Naphthoquinones from the Roots of Onosma argentatum Hub.-Mor. (Boraginaceae)

Ufuk ÖZGEN*
Department of Pharmacognosy, Faculty of Pharmacy, Atatürk University, 25240 Erzurum-TURKEY e-mail: uozgen@atauni.edu.tr
Maksut COŞKUN
Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, 06100 Tandoğan, Ankara-TURKEY
Cavit KAZAZ, Hasan SEÇEN
Department of Chemistry, Faculty of Arts and Science, Atatürk University, 25240 Erzurum-TURKEY

Received 17.11.2003

Onosma argentatum Hub.-Mor. is an endemic species growing in Turkey. In this study, the roots of O. argentatum were extracted with n-hexane-dichloromethane (1:1). The extract was separated on a silica gel column eluting with n-hexane-ethyl acetate by gradient elution. New naphthoquinone compounds (3 known and 1 new) were isolated and their structures were elucidated by spectroscopic methods as deoxyshikonin, acetyl shikonin, 3-hydroxy-isovaleryl shikonin, and 5,8-O-dimethyl acetyl shikonin.

Key Words: Onosma argentatum, natural naphthoquinones, shikonin derivatives, Boraginaceae, 5,8-O-dimethyl acetyl shikonin.

Introduction

The family Boraginaceae is represented by about 100 genera and 2000 species in tropical and temperate regions. ${ }^{1}$ The roots of some genera belonging to Boraginaceae are rich in naphthoquinone derivatives. Lithospermum, Arnebia, Alkanna and Onosma species contain shikonin or alkannin derivatives. ${ }^{2-5}$

The genus Onosma has about 150 known species. ${ }^{6}$ Some Onosma species (Onosma sericeum Willd., O. microcarpum Steven ex D.C.) are used for the treatment of wounds in rural areas in Turkey. ${ }^{7}$ O. argentatum is an endemic species growing in Turkey. ${ }^{8}$ Its roots are used for wound healing and burns in the rural parts of Ilýca district (Erzurum, Turkey). Recently, our studies revealed that the extract of O. argentatum showed high antioxidant and antimicrobial activities. ${ }^{9}$

A survey of the literature revealed that there have been no phytochemical studies dealing with Onosma species in Turkey. We herein report the isolation and characterization of naphthoquinonic compounds from O. argentatum.

[^0]Naphthoquinones from the Roots of Onosma argentatum Hub.-Mor. (Boraginaceae), U. ÖZGEN, et al.,

Experimental

Instruments: NMR spectra were recorded on a Varian 200 MHz instrument in CDCl_{3} using TMS as internal standard. EI-MS spectra were recorded on a Thermo-Finnigan and Fisons model MD 800 mass spectrometer. Column chromatography was performed on silica gel 60 ($0.063-0.200 \mathrm{~mm}$, Merck) and preparative TLC was performed with silica gel F_{254} plates ($20 \times 20 \mathrm{~cm}, 0.5 \mathrm{~mm}$, Merck).

Materials: The roots of O. argentatum were collected from Dilimli village (Ilýca district, Erzurum province, Turkey) in July 2002. It was identified by Dr. Yusuf Kaya (Assistant Professor in the Department of Biological Sciences, Atatürk University, Turkey). A voucher specimen was deposited in the Herbarium of the Faculty of Sciences (Atatürk University) (ATA), (ATA 9729).

Extraction and Isolation. The roots (400 g) of O. argentatum were powdered and extracted with a (1000 mL) x 3 n-hexane-dichloromethane mixture (1:1) under reflux for 3 h for each extraction. The combined extracts were evaporated under reduced pressure to give concentrated extract (8 g; yield: 2%). The extract (8 g) was subjected to silica gel column chromatography. Elution was performed with a n-hexane-ethyl acetate mixture with gradient elution. Similar fractions determined by TLC were combined. Deoxyshikonin, acetyl shikonin, 3-hydroxy-isovaleryl shikonin, 5,8-O-Dimethyl acetyl shikonin were obtained in that order. Preparative TLC was used to obtain pure compounds.

Deoxyshikonin (2-(4-methyl-pent-3-enyl)-5,8-dihydroxy-naphthalene-1,4-dione) (1) (8 mg). Red oil. ${ }^{1} \mathbf{H}-$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.65(\mathrm{~s}, 1 \mathrm{H}$, phenolic OH$), 12.49(\mathrm{~s}, 1 \mathrm{H}$, phenolic OH$), 7.21(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-6$ and H-7), 6.85 (t, 1H, H-3, J=1.2 Hz), 5.14 (tm, 1H, H-3', J=7.1 Hz), $2.64\left(\mathrm{dt}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}, ~ J=7.2,1.2 \mathrm{~Hz}\right.$), 2.30 (q, 2H, H-2', J=7.2 Hz), 1.70 (d, 3H, H-5', J=1.1 Hz), 1.58 (s, 3H, H-6'). EI-MS (m/e) 272.1 ($\mathrm{M}^{+}, 30$), 229.0 (15), 216.0 (18), $204.0(54), 69.0(100) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ is in agreement with data given in the literature. ${ }^{10}$

