Turk J Chem 26 (2002) , 947 – 954. © TÜBİTAK

New Triterpenic Saponins from Cephalaria transsylvanica

Süheyla KIRMIZIGÜL*and Hüseyin ANIL

Ege University, Faculty of Science, Department of Chemistry, 35100 Bornova, İzmir-TURKEY e-mail: kqul@sci.eqe.edu.tr

Received 09.05.2002

Three new triterpenic saponins, $3\text{-}O[\beta\text{-}D\text{-}xylopyranosyl } (1\rightarrow 4)-\beta\text{-}D\text{-} glucopyranosyl } (1\rightarrow 4)-\beta\text{-}D\text{-} glucopyranosyl } (1\rightarrow 3)-\alpha\text{-}L\text{-}rhamnopyranosyl } (1\rightarrow 4)-\beta\text{-}D\text{-}xylopyranosyl] hederagenin } 28\text{-}O[\beta\text{-}D\text{-}glucopyranosyl } (1\rightarrow 3)-\alpha\text{-}L\text{-}rhamnopyranosyl] ester } (1), 3\text{-}O[\beta\text{-}D\text{-}glucopyranosyl } (1\rightarrow 4)-\beta\text{-}D\text{-}glucopyranosyl } (1\rightarrow 3)-\alpha\text{-}L\text{-}rhamnopyranosyl] hederagenin } 28\text{-}O[\beta\text{-}D\text{-}glucopyranosyl] ester } (2) and <math>3\text{-}O\text{-}[\beta\text{-}D\text{-}glucopyranosyl } (1\rightarrow 3)-\alpha\text{-}L\text{-}rhamnopyranosyl } (1\rightarrow 4)-\beta\text{-}D\text{-}xylopyranosyl] hederagenin} (3) were isolated from$ *Cephalaria transsylvanica* $. After cleavage of the ester-glycosidic linkage of the bisdesmosidic compounds, two new prosapogenins, <math>3\text{-}O\text{-}[\beta\text{-}D\text{-}xylopyranosyl } (1\rightarrow 4)-\beta\text{-}D\text{-}glucopyranosyl } (1\rightarrow 4)-\beta\text{-$

Key Words: Cephalaria transsylvanica, dipsacaceae, hederagenin, triterpenic saponins.

Introduction

Cephalaria transsylvanica L. (Dipsacaceae) is an annual flowering plant with lilac flowers. It grows in southern and central Europe, and western, south-western and central Anatolia, Turkey¹. This species has been used in folk medicine due to its wide range of biological activities^{2,3}. In our previous phytochemical investigations on this plant some triterpenic saponins belonging to the oleanane series were obtained^{4,5}. Some saponins have shown activity against various bacteria and fungi⁶. This knowledge prompted us to investigate *Cephalaria transsylvanica* once more in detail for their natural occurrence. Here, the isolation and structural determination of three new triterpenic saponins, namely transsylvanosides L, M, and N, are reported.

^{*}Corresponding author

New Triterpenic Saponins from Cephalaria transsylvanica, S. KIRMIZIGÜL, H. ANIL

Experimental

General

Optical rotations were measured by a Schmidt-Haensch Polartronic E Polarimeter. IR spectra were recorded as KBr pellets on a Bruker IFS-48 FT-IR spectrometer. ¹H-NMR (400 Hz) and ¹³C-NMR (100 MHz) spectra were run in pyridine- d_5 on a Bruker-Spectrospin Avance DPX 400 instrument with TMS as internal standard. FAB-mass spectra were carried out on a VG 20-250 quadrupole mass spectrometer with Xe bombardment using MeOH as solvent and polyethylene glycol as matrix. For GC (6890) and GC-mass (6890-5973 MSD) analysis a Hewlett-Packard system was used, with HP-5 MS column (30 m x 0.25 mm x 0.25 μ m, He, temp. 130-280°C, 30 min⁻¹). Merck 7743 and 7747 silica gels were used for CC and prep. TLC respectively. TLC was performed on precoated silica gel 60 (Merck 5554) plates sprayed with 10% H₂SO₄ solution. Cellulose F (Merck 5574) plates were used for sugar analysis spraying with aniline phthalate reagent for visualization of spots. Sephadex-LH-20-100 (Sigma) was used for the purification of compounds.

