Towards the Asymmetric Synthesis of Ascochlorin

Özdemir DOĞAN
Department of Chemistry, Middle East Technical University, 06531 Ankara-TURKEY
Wolfgang OPPOLZER*
Department of Chemistry, University of Geneva, CH-1211, Geneva-SWITZERLAND

Received 05.12.2000

A synthetic approach is described to the asymmetric synthesis of ascochlorin (1), an antiviral antibiotic, based on the construction of a sesquiterpene unit via asymmetric Diels-Alder reaction of tigloyl sultam $4 \&$ butadiene, and the introduction of the aromatic side chain (C9-C12 unit) by employing cuprate chemistry.

Introduction

Ascochlorin (1) is an antiviral antibiotic obtained from the filter cake of the fermented broth of Ascochyta viciae Libert ${ }^{1}$. It has a strong inhibitory effect on viral growth in cultured cells ${ }^{2}$. The compound features three stereogenic centers, a sesquiterpene unit, a 1,3-diene system, and an aromatic unit having an aldehyde, a methyl, a chloride, and two hydroxy substituents. The absolute stereochemistry of this antibiotic was determined by X-ray analysis ${ }^{3}$. Due to high biological activity, the ascochlorin family has attracted the attention of synthetic chemists. So far only the total synthesis of (\pm) ascochlorin with a totally different strategy has been reported in the literature ${ }^{4}$. In this paper we describe our studies aimed at applying asymmetric Diels-Alder, cuprate, and Julie olefination reactions as the key strategies in the total synthesis of this biologically active natural compound (1).

[^0]
Results and Discussion

Our strategy for achieving the asymmetric synthesis of ascochlorin was to synthesize the sesquiterpene unit 3 by asymmetric Diels-Alder reaction of tigloyl sultam 4 and butadiene. This reaction was developed by Oppolzer's group ${ }^{5}$ and used in the synthesis of substituted cyclohexane derivatives which were obtained in high diastereoselectivities. Construction of aromatic unit $\mathbf{2}$ is achieved easily, as reported in the literature ${ }^{6}$. Our approach to the unification of aromatic and sesquiterpene units by forming a $\mathrm{C}_{12}-\mathrm{C}_{13}$ double bond was based on the Julia olefination reaction (Scheme 1).

Scheme 1. Synthetic Strategy

For the synthesis of a sesquiterpene unit, we started with tigloylsultam 4 and trans-piperylene, which gave the desired Diels-Alder adduct in high yield but with the wrong stereochemistry at C-19. Therefore we decided to introduce the C-19 methyl group at a later stage and perform the same reaction with 1,3butadiene instead of trans-piperylene. This reaction gave the desired Diels-Alder adduct $\mathbf{5}$ in 85% yield and in 96% de (determined by HPLC). The chiral auxiliary was easily removed by treatment of cycloadduct 5 with LiOH in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$, which gave cyclohexenecarboxylic acid $\mathbf{6}$ in 94% yield and the recovered sultam auxiliary $\mathbf{7}$ in 80% yield (Scheme 2).

In order to introduce oxygen on C-18 (ascochlorin numbering), standard iodolactonization methodology was applied to the crude carboxylic acid 6. The reaction yielded the desired iodolactone 8 in 98% yield. Treatment of this lactone with DBU gave compound $\mathbf{9}$ in 96% yield (Scheme 3).

Scheme 2. (a) MeAlCl_{2}, toluene, $144 \mathrm{~h},-30^{\circ} \mathrm{C}$, 85% yield; (b) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%\right.$), THF/ $\mathrm{H}_{2} \mathrm{O}$, 6: 94% yield, 7: 80% yield.

Scheme 3. (a) $\mathrm{NaHCO}_{3}, \mathrm{KI}, \mathrm{I}_{2}$, THF/ $\mathrm{H}_{2} \mathrm{O}$, rt, 98% yield; (b) DBU, THF, reflux, 96% yield.

