Phenolic Compounds from Scutellaria pontica

Tayfun ERSÖZ, Ü. Şebnem HARPUT, İclal SARACOĞLU, İhsan ÇALIŞ

Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR 06100, Ankara, TURKEY tersoz@hacettepe.edu.tr

Yukio OGIHARA

Nagoya City University, Faculty of Pharmaceutical Sciences, Department of Pharmacognosy, Nagoya 467, JAPAN

Received 21.09.2001

From the aerial parts of *Scutellaria pontica*, a phenolic glucoside, 3,5-dihydroxyphenyl β -D-glucopyranoside (1); as well as a *C*-glucosyl flavon, isovitexin (2); flavones and flavone glycosides, 5-hydroxy-7,3',4'trimethoxyflavone (3); apigenin (4); apigenin-7-*O*- β -D-glucopyranoside (5); and apigenin-7-*O*- β -D-glucopyranoside-4'-*O*-methylether (6) were isolated in addition to two phenylethanoid glycosides, martynoside (7) and verbascoside (= acteoside) (8). The structures of the isolated compounds were established on the basis of spectroscopic evidence.

Key Words: Scutellaria pontica, Lamiaceae, 3,5-dihydroxyphenyl β -D-glucopyranoside, isovitexin, 5hydroxy-7,3',4'-trimethoxyflavone, apigenin, apigenin-7-O- β -D-glucopyranoside, apigenin-7-O- β -D-glucopyranoside, 4'-O-methylether, martynoside, verbascoside (= acteoside).

Introduction

Scutellaria pontica, C. Koch. (Sect. Salviifoliae) (Lamiaceae) is a mat-forming perennial herb, which is widely distributed in the mountains of north-eastern Anatolia, growing on grassy slopes and banks, and rocky outcrops at elevations of 1800-2700 m¹. In a previous report, the isolation of neoclerodane diterpenoids was described from the title plant². The current study describes the isolation and structure elucidation of the phenolic glucoside, 3,5-dihydroxyphenyl β -D-glucopyranoside (1); together with a *C*-glucosyl flavone, isovitexin (2); two flavones, 5-hydroxy-7,3',4'-trimethoxyflavone (3); apigenin (4); two flavone glucosides, apigenin-7-*O*- β -D-glucopyranoside (5); and apigenin-7-*O*- β -D-glucopyranoside-4'-*O*-methylether (6); as well as two phenylethanoid glycosides, martynoside (7) and verbascoside (= acteoside) (8); from the aerial parts of *S. pontica*.

Experimental

General Experimental Procedures: UV (λ_{max} , nm) spectra were obtained with a Hitachi HP-8452 A spectrophotometer. FAB-MS was recorded in an NBA matrix, in the positive ion mode, on a JEOL JMS-DX300 mass spectrometer. ¹H (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a JEOL

JNM-A500 FT-NMR spectrometer, in DMSO-d₆ or CD₃OD with tetramethylsilane (TMS) as an internal standard. Chemical shifts were given in ppm and coupling constants (J) in Hz. Complete proton and carbon assignments were based on 1D (¹H, ¹³C and DEPT) and 2D (¹H-¹H COSY, ¹H-¹³C HMQC and HMBC) NMR experiments. Reversed-phase liquid chromatography (RP-VLC) was performed on a cartridge, packed with LiChroprep RP-18 (20 g). For open column chromatography (CC), Polyamide (Macherey Nagel MN SC-6), Kieselgel 60 (0.063-0.200 mm, Merck) and Sephadex LH-20 (Fluka) were used. Medium-pressure liquid chromatography (MPLC) was performed on a Labomatic glass column (26x460 mm, i.d.), packed with LiChroprep RP-18, using a Lewa M5 peristaltic pump. TLC was carried out on pre-coated Kieselgel 60 F₂₅₄ aluminum sheets (Merck) and compounds were detected under UV (254 nm) fluorescence and spraying with 1% vanillin-H₂SO₄ reagent, followed by heating at 105°C for 1-2 min.

Plant Material: Scutellaria pontica C. Koch. (Lamiaceae) was collected from the vicinity of Çağırankaya, İkizdere, Rize, Turkey, in July 1998. Voucher specimens have been deposited at the Herbarium of the Pharmacognosy Department, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey (HUEF 98-085).

