyle and the reserve stockpile is divided into many 
sections (Langlie, 2019). The reserve store is divided into 
many sections. The core perisperm stores starch, whereas 
embryonic tissues and endosperm store lipid and protein 
components (Bobreneva et al., 2018). The pericarp bonds 
to the seed and contains saponins, which contribute to 
quinoa’s bitter taste. The cylindrical seed is surrounded 
by a thin layer of episperm. The embryo comprise for up 
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to 60% of the seed’s weight (Hernández et al., 2020). The 
cultivation period of quinoa is from March 15 to April 15; 
the germination percentage in late spring, e.g., May, is very 
low, and the ideal planting density is 25 plants/m2 or (10 
kg per acre) (Dhammu et al., 2019). The root is lengthy 
up to 30 cm and grow deep. The stem is cylindrical, with 
a diameter of 3.5 cm, and may be straight or branching, 
with a range of colors (Jancurová et al., 2009). The leaves 
are shaped like a goose foot and range in color from white 
to yellow to light brown to red, depending on the variety. 
The flowers are incomplete and lacking petals. Quinoa 
has both male and female flowers that develop at the 
distal and proximal edges of the inflorescence (Valencia-
Chamorro, 2003). Flowers may be grouped into clusters 
that are glomerulate or amaranthiforme (Jancurová et al., 
2009). This structure develops many secondary branches 
from a central axis, conforming to compact, lax, or mixed 
inflorescences producing hermaphrodite or unisexual 
flowers. As a result, hermaphrodite flowers are found at the 
distal end of the inflorescence’s primary, secondary, and 
tertiary branches (Abdelbar, 2018). Seed harvesting may 
occur 70–90 days after blossoming, with a total duration 
from seedling to maturity of eight months (Valencia-
Chamorro, 2003). It is likely to give yields ranging from 
45 to 500 g/m2 depending on the species, geographic area, 
and method of cultivation.

3. Biochemical and nutritional composition of quinoa 
Grains are an essential part of the human diet since they 
provide half of a healthy diet and physical calorie and 
protein needs (Bobreneva et al., 2018). Quinoa is a perfect 
example of a “health food” since it may avoid a range of 

ailments (Singh and Singh, 2016). The functional properties 
may be linked to the availability of essential elements such 
as fiber, vitamins, fatty acids, and antioxidants, which are 
all necessary for human health (Antonio, 2015). Quinoa 
is gluten-free and has a well-balanced mix of essential 
amino acids, making it an easy to digest and balanced meal 
(Abugoch et al., 2009). It also contains more total protein, 
methionine, and lysine, as well as fatty acids equivalent to 
those found in soybean oil; it is a healthier alternative to 
traditional grains like rice, maize, barley, and wheat (Spehar 
et al., 2007). Quinoa’s biological value is comparable to 
that of milk protein. People with celiac disease may eat a 
larger variety of more healthy and acceptable meals since 
quinoa seeds are gluten-free (Calderelli et al., 2016). It also 
has higher quantities of minerals including potassium, 
calcium, magnesium, phosphorus, and iron than most 
other cereals as listed in Table 1. The panicles and leaves 
are abundant in protein, fiber, minerals, and vitamins, and 
may be used in soups, cereals, biscuits, and bread in the 
same way as rice seeds (Spehar et al., 2007). Furthermore, 
quinoa sprouts and leaves are eaten in salads in the same 
way as spinach leaves are. Because of its great caloric 
and nutritional content, it is also fed to cattle, pigs, and 
chickens (Sezgin and Sanlier, 2019). Some other important 
nutrients are described in further detail in the following 
sections.
3.1. Carbohydrates 
Quinoa has a high carbohydrate content that gives it 
the same glycemic index as cereal grains. It is reported 
that it may now be utilized to generate products that are 
carbohydrate-based because the seed of quinoa have a 
perisperm that contains starch, which is different from the 

Figure 1. Quinoa seed structure and parts. 

 

 

 

 

 

 

 

 

Figure 1. Quinoa seed structure and its parts.
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Table 1. Nutritions contained in quinoa plants.

