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Introduction

Molecular manipulation is becoming very important in
plant improvement. Recent advances in plant
biotechnology provide a powerful tool for construction of
genetically improved transgenic plants (1). Some chimeric
gene constructs can be stably introduced into the  plant
genomes by different techniques such as electroporation,
biolistics and  protoplast fusion (2). In addition,
Agrobacterium-mediated gene transfer system is widely
utilized in the studies of  plant molecular biology,
especially for dicotyledonous. Agrobacterium tumefaciens
is a gram-negative soil bacterium that infects  wound sites
of plant species and induces the development of crown-
gall tumors (3). In this natural genetic engineering
system, a specific region of Ti (Tumour-inducing) plasmid
which is called  transferred DNA (T-DNA) is transferred

from Agrobacterium to a nuclear genome of the plant
cells. The use of a reporter gene system simplifies the
expression analysis of the gene in transgenic plants to
follow its inheritance in the progeny. E. coli-originated β-
glucuronidase  is a widely used scorable marker gene and
has been engineered for expression in a variety of
organisms (4). 

Normally, the GUS gene is absent in plant tissues and
no detectable background was obtained in most higher
plant cells. The sensitivity of assay systems make this
marker useful for verification of transformation. The
expression of  GUS gene is  detectable by fluorogenic and
chromogenic subtrates. The histochemical GUS assay
determines the tissue specific expression of the enzyme
activity. X-gluc (5-bromo-4-choloro-3-indolyl-β-
glucuronic acid) is a very efficient choromogenic substrate
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Transgenik Tütün Bitkilerinde GUS Geni’nin Anlatımı ve Kalıtımı

Özet: Agrobacterium tumefaciens aracılığı ile tütün yaprak disklerine yapılan transformasyonda pBI 121 ve pGus-Int transformas-

yon vektörleri kullanılmıştır. Her iki vektörde de neomisin fosfotransferaz II (npt II) geni bulunmaktadır ve pGus-Int vektörü pBI

121’den farklı olarak β-glukuronidaz (GUS) geni içinde taşınabilir bir bitki intronu taşımaktadır. Moleküler işaret genlerinin döllerde

varlığı birincil transformantların yanısıra, R1 ve R2 döllerinde de polimeraz zincir reaksiyonu (PCR) ve Southern blot analizleri ile

doğrulanmıştır. GUS geninin aktivitesi ayrıca histokimyasal ve florometrik olarakda belirlenmiştir. Transformasyona kanıt olarak,

kanamisin direnç özelliğine ait açılımlar döllerde gösterilmiştir. Analizler, transgenlerin sonraki döllere Mendel kurallarına uygun

olarak aktarıldığını ve bazı transformantlarda intron dizilerin GUS gen aktivitesini %25-30 arttırdığını göstermiştir.
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for histochemical localization of β-glucuronidase activity
in tissues and cells, giving a blue precipitate at the site of
the enzyme activity. On the other hand, the fluorometric
assay provides quantitation of GUS activity. Cleavage of
the substrate 4-MUG (4-methyl umbelliferyl β-D-
glucuronide) by GUS leads to the generation of a
fluorogenic product 4-MU (4-methyl-umbelliferone),
which is maximally fluorescent, in specific wavelengths.

The splicing mechanism is a nuclear process of many
eukaryotic genes from which intervening sequences
(IVSs) are removed pre-mRNA efficiently (5). The
construct of the intron-GUS reporter gene system is
useful for monitoring the transfer of the chimeric gene
casette from bacteria into the plant cell in the early stages
of transformation (6). Interruption of a reporter
(indicator) gene by a plant intron prevents expression of
the reporter gene at the bacterial  level   and allows the
expression of gene only in plants (7).

The aim of this study was to observe the difference
between the activities of intron-containing and intronless
GUS genes in transgenic tobacco plants and the
inheritance of the GUS gene in their generations.