 $\rm CHCl_3:MeOH:H_2O$ solvent systems were used with increasing polarity adding with MeOH as A-65:35:10, B-65:35:10 + 10% MeOH, C-65:35:10 + 15% MeOH, D-65:35:10 + 20% MeOH, E-EtOAc:pyridine: H₂O / 2:1:2 and F- CHCl₃:MeOH / 15:3 solvent systems were also successfully used during chromatographic studies. For solvent systems A-D the lower phases were utilized.

Plant Material

Plant samples were collected in July, 1994, in Bornova, İzmir. A voucher specimen is deposited (No.7435) and identified in the Herbarium Centre of Ege University.

Extraction and isolation

Air-dried and powdered aerial parts of *C. transsylvanica* (900 g) were successively extracted with 80% MeOH (3 x 4 L). Vacuum dried residue was washed with hexane, CH_2Cl_2 and Me_2CO to remove apolar substances separately. The remaining residue was dissolved in H_2O and extracted with n-BuOH. The evaporated BuOH layer (9 g) was subjected to a Si gel column. The column was eluted with solvent systems A, B, C, D in an increasing polarity. During A solvent system elution compound **3** was obtained, and during solvent system D elution compounds **1** and **2** were obtained. Purification of these compounds was done using Sephadex-LH 20 with solvent systems A and D. After purification, compounds **1** (38 mg), **2** (3 mg) and **3** (64 mg) were obtained as amorphous powders.

Transsylvanoside L: 3-*O*-[β -D-xylopyranosyl (1 \rightarrow 4)- β -D-glucopyranosyl ester (1) : 38 mg, amorphous powder, [α]²⁷+49.29° (c, 0.63, MeOH). FT-IR (KBr): 3380 (OH), 1740 (C=O), 1620 (C=C), 1071 cm⁻¹ (C-O-C). ¹H-NMR (pyridine- d_5 , 400 MHz), see Table 1; ¹³C-APT (pyridine- d_5 , 100 MHz), see Table 2. Negative-ion FAB-mass m/z: 1529 [M-H]⁻, 1367 [M-H-162]⁻, 1205 [M-H-(2x162)]⁻, 1073 [M-H-(2x162+132)]⁻, 911 [M-H-(3x162+132)]⁻, 749 [M-H-(4x162+132)]⁻, 603 [M-H-(4x162+132+146)]⁻, 471 [M-H-(4x162+2x132+146)]⁻. Molecular peak was seen at 1552 [M+Na]⁺ in the positive-ion FAB-mass spectrum.

