Synthesis and Structure of Systems Containing Pyramidalized and Strained Double Bond: An Investigation on the Cycloaddition Reactions of cisand trans-3,8-dicarbomethoxy-3,8-dihydroheptalene

Nurullah SARAÇOĞLU, Abdullah MENZEK
Department of Chemistry, Atatürk University, 25240 Erzurum-TURKEY
Metin BALCI
Department of Chemistry, Middle East Technical University, 06531 Ankara-TURKEY

Received 19.06.2000

Abstract

The cycloaddition reactions of cis-3,8-dicarbomethoxy-3,8-dihydroheptalene cis-2 and trans-3,8-dicarbomethoxy-3,8-dihydroheptalene trans-2 with various dienophiles such as dimethyl acetylenedicarboxylate (DMAD), p-benzoquinone, maleic anhydride, tetracyanoethylene, naphtoquinone gave monoaddition products 15-23. Further addition of benzyne and dimethyl acetylenedicarboxylate to $\mathbf{1 8}$ resulted in the formation of the compounds syn-25 and syn-26 having pyramidalized double bonds. The addition of benzyne to 21 and the addition of dimethyl acetylenedicarboxylate to 21, $\mathbf{2 2}$ and $\mathbf{2 3}$ gave the anti configuration products anti-26, $\mathbf{2 7}$ and 28, respectively. X-ray structures of syn-25, syn-26 and anti-26 show the pyramidalized angles to be $16.5^{\circ}, 19.9^{\circ}$ and 8.0°, respectively.

Introduction

Strain can be introduced in a molecule by distorting one or more chemical bonds from their "normal" bond lengths or bond angles ${ }^{1}$. Alkenes in which the double bonds are distorted or pyramidalized are of theoretical interest and usually present a considerable challenge with regard to synthesis ${ }^{2}$. Pyramidalized alkenes are molecules containing carbon-carbon bonds in which one or both of the sp^{2} carbon atoms do not lie in the plane of the attached atoms ${ }^{3}$. Theoretical work has shown that a trigonal center of a double bond pyramidalizes when located in an asymmetrical environment ${ }^{4}$. Evidence for pyramidalization was first obtained in NMR studies on norbornadiene and has been substantiated by X-ray studies of crystalline norbornenes and sesquinorbornenes ${ }^{5}$.

Synthesis and Structure of Systems Containing Pyramidalized and..., N. SARAÇOGLU, et al.,

syn-1

anti-1

Scheme 1

Recently, we reported the synthesis of $\boldsymbol{s y n}-\mathbf{1}^{6}$ and $\boldsymbol{a n t i} \mathbf{- 1} \mathbf{1}^{7}$ (Scheme 1). Because the two faces of the double bond are equivalent in anti-1 and the NMR is consistent with the C_{2} axis of symmetry that lies along the C-C double bond, a planar equilibrium geometry at the double bonded carbon atoms is expected. X-ray diffraction analysis confirmed the planarity of the central double bond in anti-1. However, the crystal structure of syn-1 showed the carbon atoms to be pyramidalized with a bend of 16.8° away from planarity.

We now report the synthesis of bisadducts similar to syn-1 and anti-1 from the reaction of $\boldsymbol{c i s} \mathbf{- 2}$ and $\boldsymbol{t r a n s}-\mathbf{2}$ with various dienophiles. The pyramidalization of the central sp^{2} carbon atoms and the reactivity of the formed adducts was investigated. Detailed synthesis of cis- and trans-dihydroheptalenes $\mathbf{2}$ is also described.

Results and Discussion

Construction of the syn and anti frameworks was achieved by the reaction of dienophile with cis- and transdihydroheptalene $\mathbf{2}$ as depicted in Scheme 1. For the synthesis of $\boldsymbol{s y n - 1}$ and anti-1, 2 moles benzyne were added to cis-2 and trans-2, where advantage was taken of the cycloheptatriene-norcaradiene equilibrium (Scheme 2). It is well known that cycloheptatriene (CHT) is in equilibrium with its valence isomer, norcaradiene (NOR), and π-electron-withdrawing substituents at C-7 shift the CHT-NOR equilibrium in favor of NOR^{8}.