Cleavage of the lactone unit on compound $\mathbf{9}$ by treatment with TRITON-B then MeI, which was recently employed ${ }^{7}$ to cleave a similar lactone, did not give the expected hydroxy ester 10 (Scheme 4), and most of the starting material was recovered with minor decomposition. Therefore, we decided to cleave the lactone unit with LiAlH_{4}, which worked cleanly and gave the desired diol 11 in 98% yield. Oxidation of the allylic alcohol on compound $\mathbf{1 1}$ with MnO_{2} afforded the desired α, β-unsaturated ketone in low yield, so we decided to protect the primary alcohol selectively and carry out the oxidation reaction on the resulting compound. For this purpose, alcohol 11 was treated with TBDMSCl, which surprisingly attached to the secondary alcohol and gave mono protected alcohol 12 in 48% yield. The remaining product of the reaction was the diprotected form of alcohol 11. Similar results were obtained when TBDPSCl was used as the protecting group. Apparently, the C-14 methyl group hinders the primary alcohol. Oxidation of this alcohol by Swern oxidation reaction conditions or by TPAP ${ }^{8}$ cleanly gave aldehyde 13 (Scheme 4), which could be used without purification in the Julie olefination reaction (Scheme 6).

Towards the Asymmetric Synthesis of Ascochlorin, $\ddot{O} . D O \breve{G} A N, W . O P P O L Z E R$

Scheme 4. (a) TRITON-B, then MeI; (b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, rt, 98% yield; (c) TBDMSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} 48 \%$ yield; (d) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ or TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 90 \%$ yield.

For the synthesis of the aromatic unit of ascochlorin, compound 14 was synthesized as in the literature ${ }^{7}$ and the alkene side chain was introduced to this compound by cuprate chemistry ${ }^{9}$. Although the yield (50%) of 1,4 -addition reaction of either lower or higher order cuprates to epoxide $\mathbf{1 5}$ was not very satisfactory, we were able to carry out the reaction on a gram scale using easily available starting materials. In order to increase the yield of this reaction, we tried different ligands and copper sources to form the cuprate reagent: 2-thienyl(cyano)copper lithium, ter-butylethenyl lithium with $\mathrm{CuI} / \mathrm{CuCN}$, or $\mathrm{Me}_{2} \mathrm{~S} \cdot \mathrm{CuBr}$. Of these reagents, CuCN with tert-butylethenyl lithium gave the desired product in a resonable yield (50\%) as a mixture of \mathbf{E} and \mathbf{Z} isomers in a ratio of 20/1 (Scheme 5).

Scheme 5. Cuprate Reactions for the Introduction of Alkene Side Chain
In order to carry out the Julie olefination reaction ${ }^{10}$, alcohol $\mathbf{1 6}$ was transferred to its thioether derivative $\mathbf{1 7}$ under standard reaction conditions in 87% yield. Oxidation of this thioether gave the corresponding sulfone 18 in 63% yield. Now, the project is at the stage of Julie olefination, which is expected to give compound 19. With the synthesis of compound $\mathbf{1 9}$, only a couple of steps will be left for the completion of asymmetric synthesis of ascochlorin.

Scheme 6. (a) 2-mercaptobenzothiazole, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{DEAD}, 86 \%$ yield; (b) $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{64} \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}, 63 \%$ yield