		17 0
Compound	Aglycone protons	Sugar Protons
1	0.78 s (3H), 0.89 s (3 H)	1.55 d (J=5.5 Hz, H-6'')
	0.92 s (3H), 0.96 s (3H)	4.60 brs (H-1'')
	1.12 s (3H), 1.15 s (3H)	4.66 d (J =8.2 Hz, H-1'''')
	$2.95 \mathrm{m} (\mathrm{H}\text{-}3\alpha)$	4.84 d (J =7.7 Hz, H-1'''')
	5.47 d (J =3.4 Hz, H-12)	5.00 d (J =8.1 Hz, H-1''')
		5.11 d $(J=7.8 \text{ Hz}, \text{H-1'})$
		5.21 d (J =8.0 Hz, H-1''''')
		5.23 d (J =7.5 Hz, H-1'''''')
2	0.95 s (3H), 0.98 s (3H)	1.53 d (J=5.3 Hz, H-6'')
	1.00 s (3H), 1.07 s (3H)	4.41 d (J=8.0 Hz, H-1')
	1.10 s (3H), 1.14 s (3H)	5.00 d $(J=7.4 \text{ Hz}, \text{H-1}''')$
	$3.19 \text{ m} (\text{H-}3\alpha)$	5.32 d $(J=8.2 \text{ Hz}, \text{H-1}'''')$
	5.39 brs (H-12)	5.40 brs (H-1")
	× ,	6.20 d $(J=7.0$ Hz, H-1'''')
3	0.89 s (3H), 0.90 s (3H)	1.48 d (J=6.0 Hz, H-6'')
	0.93 s (3H), 1.00 s (3H)	5.50 d $(J=5.5 \text{ Hz}, \text{H-1'''})$
	1.02 s (3H), 1.13 s (3H)	5.81 d $(J=5.8 \text{ Hz}, \text{H-1'})$
	$3.14 \text{ m} (\text{H-}3\alpha)$	6.26 brs (H-1")
	5.40 d (J=3.1 Hz, H-12)	× ,
4	0.88 s (3H), 0.90 s (3H)	1.53 d (J=5.4 Hz, H-6'')
	0.92 s (3H), 0.98 s (3H)	5.06 d $(J=7.7 \text{ Hz}, \text{H-1}''')$
	1.10 s (3H), 1.14 s (3H)	5.15 d $(J=7.4 \text{ Hz}, \text{H-1'})$
	$3.13 \text{ m} (\text{H-}3\alpha)$	5.17 d $(J=8.2 \text{ Hz}, \text{H-1}''''')$
	5.42 brs (H-12)	5.22 d $(J=7.0 \text{ Hz}, \text{H-1}'''')$
		5.40 brs (H-1")
5	0.88 s (3H), 0.92 s (3H)	1.51 d (J =5.5 Hz, H-6")
	0.95 s (3H), 1.00 s (3H)	4.80 brs (H-1")
	1.03 s (3H, 1.15 s (3H)	5.00 d (J =7.4 Hz, H-1'''')
	$3.17 \text{ s} (\text{H-}3\alpha)$	5.15 d $(J=8.0 \text{ Hz}, \text{H-1}''')$
	5.40 brs (H-12)	5.23 d $(J=7.1 \text{ Hz}, \text{H-1'})$

Table 1. Partial ¹H- nmr data of 1-5 in pyridine- d_5

Transsylvanoside M: 3-O-[β -D-glucopyranosyl (1 \rightarrow 4)- β -D-glucopyranosyl (1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 4)- β -D-xylopyranosyl] hederagenin 28-O-[β -D-glucopyranosyl] ester (2): 33 mg, amorphous powder, [α]²⁷+21.92° (c, 1.64, MeOH). FT-IR (KBr): 3388 (OH), 1738 (C=O), 1620 (C=C), 1074 cm⁻¹ (C-O-C). ¹H-NMR (pyridine- d_5 , 400 MHz), see Table 1; ¹³C-APT (pyridine- d_5 , 100 MHz), see Table 2. Negative-ion FAB-mass m/z: 1235 [M-H]⁻, 1073 [M-H-162]⁻, 911 [M-H-(2x162)]⁻, 749 [M-H-(3x162)]⁻, 603 [M-H-(3x162+146)]⁻, 471 [M-H-(3x162+146+132)]⁻. Positive-ion FAB-mass spectrum gave a molecular peak signal at 1259 [M+Na]⁺.

Transsylvanoside N: 3-*O*-[β -D-glucopyranosyl (1 \rightarrow 3)- α -L-rhamnopyranosyl (1 \rightarrow 4)- β -D-xylopyranosyl] hederagenin (**3**): 64 mg, amorphous powder, [α]²⁷+12.09° (c, 0.85, MeOH). FT-IR (KBr): 3390 (OH), 1730 (C=O), 1618 (C=C), 1074 cm⁻¹ (C-O-C). ¹H-NMR (pyridine- d_5 , 400 MHz), see Table 1; ¹³C-NMR (pyridine- d_5 , 100 MHz), see Table 2. The negative-ion FAB-mass m/z: 911 [M-H]⁻, 749 [M-H-162]⁻, 603 [M-H-162-146]⁻, 471 [M-H-162-146-132]⁻. Molecular peak was seen at 934 [M+Na]⁺ in positive-ion FAB-mass spectrum.