Scheme 2

Vogel and Hogrefe ${ }^{9}$ reported that isotetralin reacts with excess ethyl diazoacetate to give the bisadduct anti-11 in a yield of $18 \% .{ }^{1} \mathrm{H}$-NMR studies have revealed that the reaction mixture is very complex. This mixture was subjected to silica gel column chromatography. We found that syn-isomer $\mathbf{1 1}$ was also present, in a total yield of 28%. Oxidation products $\mathbf{9}$ and 10 were also isolated and characterized (Scheme $3)$.

Scheme 3

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{9}$ and $\mathbf{1 0}$ were completely in agreement with the proposed structures. The exo and endo isomers $\mathbf{9}$ and $\mathbf{1 0}$ were distinguished on the basis of the coupling constant ($\mathrm{J}=4.2 \mathrm{~Hz}$) observed for the trans cyclopropane ring protons ${ }^{10}$.

Products $\mathbf{9}$ and $\mathbf{1 0}$ are known and their synthesis was reported by Neidlein ${ }^{11}$ and Kharicheva et al. ${ }^{12}$ from the Cu catalyzed ethyl diazoacetate addition to dihydronaphthalene. The formation of these products can be explained by the aromatization of the initially formed mono-carbene addition products under the given reaction conditions. syn-11 and anti-11 were refluxed in methanol for three days in the presence of p-toluenesulfonic acid to give syn-12 and anti-12 methyl esters in high yields ${ }^{6,7}$.

The high-temperature bromination technique of hydrocarbons developed by Balcı et al. ${ }^{13}$ has proven to be a suitable way of synthesizing polyhalogenated hydrocarbons. Bromination of anti-12 in CCl_{4} at $77^{\circ} \mathrm{C}$ gave tetrabromo compound anti-13, while bromination in darkness and at room temperature resulted in the formation of $\mathbf{1 4}$ exclusively (Scheme 4). The isomer cis-2 was synthesized as described before ${ }^{7}$.

The cis-3,8-dicarbomethoxy-3,8-dihydroheptalene (cis-2) was subjected to Diels-Alder cycloaddition with various dienophiles, such as maleic anhydride, p-benzoquinone, tetracyanoethylene, dimethyl acetylenedicarboxylate (DMAD) and naphthoquinone to form the corresponding Diels-Alder mono addition products $\mathbf{1 5}, \mathbf{1 6}, \mathbf{1 7}, \mathbf{1 8}$, and 19, whereas trans-2 was reacted with naphthoquinone, dimethyl acetylenedicarboxylate, maleic anhydride and N-phenyltriazolinedion (PTAD) to give 20, 21, 22, and 23 (Scheme 5).

Carefull examination of the ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of the products showed exclusive formation of the norcaradien-type adducts (15-23), since bis-cycloheptatriene cis-2 and trans-2 are in equilibrium (Scheme 1) with their valence isomers $\mathbf{3}$ and $\mathbf{6}$. We determined the presence of only the exo isomer (based

Synthesis and Structure of Systems Containing Pyramidalized and..., N. SARAÇOGLU, et al.,
on the cyclopropane ring) on the basis of the measured coupling constants at the cyclopropane ring ($J=$ $3-4 \mathrm{~Hz}$). All dienophiles added to the valence isomer norcaradiene. The exclusive formation of the endo addition products is controlled by secondary orbital interaction. In all these reactions we observed a strong regio- and stereo-selectivity.

Scheme 4

18

21

$\mathrm{R}=\mathrm{CO}_{2} \mathrm{CH}_{3}$

Scheme 5

To examine the behavior of the second cycloheptatriene ring in $\mathbf{1 5 - 2 3}$, in view of involvement in cycloaddition reactions, we tried to achieve an intramolecular cycloaddition reaction with compound $\mathbf{1 6}$ to entry to the corresponding cage molecule $\mathbf{2 4}$ (Scheme 6). All attempts failed. Inspection of the Dreiding models indicated that the quinone system is too far from the cycloheptatriene unit for any intramolecular cyclization reactions.

Scheme 6
The construction of $\boldsymbol{s y n - 2 5}$ and anti-25 were carried out by the reaction of benzyne (generated from benzene diazonium-2-carboxylate hydrochloride ${ }^{14}$) as dienophile with mono-addition products $\mathbf{1 8}$ and $\mathbf{2 1}{ }^{7}$. The structural assignment was made from the NMR data.