Experimental

General. All reactions were carried out under argon atmosphere. Solvents were dried by distillation with drying agents as follows: $\mathrm{Et}_{2} \mathrm{O}$, THF ($\mathrm{Na} /$ benzophenone), toluene (Na metal), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, triethylamine $\left(\mathrm{CaH}_{2}\right)$. Column flash chromatography (FC): SiO_{2} (Merck $600.040-0.060 \mathrm{~nm}$). TLC (Merck 60F254 0.025 nm). HPLC: Waters Waters $501,{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker AMX-400 spectrometer at operating frequencies of 400.1 and 100.6 MHz respectively in CDCl_{3}. New compounds were named by the Chem Draw Ultra program.
(1,6-Dimethyl-cyclohex-3-enyl)-(3-methyl-1,1-dioxo-1,3-dihydro-1 λ^{6}-benzo [d]isothiazol-2-yl)-methanone (5). MeAlCl_{2} in hexanes ($26 \mathrm{~mL}, 25.70 \mathrm{mmol}$) was added slowly to a solution of the tigloylsultam $4(1.70 \mathrm{~g}, 6.42 \mathrm{mmol})$ in toluene $(35 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. After 30 min , butadiene (5.6 mL , 64.2 mmol , condensed in a graduated cylinder at $-78^{\circ} \mathrm{C}$) was added via a cannula to the reaction mixture. After 96 h TLC showed the major cycloadduct with some starting material and a great amount of polymer formation. Therefore another 5 eq of butadiene was added to the reaction mixture. After another 48 h , the reaction mixture was quenched at $-30^{\circ} \mathrm{C}$ by the addition of $\mathrm{HCl}(10 \%, 20 \mathrm{~mL})$, warmed up to rt, diluted with ether (20 mL) and stirred at rt for 6 h to remove excess butadiene. The aqueous layer was extracted with ether, and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to give a light yellow solid, which was subjected to $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$, hexanes/Ether $8 / 2$ to $\left.6 / 4\right)$, which gave 1.8 g of pure cycloadduct 5 in 85% yield. Rf $0.48\left(2 / 3\right.$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.97(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~d}, \mathrm{~J}=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 5.71(\mathrm{q}, \mathrm{J}=13.0 \& 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 16.53(\mathrm{q}), 18.00(\mathrm{q}), 21.24(\mathrm{q}), 31.12(\mathrm{t}), 31.33(\mathrm{~d}), 33.81(\mathrm{t}), 48.97(\mathrm{~s})$, $57.49(\mathrm{~d}), 121.45(\mathrm{~d}), 123.89(\mathrm{~d}), 124.56(\mathrm{~d}), 125.19(\mathrm{~d}), 129.32(\mathrm{~d}), 133.67(\mathrm{~d}), 134.69(\mathrm{~s}), 137.81(\mathrm{~s}), 177.43(\mathrm{~s})$.

1,6-Dimethyl-cyclohex-3-enecarboxylic acid (6). To a stirring solution of Diels-Alder adduct 5 ($785 \mathrm{mg}, 2.46 \mathrm{mmol}$) in THF/ $\mathrm{H}_{2} \mathrm{O}\left(2 / 1,15 \mathrm{~mL}\right.$) was added $\mathrm{H}_{2} \mathrm{O}_{2}(1.5 \mathrm{~mL}$ from a 30% soln. in water) at rt. The resulting reaction was stirred for 2 h at this temperature and TLC showed complete consumption of the starting material, so the reaction was worked up. First, a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$

Towards the Asymmetric Synthesis of Ascochlorin, $\ddot{O} . D O \breve{G} A N$, W. OPPOLZER
was added to destroy excess peroxide, and then the mixture was acidified to $\mathrm{pH}=1$ by adding $10 \% \mathrm{HCl}$ solution. The aqueous layer was extracted with ether $(3 \times 25 \mathrm{~mL})$. The combined ether layer was dried over MgSO_{4}, filtered and concentrated to give the cleaved auxiliary $\mathbf{7}$ in 80% yield and the desired acid $\mathbf{6}$ in 94% yield, both as white solids after flash column chromatography $\left(\mathrm{SiO}_{2}, 2 / 1, \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$. For acid 6, Rf $0.30\left(1 / 1\right.$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.91(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz} 1 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 15.47(\mathrm{q}), 16.39(\mathrm{q}), 30.69(\mathrm{t}), 32.88(\mathrm{~d})$, $35.50(\mathrm{t}), 44.77(\mathrm{~s}), 124,13(\mathrm{~d}), 125.56(\mathrm{~d}), 184.29(\mathrm{~s})$.