Carbon			Compound		
	1	2	3	4	5
Aglycone					
C-3	82.6	82.3	82.4	81.8	82.0
C-12	122.1	122.0	122.0	122.0	122.0
C-13	144.0	144.3	144.2	144.1	144.3
C-23	68.0	68.7	66.5	68.2	68.5
C-28	176.5	176.8	180.0	179.9	180.1
C-3 sugars					
C-1'	107.3	105.5	106.4	106.3	105.7
C-2'	73.3	72.8	73.0	74.0	72.5
C-3'	75.0	75.5	75.5	75.5	75.0
C-4'	78.5	78.8	80.0	78.4	78.5
C-5'	66.4	66.0	64.0	66.4	65.2
C-1″	100.0	101.0	101.0	100.7	101.1
Č-2"	71.0	72.8	74.0	72.3	72.0
Č-3″	81.2	81.2	81.4	81.3	82.2
C-4"	73.3	72.6	71.3	73.2	72.5
C-5"	70.0	69.4	71.0	70.0	70.1
C-6"	18.2	18.2	18.4	18.2	18.1
C-1'''	104.1	104.3	104.4	104.4	104.1
C-2'''	75.0	74.7	74.3	74.8	74.5
C-3'''	78.2	78.0	78.2	78.2	77.5
C-4'''	78.5	78.7	69.2	78.8	78.8
C-5'''	75.3	77.0	78.0	76.0	75.4
C-6'''	62.5	62.7	62.2	62.5	62.2
C-1''''	105.4	105.1		104.5	105.0
C-2''''	75.0	75.0		75.0	74.7
C-3''''	78.3	78.7		78.5	78.2
C-4''''	78.6	72.1		78.8	71.5
C-5''''	75.5	75.5		75.7	75.4
C-6''''	62.7	62.2		63.0	62.6
C-1''''	106.0	02.2		106.2	02.0
C-2''''	74.3			75.0	
C-3'''''	75.0			75.3	
C-4'''''	77.5			77.4	
C-5'''''	62.0			62.5	
C-28 sugars	52.0			52.0	
C-1"""	97.1	95.5			
C-2'''''	71.4	75.2			
C-3'''''	75.5	75.5			
C-4'''''	78.7	72.4			
C-5'''''	76.5	76.8			
C-6'''''	65.0	62.3			
C-1'''''	105.2	02.0			
C-2''''''	74.0				
C-3'''''	77 1				
C-4''''''	71.9				
C-5''''''	77.9				
C-6'''''	66.0				

Table 2. ¹³C-NMR-APT chemical shifts of 1-5 in pyridine- d_5 .

Alkaline hydrolysis of the saponins: Saponins 1-3 (15 mg each) were dissolved in MeOH (5 mL) separately. pH was adjusted to 12-13 with dry methanolic NaOMe, and the mixtures were left overnight at room temperature. After neutralizing with 2M HCl the mixtures were concentrated to dryness under vacuum⁴. The residues were first solved in H₂O then extracted with n-BuOH giving hydrolysed compounds separately. Together with chromatographic and spectroscopic results, the findings suggested that saponins 1 and 2 produced the new prosapogenins 4 and 5 and saponin 3 remained unchanged (see Figure).