Component Amount Plant part References

Proteina

16.5 Grain (Valencia-Chamorro, 2003)

14.7 Grain (Hussain et al., 2021)

16.5 Grain (Vega-Gálvez et al., 2010)

14.1 Grain (Hernández-Ledesma et al., 2019)

14.4 Grain (Repo-Carrasco et al., 2011)

15.6 Grain (Usda,  2015)

16.7 Grain (Wright et al., 2002)

12.5 Grain (Dini et al., 1992)

3.3 Leaf (Valencia-Chamorro,  2003)

Carbohydratesa

69.0 Grain (Vega-Gálvez et al., 2010)

61.6 Grain (Usda, 2015)

69.0 Grain  (Valencia-Chamorro, 2003)

72.6 Grain (Repo-Carrasco et al., 2011)

68.1 Grain  (Hussain et al., 2021)

64.2 Grain  (Hernández-Ledesma et al., 2019)

4.8 Leaf (Valencia-Chamorro, 2003)

74.7 Grain  (Wright et al., 2002)

60.0 Grain  (Dini et al., 1992)

Fatsa

5.9 Grain (Usda,  2015)

6.3 Grain (Vega-Gálvez et al., 2010)

6.0 Grain (Repo-Carrasco et al., 2011)

1.8 Leaf (Valencia-Chamorro, 2003)

5.3 Grain (Hussain et al., 2021)

6.1 Grain (Hernández-Ledesma et al., 2019)

6.3 Grain (Valencia-Chamorro, 2003)

5.5 Gain (Wright et al., 2002)

8.5 Grain (Dini et al., 1992)

Calcium  (Ca)b

1274 Grain (Bhargava et al., 2006)

153 Leaf (Vega-Gálvez et al., 2010)

1213 Grain (Ando, 2002)

Potassium (K)b 

9000 Grain (Chauhan, 1992)

8257 Grain (Ando, 2002)

357 Leaf (Vega-Gálvez et al., 2010)

Iron (Fe)b

92 Grain (Chauhan, 1992)

168 Grain (Repo-Carrasco et al., 2011)

20 Grain (Bhargava et al., 2006)

Zinc (Zn)b
48 Grain (Repo-Carrasco et al., 2011)

48 Grain (Bhargava et al., 2006)

a: g/100g; b: mg/kg dry weight; c: mg 100 g–1; d: g 100 g−1 protein; e: g 100 g−1 of oil extract.
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endosperm of cereal grains (Satheesh and Fanta, 2018). 
Based on analyses, starch accounts for 58.1%–64.2% of the 
dry weight of quinoa, with amylose contributing for around 
11% (Repo-Carrasco et al., 2003). Similarly, the seed of 
quinoa has 26% higher lignin content than other pseudo 
cereal crop even the size of quinoa’s seed is lower than maize 
and wheat (Asher et al., 2020). Besides, monosaccharides, 
disaccharides, crude fiber, and pentosanes were found 
about 3%, 2%, 3%, and 2.9%, respectively (Valencia-
Chamorro, 2003). Some other carbohydrates including 
maltose (1.4 2.9 mg/100 gm), saccharide (2.9 mg/100 
gm, D-galactose, D-ribose, fructose (0.2 mg/100 gm) and 
glucose (1.7 mg/100 gm) can be also found in quinoa’s 
seed (Saturni et al., 2010). The starch of quinoa’s seed 
has higher viscosity compere to other cereals crops such 
as wheat and barley (Tang et al., 2002). It is one of two 
key starches that are well-known across the world having 
average molar mass of 11.3, less dense than waxy maize 
starch and healthier (Park et al., 2007). Furthermore, it 
has a maximum polymerization degree of 161,000 glucose 
units and a weighted average polymerization degree of 
70,000; it is also depending on the plant origin (Yao and 
Shi, 2014). The length of the chain may range from 500 
to 6,000 glucose units; however this is the most common 
range (Satheesh and  Fanta, 2018).
3.2. Protein
Proteins and amino acids serve as structural building 
blocks, catalysts, energy sources, and protein synthesis 
supplies in biological processes (Morrison and Laeger, 
2015). Quinoa is a good source of protein for vegetarians 
and vegans alike, since it contains all essential amino 
acids and excludes casein, a protein found in milk (Repo-
Carrasco et al., 2003).  Its protein content ranges from 
12.9 to 16.5%, and it includes all the necessary amino 
acids. The embryo of quinoa is the primary protein source 
(Meneguetti et al., 2011). Also have a higher concentration 
of the first essential amino acid, lysine, than wheat or 
maize seeds, which improves amino acid balance (Vilche 
et al., 2003). In a recent study, it was shown that bolivian 
sweet and bitter quinoa provide 14.8% and 15.7% of the 
daily recommended protein intake, respectively (Wright 
et al., 2002). Besides, quinoa contains isoleucine, lysine, 
methionine, cysteine, phenylalanine, tyrosine, tryptophan 
and valine which could be used in different purposes. It 
has been discovered that a high-quality edible vegetable oil 
made from the lipids of quinoa seeds has an acid-fatty acid 
composition similar to soybean oil, meaning that the oil 
is of greater quality for cooking and other purposes than 
soybean oil (Comai et al., 2007). Quinoa, being one of the 
most concentrated leaf protein sources available, has the 
potential to be used as a protein alternative in food and 
feed, medicine, and other applications (Bhargava et al., 
2005). However, more discoveries are being made all the 