4-Iodo-1,2-dimethyl-6-oxa-bicyclo[3.2.1]octan-7-one (8). To a stirring solution of acid 6 (110 $\mathrm{mg}, 0.71 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1 / 1,4 \mathrm{~mL})$ was added solid $\mathrm{NaHCO}_{3}(299 \mathrm{mg}, 3.60 \mathrm{mmol})$. After stirring the reaction mixture for 10 min , $\mathrm{KI}(141 \mathrm{mg}, 0.85 \mathrm{mmol})$ and $\mathrm{I}_{2}(541 \mathrm{mg}, 2.13 \mathrm{mmol})$ were added. The resulting dark yellow colored reaction mixture was stirred overnight and worked up in the morning. First, 10% solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added until the disappearance of iodine color, and then the aqueous layer was extracted with ether (3 x 8 mL), and the combined organic layer was dried over MgSO_{4}, filtered and concentrated to give the desired crude lactone $8(196 \mathrm{mg}, 0.70 \mathrm{mmol})$ in 98% yield as white solids, which was recrystallized from ether/hexanes $(1 / 1)$ as colorless needles. Rf 0.50 ($1 / 1$ hexanes/ $\mathrm{Et}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta 1.19(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.06(3 \mathrm{H}), 2.70(\mathrm{dt}, \mathrm{J}=17.2 \& 7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 15.36(\mathrm{q}), 19.09(\mathrm{q}), 34.13(\mathrm{t}), 34.22(\mathrm{~d}), 35.09(\mathrm{t}), 45.32(\mathrm{~s}), 72.28(\mathrm{~d})$, 79.47(d), 180.69(s).

1,2-Dimethyl-6-oxa-bicyclo[3.2.1]oct-3-en-7-one (9). To a stirring solution of iodolactone 8 ($570 \mathrm{mg}, 2.03 \mathrm{mmol}$) in THF (10 mL) was added DBU ($619 \mathrm{mg}, 4.07 \mathrm{mmol}$). The resulting reaction mixture was refluxed under N_{2} atmosphere for 2 h , at which time TLC showed no starting material. The reaction mixture was diluted with ether (5 mL) and hydrolized with $10 \% \mathrm{HCl}(5 \mathrm{~mL})$, and the two layers were separated. The aqueous layer was extracted with ether (3 x 15 mL). The combined organic layer was washed with saturated soln. of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$ and then dried over MgSO_{4}. Lastly, it was filtered and concentrated to give the desired compound $9(283 \mathrm{mg}, 1.86 \mathrm{mmol})$ as a solid in 96% yield after flash column chromatography $\left(\mathrm{SiO}_{2}, 1 / 1, \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $)$. Rf $0.40\left(1 / 1\right.$ hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 1.05(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 2.10-240(\mathrm{~m}, 3 \mathrm{H}), 4.69(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-6.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 14.42(\mathrm{q})$, $19.9(\mathrm{q}), 34.70(\mathrm{t}), 37.63(\mathrm{~d}), 44.41(\mathrm{~s}), 72.12(\mathrm{~d}), 128.10(\mathrm{~d}), 137.76(\mathrm{~d}), 180.15(\mathrm{~s})$.