	R_1	R_2
1	$Xyl (1 \rightarrow 4)Glc(1 \rightarrow 4)Glc(1 \rightarrow 3)Rha(1 \rightarrow 4)Xyl-$	$Glc(1 \rightarrow 4)Glc$ -
2	$\operatorname{Glc}(1 \rightarrow 4)\operatorname{Glc}(1 \rightarrow 3)\operatorname{Rha}(1 \rightarrow 4)\operatorname{Xyl}$	Glc-
3	$Glc(1\rightarrow 3)Rha(1\rightarrow 4)Xyl-$	Н
4	$Xyl (1 \rightarrow 4)Glc(1 \rightarrow 4)Glc(1 \rightarrow 3)Rha(1 \rightarrow 4)Xyl-$	Н
5	$\operatorname{Glc}(1 \rightarrow 4)\operatorname{Glc}(1 \rightarrow 3)\operatorname{Rha}(1 \rightarrow 4)\operatorname{Xyl}$	Н
6	Н	Н

Glc: β -D-glucopyranosyl Rha: α -L-rhamnopyranosyl Xly: β -D-xylopyranosyl

Figure. Structures of compounds 1-6.

Prosapogenin 4: 10 mg, amorphous powder, $[\alpha]^{27}$: -11.15° (c, 0.82, MeOH). FT-IR (KBr): 3392 (OH), 1730 (C=O), 1620 (C=C) and 1072 cm⁻¹ (C-O-C). ¹H-NMR (pyridine- d_5 , 400 MHz), see Table 1; ¹³C-NMR (pyridine- d_5 , 100 MHz), see Table 2. Negative-ion FAB-mass m/z: 1205 [M-H]⁻, 1073 [M-H-132]⁻, 911 [M-H-132-162]⁻, 749 [M-H-(132+2x162)]⁻, 603 [M-H-(132+2x162+146)]⁻, 471 [M-H-(2x132+2x162+146)]⁻. Molecular peak was seen at 1228 [M+Na]⁺ in the positive-ion FAB-mass spectrum.

Prosapogenin 5: 9 mg, amorphous powder, $[\alpha]^{27}$: -15.43° (c, 1.11, MeOH). FT-IR (KBr): 3390 (OH), 1730 (C=O), 1618 (C=C) and 1074 cm⁻¹ (C-O-C). ¹H-NMR (pyridine- d_5 , 400 MHz), see Table 1; ¹³C-NMR (pyridine- d_5 , 100 MHz), see Table 2. Negative-ion FAB-mass m/z: 911 [M-H]⁻, 749 [M-H-162]⁻, 603 [M-H-162-146]⁻, 471 [M-H-162-146-132]⁻.

Acid hydrolysis of saponins: Solutions of saponins (15 mg each) in 80% MeOH-benzene (1:1) (5 mL) were refluxed for 6 h at 95°C with 2M HCl (5 mL) separately. The organic layers were evaporated under

New Triterpenic Saponins from Cephalaria transsylvanica, S. KIRMIZIGÜL, H. ANIL

reduced pressure. H₂O was added to each mixture and aglycones were extracted using CHCl₃. The TLC analysis of the CHCl₃ layers with F solvent system gave the same aglycone for all compounds. Hederagenin (6) has been identified by chromatographic and spectroscopic means m.p. 327° C, $[\alpha]^{27} = +77.5^{\circ}$ (c, 1.04, MeOH)^{4,7}.

Identification of the sugars of saponins

The aqueous layers of hydrolysed saponins were neutralized with saturated Na_2CO_3 solution and concentrated to dryness. The residues were then compared with standard sugars using solvent system G in TLC. Detection of the spots was done with aniline phthalate solution. In the next step, these layers were silvlated for GC analysis using trimethylchlorosilane and hexamethyldisilazane in dry pyridine under a CaCl₂ tube for 1 h at 60°C⁸. Analysis of the silvlated sugars resulted in a glucose-rhamnose-xylose ratio of 4:1:2 for **1**, 3:1:1 for **2** and 1:1:1 for **3** in GC.

Methylation and identification of methylated sugars

Compounds (10 mg each) were methylated twice with Ag₂O (0.15 g) and CH₃I (0.75 mL) in dry DMF. Permethylated saponins were methanolysed with 5% anhydrous methanolic HCl for 5 h at $80^{\circ}C^{8,9}$. The methylated methyl monosaccharides were identified by comparison with authentic samples.