Extraction and Prepurification: The air-dried and finely powdered aerial parts of S. pontica (500 g) were extracted with Me₂CO (3x2000 ml) at 40°C. After filtration of the Me₂CO extract, the residual plant material was dried at room temperature and extracted with MeOH (3x1000 ml) at 40°C. The combined methanolic extract was evaporated under reduced pressure and 44 g of MeOH extract was obtained. The crude methanolic extract was then dissolved in H₂O (250 ml) and the water-insoluble material was removed by filtration. The filtrate was then extracted with *n*-BuOH (4x150 ml) to give the *n*-BuOH extract (14 g). The *n*-BuOH extract was fractionated over a polyamide column, eluting with H₂O and gradient MeOH-H₂O mixtures (25% to 100%, each 500 ml) to afford 12 main fractions (Frs. A-L).

Isolation of the Compounds: An aliquot of fr. A (750 mg) was fractionated over RP-VLC, using MeOH-H₂O (40% and 50% MeOH, each 50 ml) as eluent to give eight fractions (Frs. A₁-A₈). Fr. A₈ (319 mg) was applied to MPLC. Elution with MeOH-H₂O mixtures (10%, 20%, 25% and 30%, each 100 ml) yielded 1 (24.7 mg). Fr. E (1.2 g) was further separated by silica gel (120 g) CC with CH₂Cl₂-MeOH-H₂O mixtures (80:20:1, 80:20:2 and 70:30:3, each 500 ml) to afford six fractions (Frs. E_1 - E_6). Fr. E_2 (240.5 mg) was rechromatographed on a silica gel (25 g) column eluting with CH₂Cl₂-MeOH mixture (90:10, 700 ml) to yield three fractions (Frs. $E_{2a}-E_{2c}$). Fr. E_{2c} (130.5 mg) was applied to MPLC and elution with MeOH-H₂O gradients (15% to 60%) gave 7 (41.82 mg). Fr. E_5 (112.3 mg) was further chromatographed over silica gel (15 g) with CH₂Cl₂-MeOH-H₂O mixture (80:20:1, 100 ml) as eluent to yield fractions E_{5a} - E_{5c} . Fr. $E_{5b}(46.9 \text{ mg})$ was purified over Sephadex with MeOH to afford 8 (16.1 mg). An aliquot of fr. G (1.0 g) was rechromatographed on a silica gel column (100 g). Elution with CH₂Cl₂-MeOH-H₂O mixtures (80:20:1, 80:20:2, 70:30:3 and 60:40:4, each 400 ml) yielded six fractions (Frs. G₁-G₆). Fr. G₄ (14.17 mg) was applied to Sephadex CC with MeOH to give 2 (5 mg). Fr. H (738 mg) was fractionated on RP-VLC with MeOH-H₂O mixtures (40% and 50%, each 50 ml) to yield five fractions (Frs. H_1-H_5). Fr. H_3 (203.5 mg) was subjected to silica gel CC (20 g) using CH₂Cl₂-MeOH-H₂O mixtures (85:15:1 and 80:20:1, each 300 ml) as eluent to give a mixture of 4, 5 and 6 (25.4 mg). This mixture was not separated by CC or TLC with any solvent system. Fr. L (102 mg) was fractionated over Sephadex with MeOH to afford 3 (4.8 mg).

3,5-dihydroxyphenyl β -D-glucopyranoside (1): C₁₂H₁₆O₈ (mol.wt. 288); FAB-MS: m/z 289

 $[M+H]^+$; UV λ_{max} (MeOH) nm: 228; ¹H NMR (DMSO-d₆, 500 MHz): aglycon moiety: δ 6.06 (2H, d, J = 2.1 Hz, H-2 and H-6), 5.99 (1H, t, J = 2.1 Hz, H-4); glucose moiety 4.89 (1H, d, J = 7.6 Hz, H-1'), 3.50-3.25 (4H, m, H-2',3',4',5'), 3.77 (1H, dd, J = 12.5 and 2.1 Hz, H-6'_b), 3.59 (1H, dd, J = 12.5 and 5.0 Hz, H-6'_a); ¹³C NMR (DMSO-d₆, 125 MHz,): aglycon moiety: δ 159.41 (s, C-1), 158.47 (s, C-3 and C-5), 98.37 (d, C-4), 97.01 (d, C-2 and C-6); glucose moiety 100.69 (d, C-1'), 76.89 (d, C-5'), 76.30 (d, C-3'), 73.61 (d, C-2'), 70.20 (d, C-4'), 61.36 (t, C-6').