5-Hydroxymethyl-4,5-dimethyl-cyclohex-2-enol (11). To a stirring suspension of $\mathrm{LiAlH}_{4}(50.0$ $\mathrm{mg}, 1.31 \mathrm{mmol})$ in ether $(5 \mathrm{~mL})$ was added lactone $\mathbf{9}(210 \mathrm{mg}, 1.38 \mathrm{mmol})$ in ether $(5 \mathrm{~mL})$ at rt. The reaction was completed in less than 1 h . It was hydrolyzed by adding $\mathrm{Na}_{2} \mathrm{SO}_{4} 10 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~g})$, and solids were filtered off and washed with ether. After concentrating the washings, the desired compound 11 was obtained as a colorless solid ($210 \mathrm{mg}, 1.35 \mathrm{mmol}$) in 98% crude yield. It was pure enough to use for the next step. Rf 0.19 $(2 / 3$ hexanes $/ E t O A c) ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{dd}, \mathrm{J}=6.2 \& 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dd}$, $\mathrm{J}=6.2 \& 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{bs}, 1 \mathrm{H}), 5.60-5.72(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 14.62(\mathrm{q}), 17.90(\mathrm{q}), 33.21(\mathrm{t}), 34.16(\mathrm{~d}), 42.27(\mathrm{~s}), 65.41(\mathrm{t}), 71.76(\mathrm{~d}), 127.14(\mathrm{~d}), 134.15(\mathrm{~d})$.
[5-(tert-Butyl-dimethyl-silanyloxy)-1,2-dimethyl-cyclohex-3-enyl]-methanol (12). To a stirring solution of alcohol $11(200.0 \mathrm{mg}, 1.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added TBDMSCl $(231.0 \mathrm{~g}, 1.54$ mmol) and imidazole ($105.0 \mathrm{~g}, 1.54 \mathrm{mmol}$). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ under argon atmosphere for 1 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and saturated brine $(10 \mathrm{~mL})$.

The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 3 / 1\right.$ hexanes/EtOAc, Rf 0.30) yielded $130 \mathrm{mg}(48 \%)$ of mono protected alcohol 12; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ $-0.30(\mathrm{~s}, 3 \mathrm{H}),-0.13(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.63(\mathrm{dd}, \mathrm{J}=6.4 \& 5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.71(\mathrm{dd}, \mathrm{J}=6.4 \& 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H})$, $5.70-5.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta-4.60(\mathrm{q}), 14.42(\mathrm{q}), 18.21(\mathrm{q}), 18.53(\mathrm{~s}), 25.10(\mathrm{q}), 32.94(\mathrm{t}), 34.45(\mathrm{~d}), 42.92(\mathrm{~s})$, $65.57(\mathrm{t}), 72.34(\mathrm{~d}), 128.10(\mathrm{~d}), 133.44(\mathrm{~d})$.

5-(tert-Butyl-dimethyl-silanyloxy)-1,2-dimethyl-cyclohex-3-enecarbaldehyde (13). To a stirring solution of oxalyl chloride ($90 \mu \mathrm{~L}, 0.74 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was slowly added DMSO $(115 \mu \mathrm{~L}, 1.6 \mathrm{mmol})$. As soon as gas evolution subsided, a solution of alcohol $\mathbf{1 2}$ in 0.5 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over a 20 min period. With further stirring at $-78^{\circ} \mathrm{C}$, triethylamine (410 $u L, 3 \mathrm{mmol}$) was added and the mixture was allowed to warm to ambient temperature over 20 min before quenching with saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and combined organic phase was washed with saturated NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 5 / 1\right.$ hexanes/EtOAc, Rf 0.3$)$ yielded $180 \mathrm{mg}(90 \%)$ of aldehyde $\mathbf{1 3} ;{ }^{1} \mathrm{H}-$ NMR $\delta-0.32(\mathrm{~s}, 3 \mathrm{H}),-0.14(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.85-2.30(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{~m}$, $1 \mathrm{H}), 5.70-5.80(\mathrm{~m}, 2 \mathrm{H}), 9.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta-4.41(\mathrm{q}), 15.63(\mathrm{q}), 18.37(\mathrm{~s}), 19.22(\mathrm{q}), 24.60(\mathrm{q}), 36.23(\mathrm{~d})$, 37.41 (t), $46.14(\mathrm{~s}), 73.24(\mathrm{~d}), 129.02(\mathrm{~d}), 134.51(\mathrm{~d}), 205.02(\mathrm{~s})$.