time, and more research is required to fully understand the 
protein and amino acid profiles of quinoa. 
3.3. Fats 
Essential fatty acids must be obtained from the diet since 
humans are unable to produce all the fatty acids they need. 
In this context, quinoa has been considered for the high 
quality and quantity of its lipid content in their seed oil. 
Lipid bodies are storage components found in endosperm 
and embryo tissue cells (Varma and Jain, 2021). The oil 
content varies from 2.0% to 9.5% and it contains important 
fatty acids like linoleic acid, oleic acid, and alpha-linolenic 
acid, as well as high levels of antioxidants, such as α and 
γ-tocopherol (Maradini et al., 2015). Tocopherols exist 
in four isomers, each with antioxidant properties. The 
obtained oils have a slightly higher concentration of 
γ-tocopherol than corn germ oil, which has 251 ppm of 
α-tocopherol and 558 ppm of γ-tocopherol. Thus, quinoa 
has a long shelf-life due to its high oil content and the 
antioxidant properties of γ-tocopherol (Repo-Carrasco et 
al., 2003). Furthermore, quinoa oil contains unsaponifiable 
matter (5.2%), lecithins (1.8%), and sterols (1.5%), and has 
a specific gravity of 0.8910 at 20°C, a refractive index of 
1.4637 at 25°C, an acid number of 16.5, a saponification 
number of 190, and an iodine value (Wijs) of 129 (Filho 
et al., 2017). Moreover, the oil contains 85% unsaturated 
fats, making it comparable in terms of total fats. The most 
essential lipids are triglycerides found in quinoa seed 
around 50%, which is identified in significant amounts 
throughout the seed (Valencia-Chamorro, 2003). All of 
the fatty acids in quinoa are protected by vitamin E, which 
is a natural antioxidant (Gordillo-Bastidas et al., 2016).
3.4. Minerals and vitamins
Quinoa is rich in micronutrients, vitamins, and minerals, 
which make it a great source of food (Nascimento et al., 
2014). The embryo contains potassium and magnesium, 
while the pericarp cell wall contains calcium and 
phosphorus (Schoenlechner, 2017). Compered to maize, 
wheat and barley, quinoa has higher calcium, magnesium, 
iron, and zinc levels in their grains (Vega-Gálvez et al., 
2010). It is estimated that 100 g of quinoa seed will provide 
adequate magnesium, copper, and iron for both neonates 
and adults to fulfill their daily needs. However, phosphorus 
and zinc levels only meet 40%–60% of adult daily needs 
(González et al., 2014). Furthermore, quinoa has folic acid 
(78.1 mg/100 gm), vitamin C (1.4 mg/100 gm), vitamin 
B6 (0.20 mg/100 gm) and pantothenic acid (0.61 gm/100 
gm) (Vega-Gálvez et al., 2010). Quinoa contains vitamin 
B1, vitamin B2, vitamin E, and α-carotene which are not 
available in other pseudo cereal crops (Li et al., 2012). In 
addition, other vitamins such as vitamins A, B2, E, K2, 
γ, β-carotene, tocopherols, tocotrienols, and niacin can 
also be found in quinoa seed. Compared to other pseudo 
cereals, quinoa has a higher concentration of niacin, 
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riboflavin, vitamin B6, and total folate in their grains 
(Usda, 2005). According to another study, the riboflavin, 
which is found in quinoa, can fulfil 85% of the children’s 
daily requirements in a single 100 g meal (National 
Academy of Sciences, 2004). Quinoa is also high in betaine 
and its metabolic precursor choline, which is a vitamin-
like nutrient that helps the body produce phospholipids 
(e.g., phosphatidylcholine and sphingomyelin).