The symmetrical compounds syn-26 and anti-26 were prepared by the addition of two equivalents of dimethyl acetylenedicarboxylate to cis-2 and trans-2 without using solvent (Scheme 7). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of syn-26 was very similar to that of anti-26, except that the resonance two cyclopropane protons (adjacent to ester group) in syn-26 is shifted to a lower field ($\delta 2.53 \mathrm{ppm}$) than the resonance in anti-26 (δ $=0.94 \mathrm{ppm})$. We attributed this extraordinary shift to the steric compression between these two protons in syn-26.

syn-25

anti-25

syn-26

anti-26

27

28

Scheme 7
Dimethyl acetylenedicarboxylate was added to the systems $\mathbf{2 2}^{7}$ and $\mathbf{2 3}^{15}$, and the corresponding compounds 27 and 28 were obtained. Monocycloaddition product 20 was reacted with DMAD without

Synthesis and Structure of Systems Containing Pyramidalized and..., N. SARAÇOGLU, et al.,
solvent, and compound $\mathbf{3 0}$ was obtained as the sole product (Scheme 8). The formation of $\mathbf{3 0}$ can be explained by the formation of the anti-bis adduct $\mathbf{2 9}$ followed by oxidation. The ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{3 0}$ sets, especially the $\mathbf{1 0}$ carbon resonances in the olefinic region, conform to the proposed structure.

Scheme 8

The X-ray crystal structures of compounds syn-25, syn-25 and syn-26 were determined ${ }^{16}$. The pyramidalization angle can be obtained from the formula

$$
\cos \phi=-\cos (R-C-C) / \cos 0.5(R-C-R)
$$

The experimental ϕ values for $\boldsymbol{s y n - 2 5}$ and $\boldsymbol{s y n - 2 6}$ average 16.5° and 19.9° while the values for $\boldsymbol{s y n - 2 5}$ average 8°. Replacement of the benzene ring in $\mathbf{s y n} \mathbf{- 1}$ with dimethyl acetylenedicarboxylate gave rise to a bending of 19.9° in the central double bond. This observation can be explained in terms of the aromatic carbon-carbon bonds being longer than those of the olefinic carbon-carbon double bonds. These data imply significant pyramidalization of the central sp^{2} carbon atoms in $\boldsymbol{s y n - 2 5}$ and $\mathbf{2 6}$ and approximate planarity in syn-25. The pyramidalization arises from the steric interaction between the two hydrogen atoms.

Experimental Section

General. All solvents were dried and distilled by standard procedures. Melting points were determined with a capillary melting point apparatus (Thomas-Hoover). Infrared spectra were obtained from KBr pellets or solution in 0.1 mm cells on an infrared recording spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a 200 MHz spectrometer and are reported in δ units with TMS as the internal standard. All column chromatography was performed on silica gel (60 -mesh, Merck) and Florisil 0.150-0.250 mm ($60-100$ mesh, ASTM).

Reaction of Isotetralin with Ethyl Diazoacetate: To a magnetically stirred suspension of isotetralin ($44.4 \mathrm{~g}, 0.34 \mathrm{~mol}$) and Cu powder $(2.8 \mathrm{~g})$ at $100^{\circ} \mathrm{C}$, ethyl diazoacetate ($112 \mathrm{~g}, 0.98 \mathrm{~mol}$) was added dropwise within 48 h . After completion of the addition, the brown reaction mixture was cooled to room temperature and then 280 mL of ether was added. The etheral solution was allowed to stand for 12 h at $-20^{\circ} \mathrm{C}$. The formed precipitate, anti-bis-adduct $11(13.4 \mathrm{~g}, 13 \%)$ and Cu powder, was removed by filtration and the solvent was evaporated. A part (4.0 g) of the residue (115.5 g) was subjected to silica gel (100 g) column chromatography, eluting with benzene/hexane (5:95). Elution gave compound $\mathbf{9}$ as the first fraction: exo-Ethyl-3,4-benzobicyclo[4.1.0]hept-3-ene-7-carboxylate (9): (376 mg, 16\%): white needles, $\mathrm{mp} 44-45^{\circ} \mathrm{C}\left(\right.$ Lit. $\mathrm{mp}^{12}: 42-43^{\circ} \mathrm{C}$), from hexane. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15-6.99\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$ system, 4H), 4.09 ($\mathrm{q}, \mathrm{J}=7.15 \mathrm{~Hz}, \mathrm{OCH}_{2}, 2 \mathrm{H}$), 3.11 (bd, A part of AB system, J=16.2 Hz, 2H), 3.10 (bd, b
part of AB system, $\mathrm{J}=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.22\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathbf{C H}_{3}\right.$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.82,134.10,129.41,126.94,60.79,28.70,22.62,19.26,14.72 ; \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right) 2960,2900,2820,1715,1450,1370,1340,1300,1270,1160,995,750$.