Representative Procedure for the Cuprate Reaction: To a stirring suspension of $\mathrm{CuCN}(17.0$ $\mathrm{mg}, 0.19 \mathrm{mmol}$, dried by isotropic removal of water with toluene, 3 x 2 mL , under vacuum line) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was added red colored aryllithium derivative which was formed by mixing compound $\mathbf{1 4}$ (100 $\mathrm{mg}, 0.18 \mathrm{mmol})$ with n-BuLi (0.11 mL 0.19 mmol from 1.50 M solution in hexanes) at $-78^{\circ} \mathrm{C}$ via a cannula. As soon as the addition was over, the cooling bath was replaced with an ice-bath. The reaction mixture turned brownish-yellow. After stirring, the reaction mixture was kept total of 30 min at $0^{\circ} \mathrm{C}$ and 25 min at rt, it was cooled back to $-78^{\circ} \mathrm{C}$ and was added epoxide $15(19.0 \mu \mathrm{~L}, 0.189 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O} \mathrm{BF}_{3}(0.023$ $\mathrm{mL}, 0.19 \mathrm{mmol}$) were added respectively. After 2 h stirring at this temperature, the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$ solution ($2.0 \mathrm{~mL}, 9 / 1$ mixture) while it was still cold. After 30 min stirring, the aqueous layer became dark blue and was extracted with ether (3 x 4 mL). The combined organic layer was dried over MgSO_{4}, filtered and concentrated to give a light yellow oil. This crude oil was purified by flash column on silica gel (10/1 hexanes/EtOAc) to give $\mathbf{1 6 E}$ in 47% yield with a trace amount of $\mathbf{1 6 Z}$.

3-Chloro-5-(4-hydroxy-3-methyl-but-2-enyl)-2-methyl-4,6-bis-(2-trimethyl silanyl-ethox-ymethoxy)-benzoic acid methyl ester (16E). Rf 0.26 (4/1 hexanes/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.00(\mathrm{~s}, 18 \mathrm{H})$, $0.95(\mathrm{dd}, \mathrm{J}=8.3 \& 8.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=20.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta-1.40(\mathrm{q}), 13.98(\mathrm{q}), 17.62(\mathrm{q}), 18.12(\mathrm{t})$, $18.21(\mathrm{t}), 24.19(\mathrm{t}), 52.41(\mathrm{q}), 67.76(\mathrm{t}), 67.92(\mathrm{t}), 68.80(\mathrm{t}), 97.86(\mathrm{t}), 99.20(\mathrm{t}), 125.22(\mathrm{~d}), 124.98(\mathrm{~s}), 126.92(\mathrm{~s})$, $128.70(\mathrm{~s}), 132.95(\mathrm{~s}), 135.40(\mathrm{~s}), 151.65(\mathrm{~s}), 153.63(\mathrm{~s}), 167.94(\mathrm{~s}) .16 \mathrm{Z}: R f 0.28$ ($4 / 1$ hexanes/EtOAc); ${ }^{1} \mathrm{H}-$ NMR $\delta 0.00(\mathrm{~s}, 18 \mathrm{H}), 0.99(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=23.4 \mathrm{~Hz}, 4 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta-1.24(\mathrm{q}), 17.60(\mathrm{q}), 18.10(\mathrm{t}), 18.20(\mathrm{t})$, $21.40(\mathrm{q}), 24.08(\mathrm{t}), 52.43(\mathrm{q}), 67.96(\mathrm{t}), 68.15(\mathrm{t}), 97.43(\mathrm{t}), 99.07(\mathrm{t}), 125.04(\mathrm{~s}), 125.12(\mathrm{~d}), 127.06(\mathrm{~s}), 128.82(\mathrm{~s})$, $135.05(\mathrm{~s}), 135.81(\mathrm{~s}), 151.27(\mathrm{~s}), 153.22(\mathrm{~s}), 167.91(\mathrm{~s})$.