Isovitexin (2): $C_{21}H_{20}O_{10}$ (mol.wt. 432); FAB-MS: m/z 433 [M+H]⁺; UV λ_{max} (MeOH) nm: 270, 334; (NaOMe) nm: 275, 328, 397; (AlCl₃) nm: 260sh, 278, 305, 351, 382; (AlCl₃+HCl) nm: 260sh, 278, 301, 344, 381; (NaOAc) nm: 279, 302, 385; (NaOAc/H₃BO₃) nm: 273, 345; ¹H NMR (CD₃OD, 500 MHz): aglycon moiety: δ 7.84 (2H, d, J = 8.8 Hz, H-2' and H-6'), 6.92 (2H, d, J = 8.8 Hz, H-3' and H-5'), 6.60 (1H, s, H-3), 6.50 (1H, s, H-8); glucose moiety δ 4.89 (1H, d, J = 10.1 Hz, H-1"), 3.50-3.25 (4H, m, H-2",3",4",5"), 3.87 (1H, dd, J = 11.9 and 2.2 Hz, H-6[']_b), 3.73 (1H, dd, J = 11.9 and 5.4 Hz, H-6^{''}_a); ¹³C NMR (CD₃OD, 125 MHz): aglycon moiety: δ 184.04 (s, C-4), 166.21 (s, C-2), 165.33 (s, C-7), 162.86 (s, C-4'), 162.04 (s, C-5), 158.79 (s, C-9), 129.45 (d, C-2' and C-6'), 123.14 (s, C-1'), 117.08 (d, C-3' and C-5'), 109.29 (s, C-6), 104.98 (s, C-10), 103.87 (d, C-3), 95.34 (d, C-8); glucose moiety: δ 82.62 (d, C-5"), 80.16 (d, C-3"), 75.31 (d, C-1"), 72.59 (d, C-2"), 71.79 (d, C-4"), 62.86 (t, C-6").

5-hydroxy-7,3',4'-trimethoxyflavone (3): $C_{18}H_{16}O_6$ (mol. wt. 328); FAB-MS: m/z 329 [M+H]⁺; UV λ_{max} (MeOH) nm: 242, 250sh, 270, 290sh, 341; (NaOMe) nm: 277, 310, 370; (AlCl₃) nm: 260, 275, 297, 358, 385; (AlCl₃+HCl) nm: 260, 276, 295sh, 345, 381sh; (NaOAc) nm: 276, 315, 358; (NaOAc/H₃BO₃) nm: 271, 340; ¹H NMR (CD₃OD, 500 MHz): δ 7.84 (1H, dd, J = 8.8 and 4.0 Hz, H-6'), 6.93 (1H, dd, J =8.8 and 2.4 Hz, H-5'), 6.62 (1H, s, H-3), 6.58 (1H, dd, J = 4.0/2.4 Hz, H-2'), 6.45 (1H, d, J = 2.1 Hz, H-8), 6.21 (1H, d, J = 2.1 Hz, H-6), 3.93 (3H, s, 4'-OMe), 3.88 (3H, s, 7-OMe), 3.87 (3H, s, 3'-OMe); ¹³C NMR (CD₃OD, 125 MHz): δ 184.25 (s, C-4), 166.18 (s, C-2), 164.30 (s, C-3'), 164.29 (s, C-7), 163.83 (s, C-5), 162.67 (s, C-4'), 152.08 (s, C-9), 129.50 (d, C-6'), 123.34 (s, C-1'), 117.08 (d, C-5'), 105.20 (s, C-10), 103.89 (s, C-3), 103.82 (d, C-2'), 100.16 (d, C-6), 95.78 (d, C-8), 62.00 (q, 4'-OMe), 61.00 (q, 3'-OMe), 56.13 (q, 7-OMe).

Apigenin (4): ¹H NMR (CD₃OD, 500 MHz): δ 7.83 (2H, d, J = 8.8 Hz, H-2' and H-6'), 6.92 (2H, d, J = 8.8 Hz, H-3' and H-5'), 6.83 (1H, d, J = 2.1 Hz, H-6), 6.71 (1H, d, J = 2.1 Hz, H-8), 6.58 (1H, s, H-3); ¹³C NMR (CD₃OD, 125 MHz): δ 180.45 (s, C-4), 164.94 (s, C-5), 164.41 (s, C-2), 162.60 (s, C-4'), 160.72 (s, C-9), 160.16 (s, C-7), 129.30 (d, C-2' and C-6'), 123.14 (s, C-1'), 117.06 (d, C-3' and C-5'), 109.39 (s, C-10), 106.57 (d, C-3), 104.83 (d, C-6), 99.34 (d, C-8).