The second fraction: endo-Ethyl-3,4-benzobicyclo[4.1.0]hept-3-ene-7-carboxylate (10): (141 $\mathrm{mg}, 6 \%$) : mp $45-46^{\circ} \mathrm{C}$, white needles from hexane. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{bs}, 4 \mathrm{H}), 3.76$ (q, $\mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}, 2 \mathrm{H}$), 3.19-2.99 (m, 4H), $1.72(\mathrm{~m}, 3 \mathrm{H}), 1.08\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.40,136.13,128.96,126.20,60.41,25.48,21.47,17.32,14.50 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2950,2900$, $1715,1500,1420,1370,1350,1150,940$. The third fraction: syn-Diethyl tetracyclo[5.5.0.0$\left.{ }^{3,5} . \mathbf{0}^{9,11}\right]$ dodec-1(7)-ene-4,10-dicarboxylate (syn-11): ($894 \mathrm{mg}, 28 \%$): mp $79-80^{\circ} \mathrm{C}$, white needles from hexane. The NMR spectrum was identical to that reported ${ }^{6}$.

As the fourth fraction we isolated anti-bis adduct anti-11 (192 mg, 5.2\%) ${ }^{9}$. The isolated bis-carbene addition products syn-11 and anti-11 were converted to the corresponding methylesters syn-12 and anti12 as described earlier ${ }^{6,7}$.

Bromination of anti-12 at $\mathbf{7 7 ^ { \circ }} \mathbf{C}$: Compound anti-12 (5 g, 18.11 mmol) was dissolved in 250 mL of CCl_{4} in a 500 mL two necked flask equipped with reflux condenser and inlet glass tube touching the bottom of the reaction flask. The inlet glass tube was connected to a 25 mL of round-bottom flask containing $13 \mathrm{~g}(81.25 \mathrm{mmol})$ of bromine. Bromine vapors were obtained by heating the flask to $100^{\circ} \mathrm{C}$, and it was transferred directly to CCl_{4} solution having a temperature of $77^{\circ} \mathrm{C}$, for 10 min with magnetic stirring. The reaction mixture was refluxed for 1 h and the solvent evaporated, and then 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 75 ml of hexane were added. The $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane solution was allowed to stand for 15 h at $20^{\circ} \mathrm{C}$. Tetrabromide $\mathbf{1 3}^{9}$ ($8 \mathrm{~g}, 74.6 \%$) was removed by filtration, dec. over $190^{\circ} \mathrm{C}$.

Bromination of anti-12 at RT: To a magnetically stirred solution of compound anti-12 (308 mg, 1.1 mmol) in 15 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a solution of bromine ($175 \mathrm{mg}, 1.1 \mathrm{mmol}$) in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise for 5 min in darkness and at room temperature. The formed solution was stirred at RT for 30 min . The solvent was removed under reduced pressure. The residue crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol to give the dibromide 14 ($288 \mathrm{mg}, 60 \%$): colorless crystals, $\mathrm{mp} 144.5-145^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol; ${ }^{1} \mathrm{H}-\mathrm{NMR}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.67\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 2.69-2.13(\mathrm{~m}, 12 \mathrm{H}), 1.86-1.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.99,69.55,52.28,39.94,36.43,25.02,20.28,19.93$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2995,2940,2890,2800,1715,1440$, 1340, 1170, 990, 910.