Towards the Asymmetric Synthesis of Ascochlorin, $\ddot{O} . D O \breve{G} A N$, W. OPPOLZER

3-[4-(Benzothiazol-2-ylsulfanyl)-3-methyl-but-2-enyl]-5-chloro-6-methyl-2,4-bis-(2-trimet-hylsilanyl-ethoxymethoxy)-benzoic acid methyl ester (17). To a stirring solution of 2-sulfanylbenzothiazole ($57.0 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(67.0 \mathrm{mg}, 0.255 \mathrm{mmol})$ in $\mathrm{THF}(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathbf{1 6 E}(96.0$ $\mathrm{mg}, 0.17 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$. To this very light yellow solution was added diethyl azodicarboxylate $(0.048 \mathrm{~mL}, 0.36 \mathrm{mmol})$. The resulting reaction mixture was stirred for 1 h at rt at which time TLC revealed that the starting material was consumed completely, so it was diluted with ether (4 mL) and shaken with water $(3 \mathrm{~mL})$. After separation of the two layers, the aqueous layer was extracted with ether ($3 \times 4 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4}, filtered and concentrated to give a light yellow oil which was purified by flash column on silica gel (10/1 hexanes/EtOAc) to give 104 mg of the desired thio ether $\mathbf{1 7}$ in 86% yield. Rf 0.53 ($4 / 1$ hexanes/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.00(\mathrm{~s}, 18 \mathrm{H}), 0.96(\mathrm{dd}, \mathrm{J}=7.1 \& 9.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 2 \mathrm{H}) 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 5.78(\mathrm{~m}$, $1 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta-1.41(\mathrm{q}), 15.60(\mathrm{q})$, $17.70(\mathrm{q}), 18.09(\mathrm{t}), 18.18(\mathrm{t}), 24.68(\mathrm{t}), 42.75(\mathrm{t}), 52.43(\mathrm{q}), 67.69(\mathrm{t}), 67.82(\mathrm{t}), 97.89(\mathrm{t}), 99.26(\mathrm{t}), 120.87(\mathrm{~d})$, $121.50(\mathrm{~d}), 124.10(\mathrm{~d}), 124.91(\mathrm{~s}), 125.92(\mathrm{~d}), 126.85(\mathrm{~s}), 128.22(\mathrm{~s}), 128.69(\mathrm{~d}), 135.01(\mathrm{~s}), 133.02(\mathrm{~s}), 135.24(\mathrm{~s})$, $151.65(\mathrm{~s}), 153.07(\mathrm{~s}), 153.62(\mathrm{~s}), 166.78(\mathrm{~s}), 167.89(\mathrm{~s})$.

3-[4-(Benzothiazole-2-sulfonyl)-3-methyl-but-2-enyl]-5-chloro-6-methyl-2,4-bis-(2-trimet-