Apigenin-7-*O*-β-D-glucopyranoside (5): ¹H NMR (CD₃OD, 500 MHz): aglycon moiety: δ 7.83 (2H, d, J = 8.8 Hz, H-2' and H-6'), 6.92 (2H, d, J = 8.8 Hz, H-3' and H-5'), 6.83 (1H, d, J = 2.1 Hz, H-6), 6.71 (1H, d, J = 2.1 Hz, H-8), 6.58 (1H, s, H-3), glucose moiety: δ 4.90 (1H, d, J = 7.6 Hz, H-1"), 3.50-3.25 (4H, m, H-2",3",4",5"), 3.87 (1H, dd, J = 11.9 and 2.2 Hz, H-6^{''}_b), 3.73 (1H, dd, J = 11.9 and 5.4 Hz, H-6^{''}_a); ¹³C NMR (CD₃OD, 125 MHz): aglycon moiety: δ 180.45 (s, C-4), 166.25 (s, C-5), 164.41 (s, C-2), 162.60 (s, C-4'), 160.72 (s, C-9), 160.16 (s, C-7), 129.51 (d, C-2' and C-6'), 123.32 (s, C-1'), 117.10 (d, C-3' and C-5'), 109.39 (s, C-10), 106.57 (s, C-3), 104.83 (d, C-6), 99.34 (d, C-8); glucose moiety: δ 105.11 (d, C-1"), 78.66 (d, C-5"), 77.58 (d, C-3"), 74.83 (d, C-2"), 71.80 (d, C-4"), 62.61 (t, C-6").

Phenolic Compounds from Scutellaria pontica, T. ERSÖZ, et al.,

Apigenin-7-*O*-β-**D**-glucopyranoside-4'-*O*-methylether (6): ¹H NMR (CD₃OD, 500 MHz): aglycon moiety: δ 7.83 (2H, d, J = 8.8 Hz, H-2' and H-6'), 6.92 (2H, d, J = 8.8 Hz, H-3' and H-5'), 6.83 (1H, d, J = 2.1 Hz, H-6), 6.71 (1H, d, J = 2.1 Hz, H-8), 6.58 (1H, s, H-3); glucose moiety: δ 4.99 (1H, d, J = 7.6 Hz, H-1"), 3.50-3.25 (4H, m, H-2",3",4",5"), 3.85 (1H, dd, J = 12.2 and 2.0 Hz, H-6^{''}_b), 3.88 (3H, s, OMe), 3.73 (1H, dd, J = 12.2 and 6.4 Hz, H-6^{''}_a); ¹³C NMR (CD₃OD, 125 MHz): aglycon moiety: δ 180.45 (s, C-4), 166.25 (s, C-5), 164.41 (s, C-2), 162.60 (s, C-4'), 160.72 (s, C-9), 160.16 (s, C-7), 129.51 (d, C-2' and C-6'), 123.32 (s, C-1'), 117.10 (d, C-3' and C-5'), 109.39 (s, C-10), 106.57 (s, C-3), 104.83 (d, C-6), 99.34 (d, C-8), 56.54 (q, OMe); glucose moiety: δ 105.11 (d, C-1"), 78.49 (d, C-5"), 77.35 (d, C-3"), 74.78 (d, C-2"), 71.29 (d, C-4"), 62.32 (t, C-6").

Martynoside (7): ¹H NMR (CD₃OD, 500 MHz) data superimposable with those reported in the literature³.

Verbascoside (= acteoside) (8): ¹H NMR (CD₃OD, 500 MHz) data superimposable with those reported in the literature⁴.

Results and Discussion

A serial chromatographic separations of the water soluble part of the methanolic extract obtained from the over-ground parts of *S. pontica*, on polyamide followed by RP-VLC, MPLC, silica gel and Sephadex CC resulted in the isolation of compounds **1-8** (Fig. 1).