Endo-5-exo-16-Dicarbomethoxy-12-oxopentacyclo[7.5.3.0 $\left.0^{2,8} .0^{10,14} .0^{15,17}\right]$ heptade- ca-2(8), 3,6-triene-11,13-dione (15). To a solution of cis-2 (103 mg, 0.37 mmol) in 15 mL of CHCl_{3}, maleic anhydride was added (55 mg 0.56 mmol) at r.t. The solution was stirred at r.t. for 312 h . The solvent was evaporated and the residue crystallized from $\mathrm{CHCl}_{3} /$ ether to afford the endo adduct $\mathbf{1 5}$ as colorless crystals (125 mg, 89\%), mp $205-207^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.04$ (d, A part of AX system, J=8.6 Hz, 2H), 5.21 (dd, X part of AX system, J=8.6 Hz, J=5.7 Hz, 2H), $3.81\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.70(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}$, $\left.\mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.47(\mathrm{bs}, 2 \mathrm{H}), 2.35(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 172.99,172.38,171.49,135.64,126.06,112.76,53.00,52.53,46.28,43.40,38.65,21.24,21.13$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2960,1775,1740,1720,1440,1300,1255,1220,1160,1060,920,910$.

Endo-5-exo-17-Dicarbomethoxy-pentacyclo[7.4.3.0 $\left.{ }^{2,8} . \mathbf{0}^{10,15} .0^{16,18}\right]$ octadeca-2(8), 3,6,12-tetraene-11,14-dione (16): p-Benzoquinone ($500 \mathrm{mg}, 1.83 \mathrm{mmol}$) and cis-2 ($310 \mathrm{mg}, 2.87 \mathrm{mmol}$) were

Synthesis and Structure of Systems Containing Pyramidalized and..., N. SARAÇOGLU, et al.,
dissolved in 15 mLCHCl 3 . The solution was stirred at r.t. for 3 days, and the color of the reaction mixture turned from green to red. The solvent was evaporated and the residue purified by crystallization from $\mathrm{CHCl}_{3} /$ ether, giving the monoaddition product 16 ($316 \mathrm{mg}, 73 \%$): yellow crystals, mp $195-197^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$-NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.51(\mathrm{~s}, 2 \mathrm{H}), 5.85$ (d, A part of AX system, J=8.4 Hz, 2 H), 5.1 (dd, X part of AX system, J=8.4 Hz, J=5.1 Hz, 2H), $3.77\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.73(\mathrm{~m}, 2 \mathrm{H}), 3.60\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.21(\mathrm{bs}, 2 \mathrm{H})$, $2.23(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.30,173.38$, $173.22,141.77,137.09,126.20,111.59,52.80,52.35,49.35,43.38,41.99,21.79,18.73$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3030 , 2950, 1740, 1720, 1670, 1440, 1410, 1350, 1320, 1280, 1170, 1090, 870.

Endo-5-exo-11-Dicarbomethoxy-13,13,14,14-tetracyanotetra-cyclo[7.3.2.0 $\left.\boldsymbol{0}^{2,8} .0^{10,12}\right]$ tetra-deca-2(8),3,6-triene (17): Compound cis-2 (317.5 mg, 1.16 mmol) and tetracyanoethylene (170 mg , 1.32 mmol) were dissolved in 15 ml of CHCl_{3}. The solution was stirred at room temperature for 1 day. The solvent was evaporated, and residue purified by crystallization from acetone/ether giving the monoaddition product 17 as colorless crystals ($368 \mathrm{mg}, 79 \%$), dec. $215^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32$ (d, A part of AX system, J=8.9 Hz, 2H), 5.47 (dd, X part of AX system, J=8.9 Hz, J=5.6 Hz, 2H), 4.04 (m, 2H), 3.86 $\left(\mathrm{s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.69\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 2.36-2.32(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.09,169.96,133.73,125.88,115.89,111.31,111.06,53.41,53.22,46.30,43.73$ (2C), 21.15, 15.92; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3005,2950,1730,1440,1410,1325,1305,1275,1250,1165,1035,945$.

Endo-5-exo-11,13,14-Tetracarbomethoxy-tetracyclo $\left[7.3 .2 \cdot 0^{2,8} \cdot 0^{10,11}\right]$ tetradeca-2(8),3,6,13tetraene (18): A solution of cis-2 ($300 \mathrm{mg}, 1.10 \mathrm{mmol}$) and dimethyl acetylenedicarboxylate (186 mg , 1.31 mmol) in 20 ml of CHCl_{3} was stirred at $65^{\circ} \mathrm{C}$ for 16 days. The solvent was removed under reduced pressure. Chromatography on Florisil (25 g) eluting with ethyl acetate/hexane ($250 \mathrm{~mL}, 6: 94$) gave the starting materials (120 mg , DMAD and cis-2). The second fraction (200 mL , EtOAc as eluent) afforded the monoadduct $18(400 \mathrm{mg}, 87.6 \%)$ as colorless liquid: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.13$ (bd, A part of AX system, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $4.09(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dd}, \mathrm{X}$ part of AX system, $\mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $\left.\mathrm{OCH}_{3}, 6 \mathrm{H}\right), 3.71\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.56\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.21(\mathrm{bs}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.52(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.82,171.64,166.41,145.68,135.96,123.17$ (2C), $52.89,52.79,52.28,43.99,33.95,29.80,29.28$; IR (film, cm^{-1}): 3020, 2950, 1720, 1620, 1435, 1060, 950.