4. Tolerance against abiotic stress
Abiotic stress is one of the most intractable problems that 
agriculture faces today. Abiotic stress causes morphological, 
physiological, biochemical, and molecular changes in 
plants that have a negative influence on their development 
and productivity (Chaudhry and Sidhu, 2021). Abiotic 
stress, which reduces yields by more than 50% worldwide, 
is the main cause of crop losses. Quinoa can adapt to a 
variety of stresses due to its natural variability in traits 
such as inflorescence type, seed size, life-cycle duration, 
and chemical composition as shown in Table 2 (Bertero 
et al., 2004). Quinoa selected by the United Nations Food 
and Agriculture Organization (FAO) as the plant species 
that can ensure food security in the twenty-first century 
due to its nutritional properties and significant tolerance 
to abiotic stresses (Orsini et al., 2011). Tolerance to many 
stressors has been reported for quinoa, including salt, 
drought, cold, frost, and heat, which are reviewed in the 
following sections.
4.1. Salt stress
Salt stress is one of the abiotic stresses which most strongly 
impacts crop quality and productivity. The Amaranthaceae 
family comprises the highest number of halophytic 
genera, accounting for 44% of all halophytic genera 
and 321 species (Adolf et al., 2013). Quinoa is the most 
commercially significant species in this family because it 
produces highly nutritious seeds. It can survive salinities 
as high as 750 mM NaCl without losing nutritional value 
(Jacobsen and Mujica, 2001). However, even at 500 mM 
NaCl, some varieties can complete their life cycle (Adolf 
et al., 2013). Quinoa may store salt ions inside its tissues 
to manage and maintain the water potential of its leaves in 
order to prevent dehydration and possibly death (Jacobsen 
et al., 2000). Leaf area, biomass output, seed yield, and 
harvest index all increased when grown in moderately salty 
conditions, demonstrating that quinoa is an adaptive plant 
that thrives in saline situations (Jacobsen, 2003). Quinoa 
reduces salt toxicity in salt bladders by excluding salt from 
leaf tissues and compartmentalising Na+ into vacuoles 
(Jaikishun et al., 2019). Epidermal bladder cells (EBCs) are 
modified epidermal hairs found in quinoa leaves, stems, 
and inflorescences that have a diameter about 10 times 
bigger than epidermal cells and can sequester 1000-fold 
more Na+ than regular leaf cell vacuoles (Hinojosa et al., 

2018). EBCs are thought to be storage cells for excess Na+, 
Cl-, and K+ (Agarie et al., 2007). Plant germination stages 
are sensitive to salinity; salt concentrations ranging from 
100 to 250 mM NaCl have no effect on quinoa germination 
rates in most genotypes, whereas the optimum salinity for 
quinoa growth ranges from 100 to 200 mM NaCl (Gul et 
al., 2013). However, NaCl concentrations ranging from 
150 to 250 mM cause germination to be delayed (Orsini 
et al., 2011) and seed germination is inhibited above 400 
mM NaCl (Hariadi et al., 2011). The number of stomata 
per leaf area and density have been shown to be affected by 
salinity in different parts of the world. In young, middle, 
and old leaves, a saline concentration of 400 mg/NaCl was 
shown to have an effect on the stomatal area (Orsini et 
al., 2011). The opposite effect was reported in ‘Achachino’, 
with stomatal density increasing by 18% when the plants 
were grown at 250 mM NaCl;  however, salinity reduced 
stomatal size (Becker et al., 2017). High salt concentrations 
in the soil cause hyperosmotic stress in the roots, reducing 
the plant’s ability to absorb water efficiently and lowering 
photosynthetic efficiency (Zhao et al., 2020). When quinoa 
plants were cultivated at a salt level of 500 mM NaCl, the 
net photosynthetic rate was reduced by 70%, while CO2 
assimilation was reduced by 25% and 67%, respectively, 
when quinoa plants were grown at 400 mM NaCl (Dinneny, 
2015). Other studies showed that halotolerant bacteria 
(Enterobacter sp. and Bacillus sp.) reduced the negative 
effects of salinity in quinoa when grown in 300 mM 
NaCl (Yang et al., 2016). Due to their ability to produce 
phytohormones and solubilize phosphate, halotolerant 
rhizobacteria have been used to reduce the damage 
caused by salt stress in plants (Li et al., 2017).  In addition 
paclobutrazol, a gibberellic acid synthesis inhibitor, has 
been used to increase yield in quinoa under high salinity 
conditions (Gómez et al., 2011).
4.2. Drought stress
Drought is an extreme  environmental condition that is 
increasing as a result of climate change and has a negative 
impact on agricultural yields globally (Barrera-Figueroa 
et al., 2011). Quinoa is drought-tolerant, with the capacity 
to resume photosynthetic activity, and growth (leaf area) 
after a period of drought (Jacobsen et al., 2009). Quinoa 
has drought escape, tolerance, and avoidance mechanisms; 
other preventive methods include tissue flexibility, low 
osmotic potential, decreased leaf area through dehiscence, 
the presence of vesicular calcium oxalate, and small 
and thin-walled cells (Abugoch et al., 2009). According 
to Alvarez-Flores (2012) quinoa’s drought resistance is due 
to its branched and deep root system, which can reach 1.5 
m in sandy soils, as well as the presence of calcium oxalate-
containing leaf vesicles, which may reduce transpiration. 
Quinoa also avoids drought by shedding leaves, having 
small, thick-walled cells that maintain turgor even after 
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severe water losses, and regulating its stomata (Zurita et 
al., 2015). Quinoa has a high ability to quickly resume 
leaf formation after severe drought stress, and its wilting 
point is lower than other crops; the anatomical features 
that may confer drought tolerance are stomata deeply 
sunken in the leaf epidermis (Andrés et al., 2015). Quinoa 
resists drought for up to three months at the start of 
its growth cycle (González et al., 2015). Jensen (2000) 
reported high net photosynthesis and specific leaf area in 
the early vegetative stage, and low osmotic potential and 
turgid/dry weight ratios in the later growth stage, during 