Figure 1. Phenolic compounds isolated from S. pontica

Compound **1** was isolated as an amorphous powder. The molecular formula of **1** was determined to be C₁₂H₁₆O₈ on the basis of the FAB-MS (m/z 289 [M+H]⁺) and ¹³C NMR data. The ¹H NMR spectrum of **1** displayed the signals arising from aromatic (δ_H 6.06, 2H, d, J = 2.1 Hz; 5.99, 1H, t, J = 2.1 Hz) and sugar moieties. The anomeric proton signal at δ_H 4.89 (1H, d, J = 7.9 Hz) was consistent with the presence of a β -D-glucopyranose unit in **1**. In the ¹³C NMR spectrum of compound **1**, ten carbon resonances, two of which were in double integrities and six of which could be assigned to a β -D-glucopyranosyl moiety, were observed. The complete analysis of the NMR data was based on the results of ¹H-¹H COSY, ¹H-¹³C HMQC and ¹H-¹³C HMBC (Fig. 2) experiments. In the ¹H NMR spectrum of 1, the 2H doublet resonance at δ_H 6.06 (J = 2.1 Hz), which correlated with the carbon resonance at δ_C 97.01 (d) in the HMQC spectrum, was attributed to H-2 and H-6 of the phenyl moiety. Likewise, the triplet resonance at δ_H 5.99 (J = 2.1 Hz) showing an HMQC correlation to the carbon signal at δ_C 98.37 (d), was assigned to H-4 of the phenyl moiety. $^{1}\text{H}^{-13}\text{C}$ HMBC cross-peaks observed between H-6/C-2, H-6/C-4, H-2/C-4, H-2/C-6, H-4/C-2 and H-4/C-6 confirmed the proposed structure. The ¹³C NMR resonance at δ_C 159.41 (s) was assigned to the C-1 atom of the aglycon on the basis of the ¹H-¹³C long-range correlations observed from H-2 and H-6 to C-1. The carbon resonance at δ_C 158.47 (s) was shown in double integrity and an HMBC cross-peak observed from H-4 to this carbon resonance indicated that this carbon resonance was assignable to the C-3 and C-5 atoms of the aromatic moiety. Furthermore, the chemical shift values of C-3 and C-5 required the tertiary hydroxyl functions to be present at these positions. The site of glucosidation was established to be the C-1 position of the aglycon due to the hetero-nuclear long-range coupling between the anomeric proton (δ_H 4.89) of the glucose unit and the C-1 (δ_C 159.41) atom of the aglycon. Based on the above-mentioned NMR data, the structure of **1** was established as 3,5-dihydroxyphenyl β -D-glucopyranoside.

Compound 2 was isolated as a yellow amorphous powder. The FAB mass spectrum of 2 in positive ion mode gave a quasi-molecular ion peak $[M+H]^+$ at m/z 433, compatible with the molecular formula $C_{21}H_{20}O_{10}$. Its UV absorptions in MeOH and the shifts observed after the addition of shift reagents were consistent with the presence of a 5,7,4'-trihydroxyflavone structure in $2^{5,6}$. The ¹H and ¹³C NMR spectra of compound 2 exhibited resonances due to aromatic systems and a β -D-glucopyranose moiety. The ¹³C NMR signals of 2 were assigned with the help of an HMQC experiment. The connectivities of the molecular fragments were established by a hetero-nuclear multiple-bond correlation experiment (HMBC) (Fig. 2). The singlet ¹H NMR resonance at δ_H 6.50 was assigned to the H-8 proton of the A-ring, due to the long-range correlations observed from H-8 to C-10 (δ_C 104.98), C-7 (δ_C 165.33) and C-9 (δ_C 158.79). Two doublets at δ_H 7.84 and 6.92 (each 2H, J = 8.8 Hz) were characteristic of the H-2'/6' and H-3'/5' protons, respectively, of the para-substituted B-ring. A singlet proton resonance at δ_H 6.60, which correlated to the carbon resonance at δ_C 103.87 (d) in the HMQC spectrum, was assigned to H-3 of the aglycon. HMBC correlations observed from H-3 to C-2 (δ_C 166.21), C-10 (δ_C 104.98) and C-1' (δ_C 123.14) supported this assumption. On the other hand, both the chemical shift value of the anomeric carbon atom (δ_C 75.31) and the coupling constant value of H-1' (J = 10.1 Hz) indicated that the linkage of the glucose was through a C-bond^{5,7}. The information concerning the linkage of the sugar moiety was obtained from the HMBC spectrum. A prominent long-range correlation between the anomeric proton (δ_H 4.89) of the glucose unit and C-6 (δ_C 109.29) of the aglycon showed the attachment of the sugar moiety at the C-6 position. Further proof for this assignment came from the HMBC cross-peaks observed from H-1' to C-5 (δ_C 162.04) and C-7 (δ_C 165.33). Based on the NMR data and comparison of the data given in the literature, the structure of compound 2 was identified as isovitexin⁵⁻⁸.