Endo-5-exo-17-Dicarbomethoxy-12,13-benzo-pentacyclo[7.4.3.0 $0^{2,8} .0^{10,15} .0^{16,18}$]- octadeca-2(8),3,6,12-tetraene-11,14-dione (19): Naphthoquinone ($170 \mathrm{mg}, 0.63 \mathrm{mmol}$) and cis-2 ($150 \mathrm{mg}, 0.55$ mmol) were dissolved in $10 \mathrm{~mL} \mathrm{CHCl}_{3}$. The solution was stirred at r.t. for 8 days. The solvent was evaporated and the residue purified by crystallization from ether giving the monoaddition product 19 (158 $\mathrm{mg}, 59 \%$): pale-brown crystals, mp $166-167^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.26$ (AA'BB' system, $4 \mathrm{H}), 5.80(\mathrm{~d}$, A part of AX system, $\mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{X}$ part of AX system, $\mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.88(\mathrm{~m}, 2 \mathrm{H}), 3.71\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.62\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.43(\mathrm{bs}, 2 \mathrm{H}), 2.22(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H})$, $1.02(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.81,173.31,173.27,137.48,135.77,134.64,127.16$, $126.45,112.89,52.61,52.21,50.46,43.65,42.20,22.04,18.75$; IR (KBr, $\left.\mathrm{cm}^{-1}\right) 3050,3020,2950,1740,1720$, $1675,1590,1435,1410,1165,1035,1005,925$.

Exo-5-exo-17-Dicarbomethoxy-12,13-benzo-pentacyclo[7.4.3.0 $\left.\boldsymbol{0}^{2,8} . \boldsymbol{0}^{10,15} . \boldsymbol{0}^{16,18}\right]$ octadeca-