the desiccating soil effect on quinoa leaf conductance, 
photosynthetic rate, and water relations. Quinoa had 
higher levels of glucose and total soluble sugars under 
drought conditions, whereas other carbohydrates like 
fructose, sucrose, and starch differed slightly but not 
significantly (Gonzalez et al., 2012). Mild soil drying 
increased xylem abscisic acid (ABA) levels, however ABA 
produced in the root influenced stomatal function, and 
soil drying promoted stomatal closure, which reduced 
photosynthesis (Jacobsen et al., 2009). Stomata do not 
appear to respond to ABA unless they are exposed to 

Table 2. Involvement of different compounds in stress responses of quinoa.

Chemical Function Stress type References 

Saponin Reducing Na+ uptake and improving water relations Salinity (Yang et al., 2018)
Polyethylene glycol Improved germination in salinity conditions Salinity (Moreno et al., 2018)

Paclobutrazol 
Improved chlorophyll and carotenoid content, increased 
accumulation of osmoprotectants and antioxidants in leaf and 
root tissues

Salinity (Waqas et al., 2017)

Proline and phenolics 

They reduce the accumulation of H2O2 and MDA  in 
association with the activation of antioxidant enzymes under 
salinity and play an important role in reducing the detrimental 
effects of salinity

Salinity (Ruffino et al., 2010; 
Ruiz-Carrasco et al., 2011)

Choline Play an important role in the osmotic adjustment to salinity 
stress Salinity (Pottosin et al., 2014)

Betalains Salt stress tolerance due to their antioxidant activity Salinity (Jain et al., 2015)

Gene CqCYP76AD1-1 Involved in betalain biosynthesis during the hypocotyl 
pigmentation process Salinity (Imamura et al., 2018)

Proline and soluble sugars 
(fructose, sucrose )

They facilitate the avoidance of ice formation and lower the 
freezing and mean lethal temperatures (TL50) Cold (Sanchez, 2018)

CO2/H2O gas Key determinant for plant growth and biomass production Salinity (González et al., 2015)

Heat-shock  proteins 
(HSPs)

Play a central role in the heat stress response (HSR) when 
plants suffer from either an abrupt or gradual increase in 
temperature

Heat (Hinojosa et al., 2018)

Proteins (dehydrins) Osmoprotective function Salinity (Grenfell and Tester, 2021)
Abscisic acid  (ABA) Induced a decreased turgor of stomata guard cells Drought (Jacobsen et al., 2009)

Ammonium nitrate 
(NH4NO3)

Improve plant performance Drought (Alandia et al., 2016)

Acidified biochar Improve quinoa plant growth, yield, physiological, and 
antioxidant activity Drought (Aziz et al., 2018)

Synthetic ascorbic acid 
and orange juice (natural 
ascorbic acid)

Increase plant growth, total carotenoids, free amino acids, and 
several antioxidant enzymes Drought (Aziz et al., 2018)