Compound **3** was isolated as a yellowish amorphous powder. The FAB-MS $(m/z \ 329 \ [M+H]^+)$ and ¹³C NMR data indicated the molecular formula of **3** to be C₁₈H₁₆O₆. The UV spectrum in MeOH and shifts

observed with the diagnostic reagents^{5,6} showed the presence of a 5,7,3',4'-tetrasubstituted flavone structure. The complete assignment of the ¹H and ¹³C NMR data was based on the 2D NMR (¹H-¹H-COSY, ¹H-¹³C-HMQC and HMBC) experiments. In the ¹H NMR spectrum, the doublet signals at δ_H 6.21 (J = 2.1 Hz) and 6.45 (J = 2.1 Hz), which correlated to the carbons at δ_C 100.16 (d) and 95.78 (d), respectively, in the HMQC spectrum, were characteristic of the two meta-related 6- and 8- protons with a 5,7-disubstituted A-ring of a flavonoid. The double-doublets at δ_H 7.84 (J = 8.8 and 4.0 Hz) and 6.93 (J = 8.8 and 2.4 Hz), which were coupled in the ¹H-¹H COSY spectrum, were readily attributed to H-6' and H-5', respectively, of the B-ring. Therefore, the ¹H NMR signal at δ_H 6.58 (dd, J = 4.0 and 2.4 Hz) was assigned to H-2'. The singlet at δ_H 6.62 was attributed to H-3 on the basis of the HMBC correlations from H-3 to C-2 (δ_C 166.18) and C-10 (δ_C 105.20) (Fig. 2). Additionally, the ¹H NMR spectrum of compound **3** exhibited three singlets at δ_H 3.93 (3H), 3.88 (3H) and 3.87 (3H), showing the existance of three methoxyl groups. However, in the ¹³C NMR spectrum, the signals of two methoxyl groups appeared at downfield (δ_C 62.00 and 61.00), indicating that these methoxyl groups were di-ortho substituted^{7,9}. The position of the methoxyl groups were determined by the ¹H-¹³C HMBC experiment as follows. The signal at δ_H 3.88 correlated with the carbon signal at δ_C 164.29 (C-7), whereas the proton resonances at δ_H 3.87 and 3.93 showed hetero-nuclear long-range correlations with the carbon signals at δ_C 164.30 (C-3') and 162.67 (C-4'), respectively. The structure of **3** was, therefore, determined to be 5-hydroxy-7,3',4'-trimethoxyflavone.

Figure 2. Selected HMBC correlations for 1, 2 and 3

Compounds **4-6** were obtained as a mixture. Although most NMR resonances were in double or triple integrities. the chemical shifts in the ¹H and ¹³C NMR spectra of **4-6** could be assigned from 2D (¹H-¹H COSY, ¹H-¹³C HMQC and HMBC) experiments. The NMR data revealed that **4-6** were all flavonoid compounds.

In the ¹H NMR spectrum of **4**, the aromatic proton signals of two *m*-coupled doublets at δ_H 6.83 and 6.71 (each, J = 2.1 Hz) showing HMQC correlations to the carbon resonances at δ_C 104.83 (d) and 99.34 (d),

respectively, were attributed to the H-6 and H-8 of the A-ring. Two vicinally coupled doublets at δ_H 7.83 and 6.92 (each, 2H, J = 8.8 Hz) showed long-range couplings with the ¹³C NMR signal at δ_C 162.60 (C-4') and, therefore, were assigned to H-2'/6' and H-3'/5', respectively, of the B-ring. Additionally, a singlet at δ_H 6.58 was ascribed to H-3. The assignment of H-3 was confirmed by its hetero-nuclear long-range correlations to C-2 (δ_C 164.41) and C-1' (δ_C 123.14). The ¹³C NMR resonance at δ_C 160.16, which showed HMBC correlations with H-6 and H-8, was attributed to C-7. Based on the above-mentioned data and comparison of ¹H and ¹³C NMR data with those given in the literature, the structure of compound **4** was identified as apigenin⁵⁻⁷.