Materials and Methods

Agrobacterium-mediated  transformation

Agrobacterium tumefaciens strain LBA 4404 was used
as a transformation vehicle to mediate gene transfer into
tobacco (Nicotiana tabacum cv. L. Samsun). Plant
expression vectors of pBI 121 and pGus-Int were
mobilized into A. tumefaciens via triparental mating (8)
with pRK 2013 as helper  plasmid. The vectors have a
selectable marker neomycin phosphotransferase (npt II),
which confers resistance to kanamycin. The GUS and
intron-containing GUS genes were under the control of
CaMV 35S promoter and the transformation was carried
out by leaf disc method as described by Horsch et al. (9).
Leaf discs of tobacco 0.5 cm in diameter, infected with
plasmid-harboring A. tumefaciens having final optical
density as OD

600
= 0.4. Primary transgenic discs (TR)

were selected  on 100 µg/ml kanamycin - and 500 µg/ml
cefotaxime-containing Murashige - Skoog (MS) plates
(10). 

PCR and Southern analyses of putative transgenics

Genomic DNA was isolated from 2-month-old plant
leaves according to Edwards et al. (11). PCR was run
with specific forward and reverse primers (GUS 1  5' GGT
GGG AAA GCG CGT TAC AAG  3' and GUS 2  5' GTT TAC
GCG TTG CTT CCG CCA  3') of the GUS gene and 35
cycles were driven by thermocycler for 60 sec at 95˚C, 60

sec at 36˚C and 90 sec at 72˚C. The PCR was were
completed for 10 min at 72˚C.

Southern hybridization was performed with XbaI
digested genomic DNAs (8 µg) to determine the
integration of the GUS gene into plant genomes and to
estimate the number of insertion in the transformants.
The overnight digested DNA  was fractionated on a 1%
agarose gel and transferred to nylon membrane with
fixation by UV crosslinking. The non-radioactive
digoxigenin (DIG) hybridization system was used for
hybridization analysis. The PCR-amplified product of the
GUS gene was labelled with DIG-dUTP and used as a
probe for Southern hybridization. Hybridization was
carried at 68˚C and immunological detection steps  were
performed according to manufacturer’s instructions (DIG-
DNA Labelling and Detection Kit of Boehringer
Mannheim, Germany).

Histochemical and fluorometric GUS assays

The histochemical GUS assay was also performed with
the leaves of  2-month-old plantlets. They were washed
for 30 min with 50 mM phosphate buffer (pH 7.0) and
immersed for 10 min in fixation solution (0.3%
formaldehyde, 10 mM MES, 0.3 M mannitol). The
samples were put in 1mM X-gluc (5-bromo-4-choloro-3-
indolyl-β-glucuronic acid) solution and incubated at 37˚C
overnight for blue color development. GUS activity was
also detected  with overnight cultures of Agrobacterium
harboring pBI 121 and pGus-Int by histochemical assays.
The proteins were extracted from the leaves (12) and the
amount of protein was determined according to the
Bradford assay with bovine serum albumin as standard
(13). 

Quantitative determination of GUS activity was
accomplished by fluorometric GUS assay. Protein
extraction of 10 µg was incubated with 1 mM MUG
buffer  at 37˚C for 90 min according to Jefferson et al.
(12). The enzymatic reaction was measured by
spectrofluorometer (Photon Technology International)
with excitation at 365 nm and emission at 455 nm. The
fluorometer was calibrated with a fresh preparation of
MU (100 nm) as standard. Expression assays of the GUS
gene were also carried out with the stem and root section
of regenerants in addition to leaf sections. The relative
fluorescence readings of the samples were obtained as
curve, and data from the curve were applied to the
formula to obtain a diagram of GUS activity. The
quantitative measurements of GUS activity were
expressed as ‘pmol metylumbelliferone (MU)/mg
protein/min’ units. 
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Progeny tests

R1 and R2 plants (first and second generations) are
seed-derived plants obtained from the self-pollination of
primary transformants (TR) and R1 plants, respectively.
Seeds of R1 and R2 plants were surface-sterilized and
were germinated on 100 µg/ml kanamycin containing MS
medium. Five-week-old green plantlets with several
leaves were scored as resistant (R), and white or non-
germinated ones were scored as sensitive (S). Statistical
analyses were performed by the counting R

1
and R

2
seeds

on kanamycin-containing selective MS media. Distribution
of progeny was tested against the expected ratios using
the chi-square (χ2) test, which was used to analyze
segregation of the npt II gene in the progenies.