Heat shock protein 
(HSP70s) Play an important role in stress response Drought (Liu et al., 2018)

Amino acids, proline,
betains Plants respond to stress by accumulating them Drought (Sadak et al., 2019)



SHAH and KHAN / Turk J Bot

559

extreme dryness, and quinoa plants may photosynthesize 
for a long period with low irrigation, even three days after 
stomata close (Jacobsen et al., 2009). Quinoa’s physiological 
responses to stress are shown in Figure 2. Other studies 
suggested that adding compost and acidified biochar to 
drought-affected soils can enhance quinoa plant growth, 
yield, and antioxidant activities, as well as improve the 
chemical and biochemical characteristics of quinoa seeds 
(Aziz et al., 2018). Synthetic ascorbic acid and natural 
ascorbic acid (orange juice) increased plant growth, total 
carotenoids, free amino acids, and several antioxidant 
enzymes in drought conditions (Hinojosa et al., 2018). 
Drought tolerance of quinoa was increased by using 
exogenous H2O2 as a seed primer and 15 mM as a foliar 
spray, resulting in higher photosynthetic rates, stomatal 
conductance, chlorophyll content indices, sugar, ABA, and 
proline levels (Iqbal et al., 2018). Proline accumulation can 
improve growth parameters, relative water content, yield 
components, and nutritional quality in drought conditions 
(Elewa et al., 2017).
4.3. Cold stress
Quinoa is an important grain crop that is less damaged 
by cold than most other crop species, although little is 
known about its frost resistance mechanisms (Jacobsen 
et al., 2005). Cold weather affects germination and other 
developmental stages such as leaf appearance, water 
relations, biochemical changes, biomass, and portioning 
(Bois et al., 2006). Germination of quinoa occurs in 
a wide range of temperatures, from extremely cold 
(1.9 °C) to very hot (>48.0 °C) (Hinojosa et al., 2018). 
The base germination temperature is 3 ℃, the optimal 
germination temperature is from 30 to 35 ℃, and the 

maximum germination temperature is 50 ℃ (González 
et al., 2017). The base temperature (Tb)  is a variable 
threshold for quinoa development; e.g., Tb is 1°C for the 
flowering period and leaf appearance, whereas 6 °C for 
leaf width (Bois et al., 2006). Furthermore, it has also 
been shown to have super cooling properties, protecting 
it from damage caused by intense cold, andcan tolerate 
temperatures as low as 16 °C during the vegetative stage 
and grows well at temperatures as low as –5 °C (Bois et 
al., 2006). Strong antioxidant activities enable it to tolerate 
ice formation in its cell walls without causing irreversible 
damage to the structure and components of the cell (Vera-
Hernández et al., 2018). Proline and soluble sugars, such 
as fructans, sucrose, and dehydrins, are used to facilitate 
the avoidance of ice formation and could also be used 
as an indicator of frost resistance and lower the freezing 
and mean lethal temperatures (TL50) (Jacobsen et al., 
2007). During anthesis, frost was more detrimental than 
during the vegetative stage, and frost later in the growing 
season is more detrimental to the crop than frost earlier 
in the season (Jacobsen et al., 2005). The flowering stage 
is more susceptible to frost, with yield decreases of 56% 
in the research when plants were exposed to 4 °C for 4 
h (Hinojosa et al.,  2018). A strong frost (–4.4°C) during 
flowering caused yield losses of more than 70% (Murphy 
et al., 2018). Temperatures below –2 °C during flowering 
resulted in significant quinoa losses; however, frost 
tolerance developed once the seed reached the soft dough 
stage, and plants could tolerate temperatures as low as –7 
°C (Alvar-Beltrán et al., 2020). When plants in anthesis 
were exposed to –4 °C, they reduced 66% of their yield, 
whereas seedlings at the two-leaf growth stage reduced 
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only 9% (Jacobsen et al., 2005). Quinoa can withstand 
freezing temperatures before flowerbud formation as 
well as temperatures as low as –8 °C for up to 2 h during 
flowering (Gómez et al., 2022). 
4.4. Heat stress
Excessive high temperatures during plant growth are one 
of the major abiotic stresses, and they are becoming more 
common as a result of current climate change. The average 
annual global air temperature is expected to rise from 
0.3 to 0.7 ℃ per decade, with a maximum temperature 
rise of 4.8 ℃ predicted by the end of the century (IPCC 
et al., 2014). Heat stress, defined as an increase in air 
temperature above the optimal growth temperature for 
a period of time long enough to harm plant growth and 
development, occurs often in tandem with drought in 
plants and causes severe agricultural losses all across the 
globe (Sehgal et al., 2017). The response of plants to heat 
stress is different among different varieties (Driedonks 
et al., 2016). Heat stress directly affects plants through 
several mechanisms, including protein denaturation, 
increased membrane fluidity, photosynthesis, and carbon 
metabolism enzyme activity. It also causes dramatic 
changes in phytohormones, such as ABA, salicylic 
acid, and ethylene, as well as increased production of 