Results and Discussion

The negative-ion FAB-mass spectrum of compound 1 showed a deprotonated molecular ion peak at m/z1529 and the other fragments suggested the sequential loss of four hexose, two deoxyhexose and one pentose units from the molecular ion. The positive-ion FAB-mass spectrum confirmed a molecular ion peak at m/z1552 [M+Na]⁺. The FAB-mass spectra and ¹H and ¹³C-NMR data together with GC and GC-mass results, therefore indicated the formula $C_{70}H_{115}O_{36}$ for 1 (see Tables 1 and 2). The ¹H-NMR spectrum showed the existence of six methyl groups of aglycone by singlets at δ 0.78, 0.89, 0.92, 0.96, 1.12 and 1.15. The methyl group signal of rhamnose was seen at δ 1.55 as a doublet. The doublet at δ 5.47 belonged to the olefinic proton of aglycone. The double bond signals at δ 122.1 and 144.0 in the ¹³C-NMR spectrum indicated that aglycone was an oleanane- Δ^{12} type⁴. The anomeric proton signals at δ 4.66, 4.84, 5.00, 5.11, 5.21 and 5.23 as doublets were due to D-glucose and D-xylose. Their coupling constants confirmed β -glycosidic linkages⁹. The broad singlet at δ 4.60 was attributed to the anomeric proton of α -L-rhamnose. The anomeric carbon signals at δ 97.1, 104.1, 105.2, 105.4 were assigned to four glucose units. The signals at δ 106.0 and 107.3 belonged to xylose units and the other peak at δ 100.0 was related to rhamnose. The C-3 signal at δ 82.6 and the C-28 signal at δ 176.5 inferred that compound **1** is bisdesmosidic. The ester group absorption at 1740 cm^{-1} in the IR spectrum in addition to the other IR absorptions confirmed this ester glycosidic linkage^{10,11}. The glycosidic linkages of sugars were established by GC-mass analysis of methylated methyl monosaccharides. These results were consistent with the 13 C-NMR data of saponin (see Tables 1 and 2) ${}^{12-16}$.

The basic hydrolysis of **1** resulted in prosapogenin (**4**). The anomeric carbon signals at δ 106.3, 100.7, 104.4, 104.5 and 106.2 in the ¹³C-NMR were indicative of the presence of five sugar units. Compound **4** also produced an apparent molecular ion peak in negative-ion FAB-mass at m/z: 1205 [M-H]⁻ indicating the molecular formula C₅₈H₉₄O₂₆. The ¹H-NMR spectrum of **4** displayed anomeric proton signals at δ 5.06,

5.15, 5.17, 5.22 and 5.40. Comparison of the ¹³C-NMR spectra of **4** with those of **1** showed the loss of the two anomeric carbon signals at δ 97.1 and 105.2 and 10 resonance signals. Compound **1** is therefore composed of two disaccharide chains, one linked to C-3 by a glycosidic bond and the other linked to C-28 by an esteric linkage. This indicates that saponin is bisdesmosidic.

The IR spectrum of transsylvanoside **M** (2) showed characteristic hydroxyl (3388 cm⁻¹) and ester (1838 cm⁻¹) absorptions. Anomeric carbon signals were observed at δ 95.5, 101.0, 104.3, 105.1 and 105.5 in the ¹³C-NMR spectrum. Five anomeric proton signals at δ 4.41, 5.00, 5.32, 5.40 and 6.20 were in agreement with the ¹³C-NMR spectrum. The molecular ion peak at m/z: 1235[M-H]⁻ indicated the molecular formula C₅₉H₉₆O₂₇, followed by fragments at m/z: 1073, 911, 749, 603 and 471. The base peak at m/z: 1073 suggested that a glucose was linked to hederagenin by an ester function¹³.