 2(8),3,6,12-tetraene-11,14-dione (20): Naphthoquinone ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) and trans-2 (100 mg, 0.37 mmol) were dissolved in $10 \mathrm{~mL} \mathrm{CHCl}_{3}$. The solution was stirred at r.t. for 9 days. The solvent was evaporated and the residue purified by crystallization from ether giving the monoaddition product 20 (115 $\mathrm{mg}, 70 \%$): dark-brown crystals, $\mathrm{mp} 180-181^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.26\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$ system, $4 \mathrm{H}), 5.93(\mathrm{~d}$, A part of AX system, $\mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{dd}, \mathrm{X}$ part of AX system, J=8.4 Hz, J=5.6 Hz, 2H), $3.70(\mathrm{~m}, 2 \mathrm{H}), 3.64\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.63\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.38(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $0.50(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.02,173.42,173.29,137.49,135.78,134.71,127.14$, $125.74,111.43,52.49,52.38,49.89,43.25,41.72,22.20,18.39$; IR (KBr, $\left.\mathrm{cm}^{-1}\right) 3080,3020,3000,2950,1730$, $1720,1680,1590,1440,1415,1340,1310,1280,1250,1170,1025,1000,930$.syn-25: To a refluxing solution of $18(210 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 40 ml of ethylene dichloride, benzenediazonium 2-carboxylate hydrochloride ($650 \mathrm{mg}, 3.5 \mathrm{mmol}$) was added. The colorless solution became dark. The reaction mixture was refluxed for 1 day and the solvent evaporated. The residue was filtered through silica gel (10 g) with $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$ and the adduct syn-25 purified by crystallization from $\mathrm{CHCl}_{3} /$ ether. syn-25 was recrystallized from acetone/ether as colorless crystals ($80 \mathrm{mg}, 32 \%$): mp $179-181{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06-6.83\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$ system, 4 H$), 4.13(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.66\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.65$ $\left(\mathrm{s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.59\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 2.60(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.6(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.39,171.52,166.37,148.92,147.71,146.66,125.25,123.91,52.44$, $52.38,52.29,45.18,44.96,31.84,30.61,29.89,29.45$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3020,2980,2955,1735,1720,1620$, $1435,1400,1300,1265,1220,1145,1050,915$.
syn-25: 21 ($414 \mathrm{mg}, 1 \mathrm{mmol}$) [7] was reacted with benzenediazonium 2-carboxylate hydrochloride as described above. Colorless crystals ($87 \mathrm{mg}, 18 \%$) from acetone/ether. Mp.: $224-226{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.06\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$ system, 4 H$), 4.22(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 3.84\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 3.57\left(\mathrm{~s}, \mathrm{OCH}_{3}\right.$, $3 \mathrm{H}), 3.38\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 1.96-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.08(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.50,171.36,166.68,147.58,145.22,140.53,125.79,124.09,52.87,52.12,52.02,44.38$, $44.18,312.12,30.31,28.09,27.31 . ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3050,2950,1715,1615,1430,1390,1310,1255,1140$, 1030, 910.
syn-26: Dihydroheptalane derivative cis-2 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}$) and 1.5 g of dimethyl acetylenedicarboxylate were heated at $100 \pm 5^{\circ} \mathrm{C}$ in a sealed tube for 2 days. The reaction mixture was cooled to room temperature and 2 mL of ether was added. The ether solution was delayed for 1 day. The formed precipitate was recrystallized from ether to give bisadduct syn-26 as white crystals ($140 \mathrm{mg}, 69 \%$): mp $161-162^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.19(\mathrm{~m}, 4 \mathrm{H}), 3.72\left(\mathrm{~s}, \mathrm{OCH}_{3}, 12 \mathrm{H}\right), 3.66\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 2.53(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.16(\mathrm{~m}, 4 \mathrm{H}) ; \delta^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.27,166.24,149.52,148.78,52.73,52.45,31.97,30.51$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3040,3000,2950,1720,1700,1610,1440,1405,1290,1260,1155,1045,925$.
anti-26: trans-2 (100 $\mathrm{mg}, 0.37 \mathrm{mmol})$ and dimethylacetylene dicarboxylate (1.5) was reacted as described above. White crystals from $\mathrm{CHCl}_{3} /$ ether ($145 \mathrm{mg}, 71 \%$); mp: $255-257{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.22(\mathrm{~m}, 4 \mathrm{H}), 3.81\left(\mathrm{~s}, \mathrm{OCH}_{3}, 12 \mathrm{H}\right), 3.56\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 2.05(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.36,166.41,147.55,140.02,52.93,52.23,32.89,27.79 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ $3050,3000,2950,1720,1620,1435,1395,1270,1145,1050,910$; Anal Calcd for C28H28O12: C, 60.43; H, 5.07; Found: C, 60.59, H, 4.94.

Synthesis and Structure of Systems Containing Pyramidalized and..., N. SARAÇOGLU, et al.,

27: 22 ($150 \mathrm{mg}, 0.41 \mathrm{mmol}$) [7] and dimethyl acetylenedicarboxylate (1 g) were reacted as described above. White crystals from $\mathrm{CHCl}_{3} /$ ether ($120 \mathrm{mg}, 58 \%$); mp: $271-273{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.13(\mathrm{~m}, 2 \mathrm{H}), 3.81\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.63\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.59\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.43(\mathrm{~m}, 2 \mathrm{H})$, $2.08(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 0.44(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.23,171.30,171.21,166.10,146.08,139.08,53.03,52.68,52.63,46.43,44.42,37.01,30.93,29.03,22.74$, 20.62; IR (KBr, cm^{-1}) 2950, 1775, 1735, 1710, 1440, 1315, 1260, 1230, 915; Anal Calcd for C26H24O11: C, 60.94; H, 4.72; Found: C, 60.44, H, 4.63.

28: 23 ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$) [15] and dimethyl acetylenedicarboxylate (500 mg) were reacted as described above. White crystals from $\mathrm{CHCl}_{3} /$ ether ($120 \mathrm{mg}, 58 \%$) ; mp: 237-239 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.62-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.39(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~m}, 2 \mathrm{H}), 3.84\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 3.62\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.52$ $\left(\mathrm{s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 2.19(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.58(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \delta^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 171.01,170.58,165.71,154.67,146.97,136.81,132.02,129.39,126.65,125.68,54.99,53.08,52.75,52.18$, 43.19, 32.12, 27.95, 22.37, 15.09; IR (KBr, cm^{-1}) 3050, 3000, 2950, 1715, 1435, 1410, 1300, 1260, 920. Anal Calcd for C30H27O10N3: C, 61.12; H, 4.62, N,7.13; Found: C, 61.02, H, 4.91, N, 6.95.