secondary metabolites (Wahid et al., 2007). The heat 
stress responses of the quinoa plant are shown in Figure 3. 
Quinoa can tolerate a wide range of temperatures, i.e. –8 
to 35 °C, and relative humidity conditions i.e. 40%–88%, 
depending on genetic characteristics and phenological 
stage (Jacobsen et al., 2005). Heat-shock proteins (HSPs) 
play an important role in heat tolerance, and HSP70 and 
HSP90 are required to induce heat tolerance (Ohama et al., 
2017). Temperatures above 35 °C during the flowering and 
seed filling stages reduce yield by producing inflorescences 
that are seedless or contain empty seeds, as well as the 
reabsorption of seed endosperm and inhibition of anther 
dehiscence (Walters et al., 2016). At 28 °C, heat had no 
effect on plant dry mass or yield, but the plants had more 
and longer branches (Becker et al., 2017). The increase in 
day/night temperature from 25/6 °C to 40/25 °C during 
phenological development in quinoa had no effect on 
seed size, but there were differences in seed weights. 
When the temperature varied between 21 °C and 28 °C, 
the size of the seeds can change by up to 14% (Hinojosa 
et al., 2019). Seed production at high temperatures also 
depends on quinoa varieties, e.g., day/night temperature 
from 20/14 °C to 35/29 °C decreased seed yield of the 
variety ‘Cherry Vanilla’, whereas in the variety ‘Salcedo’ it Figure 3. Stress responses in quinoa plant.  
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increased by 70% (Bunce, 2017). Quinoa is a heat-tolerant 
plant that can maintain a high stomatal conductance 
at high temperatures, allowing for heat to be dissipated 
through transpiration (Kaushal et al., 2016). When quinoa 
plants were exposed to high temperatures (40/24 °C), they 
improved maximum photosynthetic rate (Amax), stomatal 
conductance (gs), as well as secondary axis elongation, and 
branching (Hinojosa et al., 2019). Quinoa pollen viability 
decreased at high temperatures (40/24 °C); however, there 
was no effect on seed set and no morphological changes 
in the pollen surface (Hinojosa et al., 2019). When quinoa 
plants were exposed to high temperatures of 40–24 °C, they 
improved maximum photosynthetic rate (A max), stomatal 
conductance (gs), as well as secondary axis elongation, 
and branching stimulation (Hinojosa et al., 2019). Quinoa 
pollen viability decreased at high temperatures (40–24 
°C); however, there was no effect on seed set and no 
morphological changes in the pollen surface (Hinojosa et 
al., 2019). Thus, quinoa plants may maintain evaporative 
cooling under heat stress if there is enough water available 
(Becker et al., 2017). Quinoa exposed to various water 
treatments and temperatures showed greater values 
of stomatal conductance, leaf photosynthetic rate, 
photosynthetic system efficiency (PSII), and water use 
efficiency under high temperature conditions (Yang et 
al., 2016). By reducing the effects of heat stress, irrigation 
may be an important tool in quinoa cultivation. Under 
heat-stressed growth conditions, irrigation significantly 
increased yields (Walters et al., 2016). 