The ¹H and ¹³C NMR spectra of compound **5** were almost identical to those of **4**. However, additional resonances arising from a β -D-glucopyranose unit (δ_H 4.90, 1H, d, J = 7.6 Hz, H-1"; δ_C 105.11, s, C-1") were observed in the NMR data of **5**. An HMBC correlation observed from H-1" to C-7 (δ_C 160.16) of the A-ring showed the attachment of the glucose unit at C-7. Since the chemical shift value of C-1" and the coupling constant of H-1" were suggestive of a O-glucosidation⁵⁻⁷, the structure of **5** was established as apigenin-7-O- β -D-glucopyranoside.

Likewise, the proton and carbon chemical shifts due to the aglycon and sugar moieties of **6** were in good agreement with those of **5**, indicating a similar substructure and glucosidation pattern. In addition, the ¹H NMR spectrum of **6** displayed a methoxyl singlet at δ_H 3.88, which correlated to the quaternary carbon resonance at δ_C 162.60 (C-4') in the HMBC spectrum. Based on this evidence, the methoxyl group was assumed to be located at C-4' of the B-ring. Thus, the structure of **6** was identified as apigenin-7-O- β -D-glucopyranoside-4'-O-methylether⁵⁻⁷.

The structures of the phenylethanoid glycosides were identified as martynoside³ (7) and verbascoside $(= \text{acteoside})^4$ (8) on the basis of comparison of their ¹H NMR data with those given in the literature.

Conclusion

In this study, eight phenolic compounds (1-8) were isolated and identified from the over-ground parts of S. pontica. To the best of our knowledge, this is the first report on the isolation of 3,5-dihydroxyphenyl β -D-glucopyranoside (1) from the genus *Scutellaria*. To date, the isolation of *C*-glucosylflavones from *Scutellaria* species are limited in number and only two di-*C*-glycosylflavones, chrysin-6-*C*- β -D-glucoside-8-*C*- α -L-arabinoside and chrysin-6-*C*- α -L-arabinoside-8-*C*- β -D-glucoside, were reported from *S. baicalensis*¹⁰. Therefore, the isolation of isovitexin (2) from *S. pontica* is the second report of the isolation of a *C*glucosylflavone from *Scutellaria* species. In addition, this is the first case of the isolation of 5-hydroxy-7,3',4'-trimethoxyflavone (3), apigenin (4), apigenin-7-*O*- β -D-glucopyranoside (5) and apigenin-7-*O*- β -Dglucopyranoside-4'-*O*-methylether (6) from *S. pontica*.

Acknowledgements

The authors wish to thank Dr. Mahir Küçük (Eastern Black Sea Forestry Research Institute, Trabzon, Turkey) for authentication of the plant material.

Phenolic Compounds from Scutellaria pontica, T. ERSÖZ, et al.,

References

- J.R. Edmondson, *Scutellaria*, in "Flora of Turkey and the East Aegean Islands" (ed. P. H. Davis), Vol. 7, p. 78-100, University Press, Edinburgh (1982).
- B. Rodriguez, M.C. de la Torre, M.-L. Jimeno, M. Bruno, N. Vasallo, M.L. Bondi, F. Piozzi and O. Servettaz, J. Nat. Prod., 60, 348-355 (1997).
- 3. İ. Çalış, M.F. Lahloub, E. Rogenmoser and O. Sticher, Phytochemistry, 23, 2313-2315 (1984).
- 4. O. Sticher and M.F. Lahloub, Planta Med., 46, 145-148 (1982).
- T.J. Mabry, K.R. Markham and M.B. Thomas, "The Systematic Identification of Flavonoids", Springer-Verlag, Berlin (1970).
- 6. K.R. Markham, "Techniques of Flavonoid Identification", Academic Press, London (1982).
- J.B. Harborne and T.J. Mabry, "The Flavonoids: Advances in Research", Chapman and Hall Ltd., London (1982).
- 8. R.M. Horowitz and B. Gentili, Chem. Ind., 498 (1964).
- 9. Y. Kikuchi, Y. Miyaichi and T. Tomimori, Chem. Pharm. Bull., 39, 1051-1054 (1991).
- 10. S. Takagi, M. Yamaki and K. Inoue, Phytochemistry, 20, 2443-2444 (1981).