Results 

Following the transformation of the leaf discs,
putative transformants were selected based on
regeneration under kanamycin-containing MS plates, and
transformation efficiency  was observed 90%.  There
were no morphological differences between control and
transgenic plants; however, flower formation occured
two months later in transgenic plants than in control
plants. The genomic DNA from the leaves of 2-month-old
putative transgenic plants were extracted and  amplified
with specific primers for the GUS gene. PCR products of
1.4 kb and 1.2 kb fragments were obtained from the
DNA of plants to which intron-containing and intronless
GUS genes had been transferred, respectively (Figure 1).
A difference of approximately 200 bp was obtained from

the intron located in the GUS gene. In addition to the PCR
of the GUS  gene, the npt II gene was also amplified and
0.8 kb bands were obtained  with transgenic plant
genomes (data not shown).

The data show that the chimeric DNAs were stably
transmitted to further generations without alterations in
gene integration. Southern analysis indicated that the
tested transgenic plants contained from 1-to-2 inserts of
the GUS gene in their genomes (Figure 2).

Histochemical GUS assay was performed by
incubation of putatively transgenic tobacco leaves  with X-
gluc overnight, blue color formation occured in the
expression  sites where X-gluc was catabolized by GUS
gene product (data not shown). Incubation of the
overnight culture of Agrobacterium having pBI 121 with
X-gluc exhibited GUS activity by changing the color of the
culture to blue. As expected, the intron-containing GUS
reporter gene construct showed no GUS activity in pGus-
Int-containing cultures of Agrobacterium where the
intron-splicing process normally does not occur. However,
GUS expression was visualized histochemically in
Agrobacterium cultures having the pBI 121 plasmid.

Quantitative  GUS activity was determined by
measurement of fluorescence produced by conversion of
MUG to MU by GUS gene product (Figure 3).
Fluorometric analysis provides quantitative determination
of the activity of the GUS gene when the leaf homogenate
is incubated with MUG. The curves were obtained by
fluorometer and peak points  were used to calculate GUS
activity. The activity diagram shows that   the expression
of intron containing GUS transformants were 25-30%
higher than intronless GUS containing transformants. We
did not obtain any significant GUS activity in control
tobacco plants.

Segregation analyses were performed to characterize
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Figure 1. PCR analysis of transgenic tobacco plants tranformed with
pBI 121 (1-6) and pGus-Int (7-13). C, control plant. Hind
III digested lambda DNA was used as size marker (M).
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Figure 1. PCR analysis of transgenic tobacco plants tranformed with
pBI 121 (1-6) and pGus-Int (7-13). C, control plant. Hind
III digested lambda DNA was used as size marker (M).

Figure 2. Southern blot analysis of R1 progenies of tobacco plants
transformed with pGus-Int (R1GI; 1-6) and pBI 121 (R1G;
7-12). C, control plant.
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transforming DNA for the npt II gene in R1 and R2
generations. The primary regenerants obtained from
transformed leaf discs were rooted and the plants
exhibiting GUS expression in their leaves were selfed for
seed production. R1 and R2 seeds derived from self-
pollination of the primary regenerants (TR

G
and TR

GI
),

harvested and allowed to germinate on kanamycin-
containing MS medium (Table 1,2). χ2 analysis indicated
a 3:1 segregation  model for the npt II, a ratio that
correlates with Mendelian segregation of a single
dominant gene. Kanamycin-resistant plants were also
confirmed for GUS gene activity and results indicated that
the  npt II and the GUS gene activities show correlation
in F1 and F2 generations.

Discussion

The Agrobacterium-mediated binary vector system is
an excellent model of the natural exchange of genetic
material from a prokaryote to an eukaryote. In this study,
Agrobacterium tumefaciens was used for the delivery of
foreign DNA into the tobacco genome. The

characterization of the marker gene integration into
putative transgenic  plants and its inheritance in R1 and
R2  plants were analyzed. Transgenic seeds of primary
transformants  were randomly selected on the basis of
kanamycin resistance. The frequency of resistant and
sensitive seedlings were also determined for information
concerning the segregation of the transferred genes.

The PCR analyses showed that both the GUS and the
npt II genes were transmitted to the progenies and were
co-inherited.

Southern blot analysis revealed that most of the
primary transformants contained one copy of the
transgene. Most of the progenies also had one copy of the
transgene, but some of the progenies of R2 (Figure 4,
lanes 2 and 3) had more than one copy of the transgene
in their genomes. Southern analysis is concordant with
the enzyme assays, with regenerants exhibiting enzyme
activity having foreign DNA in their genomes. Seedlings
from self-pollinated plants segregated 3:1 kanamycin
resistant: sensitive, indicating that insertions appeared as
low copies in the  Southern analyses of progenies.