Alkaline hydrolysis of **2** resulted in a new prosapogenin **5**. The anomeric proton signals of **5** at δ 4.80, 5.00, 5.15 and 5.23 were in agreement with the ¹³C-NMR spectrum in which the respective carbons were observed at δ 101.1, 104.1, 105.0 and 105.7. The sequence of sugars was deduced from positive and negative-ion FAB-mass spectra. The corresponding molecular formula is determined to be C₅₉H₉₆O₂₇.

The negative-ion FAB-mass spectrum of transsylvanoside **N** (3) produced a deprotonated molecular ion peak at m/z: 911 [M-H]⁻, and fragment ions at m/z: 749, 603 and 471. The molecular ion peak was confirmed by a signal at m/z: 934 [M+Na]⁺ in the positive-ion FAB-mass spectrum, indicating the molecular formula C₄₇H₇₆O₁₇ for **3**. Basic hydrolysis results showed no difference from **3** as determined by chromatographic and spectroscopic means. Some IR absorptions, 3980 cm⁻¹ (OH), 1695 cm⁻¹ (C=O), C-3 (δ 82.4) and C-28 (δ 180.0), suggested that sugars were linked only at C-3 to the aglycone (see Table 2)^{7,8}. This means that the saponin is monodesmosidic.

The results of GC analysis of all silvlated monosaccharides and GC-mass analysis of methylated methyl monosaccharides together with the above findings determined the structures of compounds **1-6** in the Figure.

Acknowledgements

The authors wish to thank The Scientific and Technical Research Council of Turkey and METU for the spectroscopic analysis.

References

- P.H. Davis, Flora of Turkey and the East Aegean Islands: Edinburgh University Press, Edinburgh, Vol. 4, p. 589 (1972).
- L.D. Zviadadze, G.E. Dekanosidze, O.D. Dzhikiya, E.P. Kemertelidze, and A.S. Shashkow, Biorg. Khim., 7, 736-740 (1981).
- L.D. Zviadadze, G.E. Dekanosidze, O.D. Dzhikiya, and E.P. Kemertelidze, Khim. Prir. Soedin, 1, 46-49 (1983).
- 4. S. Kırmızıgül, H. Anıl, and E.M. Rose, Phytochemistry, 39, 1171-1174 (1995).
- 5. S. Kırmızıgül, and E.M. Rose, Planta Med. 63, 51-54 (1997).

New Triterpenic Saponins from Cephalaria transsylvanica, S. KIRMIZIGÜL, H. ANIL

- 6. S. Kırmızıgül, H. Anıl, F. Uçar, and K. Akdemir, Phytother. Res., 10, 274-276 (1996).
- 7. S.A. Tagiev, and A.I. Ismailov, Khim. Prir. Soedin, 6, 822-823 (1977).
- 8. G. Wulff, J. Chromatography, 18, 285-296 (1965).
- 9. P.A.J. Gorin, and M. Mazurek, Can. J. Chem., 53, 1212-1223 (1975).
- 10. K. Tori, S. Seo, A. Shimaoka, and Y. Tomita, Tetrahedron Lett., 4227-4230 (1974).
- 11. S. Seo, Y. Tomita, K. Tori, and Y. Yoshimura, J. Am. Chem. Soc., 100, 3331-3339 (1978).
- 12. N.K. Kochetkow, and O.S. Chizhow, Tetrahedron, 21, 2029-2047 (1965).
- 13. K. Heyns, H.F. Grützmacher, H. Scharmann, and D. Müller, Fortschr. Chem. Forsch., 448-490 (1966).
- 14. K. Heyns, K.R. Sperling, and H.F. Grützmacher, Carbohydr. Res., 9, 79-97 (1969).
- 15. V.F. Mohammad, M. Noorwala, V.U. Ahmad, and B. Sener, Phytochemistry, 40, 213-218 (1995).
- 16. K.T. Lee, I.C. Sohn, H.J. Park, D.W. Kim, G.O. Jung, and K.Y. Park, Planta Med., 66, 329-332 (2000).