 hylsilanyl-ethoxymethoxy)-benzoic acid methyl ester (18). To a stirring solution of $\mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{NH}_{4}\right)_{6} .4$ $\mathrm{H}_{2} \mathrm{O}(19.0 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 80.0 \mathrm{~mL}, 0.70 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ was added thioether $17(95.0 \mathrm{mg}$, $0.134 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ which was pre-cooled to $0^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$ the brought to rt slowly. After total of 5 h stirring, TLC indicated the complete disappearance of the starting material. The mixture was then diluted with ether (2 mL), and shaken with water (2 mL) and brine (2 mL). The organic layer was separated and the aqueous layer was extracted with ether $(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated to give a light yellow oil which was purified by flash column on silica gel (10/1 hexanes/EtOAc) and 64 mg of sulfone 18 was obtained in 63% yield. Rf 0.42 ($4 / 1$ hexanes/EtOAc); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.00(\mathrm{~s}, 18 \mathrm{H}), 0.95(\mathrm{q}, \mathrm{J}=7.1 \&$ $9.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{ddd}, \mathrm{J}=8.4,3.5 \& 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~m}, 2 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta-1.41(\mathrm{q}), 17.10(\mathrm{q}), 17.69(\mathrm{q}), 18.12(\mathrm{t}), 18.18(\mathrm{t}), 24.85(\mathrm{t}), 52.41(\mathrm{q})$, $64.07(\mathrm{t}), 67.74(\mathrm{t}), 67.82(\mathrm{t}), 97.80(\mathrm{t}), 99.19(\mathrm{t}), 122.22(\mathrm{~d}), 122.67(\mathrm{~s}), 124.45(\mathrm{~s}), 125.21(\mathrm{~d}), 126.53(\mathrm{~s}), 127.05(\mathrm{~s})$, $127.30(\mathrm{~d}), 127.37(\mathrm{~d}), 133.01(\mathrm{~s}), 135.27(\mathrm{~d}), 136.71(\mathrm{~s}), 151.47(\mathrm{~s}), 152.48(\mathrm{~s}), 153.43(\mathrm{~s}), 165.49(\mathrm{~s}), 167.73(\mathrm{~s})$.
Acknowledgment

This work was supported by the Swiss National Science Foundation.

References

1. Tamura, G., Suziki, S., Takatsuki, K. A., Arima, K. J. Antibiot. 21, 539, (1968).
2. Takatsuki, A., Tamura, G., Arima, K. Appl. Microbiol. 17, 825, (1969).
3. Navata, Y., Ando, K., Tamura, G., Arima, K., Litaka, J. J. Antibiot. 22, 511, (1969).
4. Mori, K., Fujioka, T., Tetrahedron Lett. 23, 5443, (1982).
5. Oppolzer, W., Seletsky, B. M., Bernardinelli, G. Tetrahedron Lett. 35, 3509, (1994).
6. a) Saimota, H., Ohrai, S., Sashiwa, H., Shigemasa, Y., Hiyama, T. Bull. Chem. Soc. Jpn. 68, 2727, (1995).
b) Saimoto, H., Ueda, J., Sashiwa, H., Shigemasa, Y., Hiyama, T. Bull. Chem. Soc. Jpn. 67, 1178, (1994).
c) Sargent, M. V., Vogel, P., Elix, J. A. J. C. S. Perkin I. 1986, (1975).
7. Winkler, J. D., Bhattacharya, S. K., Liotta, F., Botey, R. A., Heffernan, G. D., Cladingboel, D. E., Kelly, R. C. Tetrehedron Letters, 36, 2211, (1995).
8. For a review of the use of this reagent see: Ley, S. V., Norman, J., Griff, W. P., Marsden, S. P., Synthesis, 63, (1994).
9. Lipshutz, B. H., Koerner, M., Parker, D. A. Tetrahedron Lett. 28, 945, (1987). b) Corey, E. J., Floyd, D., Lipshutz, B. H. J. Org. Chem. 43, 3418, (1978). c) Alexakis, A., Jachite, D., Normat, J. F. Tetrahedron, 42, 5607, (1986). d) Lipshutz, B. H., Sengupta, S. Org. React. 41 (N.Y.), 135, (1992). d) Lipshutz, B. H., Kozlowski, J. A., Parker, D. A., Nguyen, S. L. McCarthey, K. E. J. Organomet. Chem. 285, 437, (1985).
10. a) Baudin, J. B., Hareau, G., Julia, S. A., Lorne, R., Roul, O. Bull. Soc. Chim. Fr. 130, 856, (1993). b) Smith, N. D., Kocienski, P. J., Street, S. D. A. Synthesis, 652, (1996).

[^0]: *Deceased $15{ }^{\text {th }}$ March 1996.