5. Allelopathic potential of quinoa
Allelochemicals are produced naturally, and they are 
responsible for the development of allelopathic reactions 
(Cheng and Cheng, 2015). These allelochemicals are released 
into the environment through a variety of mechanisms as 
shown in Figure 4. Many of these chemical compounds 
may have an influence on the physiology and ecosystems 
of nearby plants and animals (Cheng and Cheng, 2015). 
Quinoa showed various effects (negative and positive) on 
other plants. Aqueous extracts from the inflorescences of 
quinoa were shown to suppress growth of oat, bean, and 
duckweed plants, whereas extracts from the leaves and 
roots had less negative effects on the abovementioned 
plants (Bilalis et al., 2013). Due to its growth suppressive 
properties, quinoa is an allelopathic crop that may be used 
to control weeds and crops without the use of pesticides 
(Bianchini et al., 2019). The phytotoxicity of quinoa plant 
extracts was assessed using three bioassay approaches. 
Exposure to the inflorescence extract caused a greater 
phytotoxic response than exposure to other quinoa tissue 
components, i.e. leaves, stems, and roots (Bilalis et al., 
2013). Quinoa extract had a negative effect on wheat 
plantlet length, germination percentage, dry weight, and 
relative water content at low concentrations (5 and 25%), 
but it also improved it; however, at high concentrations, the 
extract had a negative effect on morphological traits, and 
the negative effects of leaf and inflorescence extracts were 
greater than those of stem and root extracts (Amraie et al., 
2021). According to another study, the quinoa varieties KVL-

Figure 4. Release of allelochemicals into the environment through different mechanisms. 
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SRA2, Regalona, Q-37 and Q-52 have a positive allelopathic 
effect on the content of primary (sugar and carbohydrates) 
and secondary metabolites (flavonoids, hydroxicinnamic 
acids, phenolic acid) of barley (Hordeum vulgare) and 
onion (Allium cepa) (Valencia et al., 2017). Extracts from 
quinoa containing secondary metabolits, such as saponin, 
have proven to have a minor influence on wheat growth 
as well as on the plant defence system (Oleszek, 1993). 
Phenolic compounds, such as flavonoids, found in different 
varieties of quinoa seeds, have allelopathic potential on 
some weeds and cultivated plants (Valencia et al., 2017; 
Bianchini et al., 2019). Furthermore, aqueous extracts from 
quinoa have shown positive effects on the germination of 
fire plant (Euphorbia heterophylla), buckwheat (Fagopyrum 
esculentum), chicory (Cichorium intbus) and bristle oats 
(Avena strigosa) (Bianchini et al., 2019). The use of high 
concentrations of different quinoa organ extracts reduced 
germination percentage, germination rate, and the number 
of normal seedlings. The effects of inflorescence extract on 
wheat seeds were the most negative, yet low concentrations 
of shoot and root extract were found to have positive effects 
on some of the studied traits (Mansouri and Heshmat, 2020). 
Similarly, the extract of quinoa flowers, leaves, stems, and 
roots has been found to have a significant effect on wheat 
seedlings. High concentrations of different organ extracts 
increased electrolyte leakage, and antioxidant content; after 
being exposed to the quinoa organ extract, the concentration 
of chlorophylls a and b and that of carotenoids decreased 
(Mansouri and Heshmat, 2020). Quinoa is well known for 
its antifungal properties against fungal pathogens (Ali et al., 
2017). Compounds such as 1-butanol, 3-methyl-sitosterol, 
and stigmasterol found in the n-butanol extract of quinoa 
leaves have an antifungal activity against Macrophomina 
phaseolina (Khan and Iqra, 2020). Furthermore, quinoa 
extracts of various parts  inhibit mycelial growth and 
sporulation of a variety of phytopathogenic fungi, such as 

Sclerotinia sclerotiorum, Rhizoctonia solani, and Botrytis 
cinerea, and the antifungal effects are due to phenolics, 
flavonoids, and saponins (Glen-Karolczyk et al., 2016).

6. Conclusion 
Quinoa is one of the main pseudo-grain  crop with high 
nutritional value and a variety of allelopathic effects on 
other plants. Quinoa can exert allelopathic effects on 
herbs, shrubs, and trees by affecting the physiological and 
defense mechanisms of many plants. It has the potential to 
be a beneficial crop for both humans and animals due to 
the high concentration of health-promoting compounds 
that it contains. Quinoa is an easy-to-grow plant with a 
wide range of qualities that may be useful to people and 
the environment. The morphological and biochemical 
responses of different quinoa varieties to abiotic stresses 
show that quinoa has a wide tolerance to those stresses and 
that it can tolerate salt, cold/frost, and heat stress better 
than other plants. Quinoa provides a significant portion 
of human nutritional needs, yet there has been relatively 
limited genetic research to improve the plant’s growth, 
yield, and productivity. Furthermore, new varieties of 
quinoa with better flavor and other qualities ought to be 
introduced, so the use of quinoa in human and animal 
nutrition may increase. Similarly, knowledge about the 
allelopathic potential of quinoa is insufficient and requires 
more research.
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