30: Monocycloadduct $20(210 \mathrm{mg}, 0.11 \mathrm{mmol})$ and dimethyl acetylenedicarboxylate (1.5 g) were reacted as described above. Yellow powder ($95 \mathrm{mg}, 34 \%$) from $\mathrm{CHCl}_{3} /$ ether; mp: $254-256{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$. $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.15-7.73 (AA'BB' system, 4 H$), 4.75(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 2 \mathrm{H}), 3.84\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right), 3.57$ $\left(\mathrm{s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 3.34\left(\mathrm{~s}, \mathrm{OCH}_{3}, 3 \mathrm{H}\right), 2.04(\mathrm{~m}$, cyclopropane, 2 H$), 1.98(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.55$ ($\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.66,171.43,170.75,166.36,155.26,147.58,140.06$, $134.31,132.36,127.08,53.01,52.39,52.08,44.07,39.20,33.21,32.78,28.00,27.67$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3040$, 3000, 2940, 1720, 1655, 1590, 1430, 1390, 1280, 1150, 1050, 1010, 1020, 990; Anal Calcd for C32H26O10: C, 67.37; H, 4.59; Found: C, 67.41, H, 4.25.

Acknowledgments

The authors are indebted to the Department of Chemistry (Atatürk University) for financial support of this work; to State Planning of Turkey (DPT) for purchasing a 200 MHz NMR spectrometer; to Prof. Dr. Emanuel Vogel for the generous gift of isotetraline; and to Prof. Dr. Waldemar Adam for elemental analysis.

References

1. K. J. Shea, Tetrahedron, 36, 1683-1715 (1980).
2. W. E. Billups, W. Luo, G.-A. Lin, Chee, J., Arney, B. E., Jr., Wiberg, K.B., Artis, D. R., J. Org. Chem., 61, 76s 4-770 (1996).
3. W. T. Borden, Chem. Rev., 89, 1095-1109 (1989).
4. H. Hake, H. Landen, H.-D. Martin, D. C. Spellmeyer, D.C., Tetrahedron Lett., 29, 6601-6604 (1989)
5. W. H. Watson, J. Galloy, P. D. Bartlett, A. A. M. Roof, J. Am. Chem. Soc., 103, 2022-2031 (1981).
6. A. Menzek, N. Saraçoğlu, M. Krawiec, W. H. Watson, M. Balci, J. Org. Chem., 60, 829-832 (1995).
7. A. Menzek, M. Krawiec, W. H. Watson, M. Balci, M., J. Org. Chem., 56, 6755-6759 (1991).

Synthesis and Structure of Systems Containing Pyramidalized and..., N. SARAÇOĞLU, et al.,
8. M. Balci, Turk. J. Chem., 16, 42-90 (1992).
9. E. Vogel, F. Hogrefe, Angew. Chem., 1974, 86 779-780 (1974).
10. A. Menzek, M. Balci, Tetrahedron, 49, 6071-6078 (1993).
11. R. Neidlein, K. F. Wesh, Helv. Chimi. Acta, 66, 891-897 (1983).
12. I. A. Dyakanov, T. V. Mendelshton, E. M. Kharicheva, E.M Zh. Org. Chem., 9 (11), 2077-2078 (1967).
13. a) A. Daştan. M. Balci, T. Hökelek, D. Ülkü, O. Büyükgüngör, Tetrahedron, 50, 10555-10578 (1994),
b) A. Daştan, Ü. Demir, M. Balci, J.Org. Chem., 59, 6534-6538 (1994).
14. L. A. Paquette, C.-C. Shen, J. Am. Chem. Soc.,112, 1159-1164 (1990).
15. A. Menzek, M Balci, Austr. J. Chem., 46, 1613-1621 (1993).
16. The results of X-ray structure analysis for syn-27, 28 and anti-28 were reported in detail; M. Balci, A.B. Susan, A. Menzek, N. Saraçoğlu, W. Watson, J. Chem. Cryst. 25, 107-116 (1995).