Histochemical analysis of the GUS gene showed that
the staining intensity of GUS expression was stronger in
the tissues of the intron-GUS plants than in the intronless
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Table 1. Segregation of the npt II gene in R1 and R2 progeny plants

of TR
G

line transformed with pBI 121 plasmid.

Generation KanR KanS χ2

R1G-1 76 24 7.68

R1G-2 82 19 8.91

R1G-3 74 25 4.55

R1G-4 70 20 3.81

R1G-5 73 24 3.80

R1G-6 80 22 3.90

R1G-7 78 24 3.57

R2G-1 71 25 4.55

R2G-2 81 20 5.35

R2G-3 73 23 3.00

R2G-4 72 23 2.22

R2G-5 72 25 5.50

R2G-6 76 22 5.07

R2G-7 75 20 9.88

KanR and KanS, kanamycin-resistant and kanamycin-sensitive

seedlings. 

Table 2. Segregation of the npt II gene in R1 and R2 progeny plants

of TR
GI

transformed with pGus-Int plasmid.

Generation KanR KanS χ2

R1GI-1 79 20 7.68

R1GI-2 80 19 8.91

R1GI-3 76 23 4.55

R1GI-4 78 25 3.81

R1GI-5 73 23 3.80

R1GI-6 76 24 3.90

R1GI-7 77 25 3.57

R2GI-1 76 23 4.55

R2GI-2 76 21 5.35

R2GI-3 72 24 3.00

R2GI-4 73 26 2.22

R2GI-5 77 22 5.50

R2GI-6 69 21 3.81

R2GI-7 80 18 9.88
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GUS plants. This is also supported by fluorometric assays
where  GUS activity was measured quantitatively. The
expression of the GUS gene is slightly higher in plants
transformed with the intron containing GUS gene than in
plants transformed with the intronless GUS gene.

χ2 is used to determine  the correlation between
theoretical  and experimental (in selective media) ratios of
the progenies according to Mendelian segregation.
Probabilities were greater than 0.05 and the results
indicated that the transgenic tobacco plants produced by
Agrobacterium-mediated transformation method were
genotypically and phenotypically stable in the progenies.
The values obtained from experiments correlate with the
3:1 Mendelian ratio. The 3:1 segregation ratio for
kanamycin resistance would also come from a single copy
of the npt II gene. In most cases, the transformed genes
behave as a single dominant locus exhibiting normal
Mendelian segregation. In previous studies on transgenic
plants, Mendelian and non-Mendelian  segregation of
transgenes have been observed (14, 15). It is reported
that single T-DNA insertion results in high levels of
transgene expression; however, multiple copies of
transgenes lead to supression of the chimeric gene in
some cases (16). Stability and integration of the
transgenes to progeny plants were investigated with
genomic DNA isolated from transgenic plants.

Expression studies of the GUS gene activity were

carried out with different organs of transgenic plants,
namely the leaf, stem and root. We obtained similar
results in the activities of different organs and we
concluded that splicing of the intron was not different in
various organs of tobacco in terms of expression of the
constitutive 35S promoter.

It has also been reported that the location of the
intron within the fusion gene is important (17) and
stimulation of gene expression by intron insertion is
closely dependent on the location of the intron in maize
cells (18). It is also claimed that insertion of an intron
near the 5’end of  mRNA  yields  more  profound effects.
In  our pGus-Int vector the intron from the potato was
located at a codon for 128th amino acid residue from the
N-terminus of the GUS polypeptide (17). In our
heterologous system, transformation of the potato intron
into tobacco plants increased expression of the GUS gene
by 25-30%. Inclusion of introns in the transcription unit
seems to influence the stability of the transcript, leading
to an enhancement of gene expression of up to 71 and 26
fold in maize and bluegrass, respectively (7).

A very efficient way to prevent expression of the
reporter gene in bacterial level is to place an intron inside
the gene to allow its reliable expression only in plants. In
our transgenic tobacco plants, the chimeric GUS-Intron
gene is spliced out efficiently, thus giving a functional and
highly expressed mRNA.
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