Shikonin acetate (Acetyl shikonin) [(+)-Acetic acid 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydro-nap-hthalen-2-yl)-4-methyl-pent-3-enyl ester] (2) (20 mg). Dark red solid. ${ }^{1} \mathbf{H}$-NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.56$ $(\mathrm{s}, 1 \mathrm{H}$, phenolic OH$), 12.40(\mathrm{~s}, 1 \mathrm{H}$, phenolic OH$), 7.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 6.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3, \mathrm{~J}=1.0 \mathrm{~Hz})$, 6.01 (ddd, 1H, H-1', J=7.0, 4.6, 1.0 Hz), 5.11 (tm, 1H, H-3', J=6.0 Hz), 2.65-2.42 (m, 2H, H-2'), 2.14 (s , $3 \mathrm{H}, \mathrm{H}-2 "$), $1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-5\right.$ '), $1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-6\right.$ '). ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.0(\mathrm{C}-4), 176.6$ (C-1), 169.6 (C-1"), 167.5 (C-8), 167.0 (C-5), 148.2 (C-2), 136.0 (C-4'), 132.8 (C-6), 132.6 (C-7), 131.5 (C-3), 117.7 (C-3'), 111.8 (C-9) , 111.6 (C-10), 69.5 ($\mathrm{C}^{\prime} 1^{\prime}$), 32.9 ($\mathrm{C}-2^{\prime}$), 25.6 ($\mathrm{C}-5$ '), 20.8 ($\mathrm{C}-2^{\prime \prime}$), 17.9 (C-6'). EI-MS (m/e) $330.1\left(\mathrm{M}^{+}, 3\right), 270.3(100), 255.2(55), 219.2(88), 191.2(12), 83(30) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ is in agreement with data given in the literature. ${ }^{10}$ The assignment of carbons was written according to the literature. ${ }^{11}$

3-Hydroxy-isovaleryl shikonin [(+)-3-Hydroxy-3-methyl-butyric acid 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydro-naphthalen-2-yl)-4-methyl-pent-3-enyl ester] (3) (25 mg). Dark red oil. ${ }^{1} \mathbf{H}-\mathbf{N M R}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 12.59(\mathrm{~s}, 1 \mathrm{H}$, phenolic OH), $12.40(\mathrm{~s}, 1 \mathrm{H}$, phenolic OH), $7.17(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7), 7.02(\mathrm{bs}, 1 \mathrm{H}$, H-3), 6.08 (dd, 1H, H-1', J=6.5, 4.7 Hz), 5.11 (bt, 1H, H-3', J=7.3 Hz), 3.25 (bs, 1H, OH), 2.59 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2$ "), 2.72-2.38 (m, 2H, H-2'), 1.69 (s, 3H, H-5'), 1.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-6$ '), 1.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-4$ " or H-5"), 1.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-4$ " or $\mathrm{H}-5$ "). ${ }^{13} \mathbf{C}$-NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.1$ (C-1 or C-4), 175.3 (C-1 or C-4), 171.5 (C-1"), 168.7 (C-5 or C-8), 168.2 (C-5 or C-8), 147.5 (C-2), 136.2 (C-4'), 133.2 (C-6 or C-7), 133.0 (C-6 or C-7), 131.3 (C-3), 117.7 (C-3'), 111.9 (C-9 or C-10), 111.6 (C-9 or C-10), 69.8 (C-1' or C-3"), 69.1 (C-1' or C-3"), 46.6 (C-2"), 32.8 (C-2'), 29.2 (C-4" or C-5"), 29.1 (C-4" or C-5"), 25.7 (C-5'), 17.9 (C-6'). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ is in agreement

Naphthoquinones from the Roots of Onosma argentatum Hub.-Mor. (Boraginaceae), U. ÖZGEN, et al.,
with data given in the literature. ${ }^{12}$ Carbon assignments in ${ }^{13} \mathrm{C}$-NMR spectra were done by comparison with a similar system in the literature. ${ }^{11}$

5,8- \boldsymbol{O}-Dimethyl shikonin acetate (5,8- \boldsymbol{O}-Dimethyl acetyl shikonin) [(+)-Acetic acid 1-(5,8-dimethoxy-1,4-dioxo-1,4-dihydro-naphthalen-2-yl)-4-methyl-pent-3-enyl ester] (4) (10 mg). Dark orange oil. ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-6$ and H-7), $6.65(\mathrm{bs}, 1 \mathrm{H}, \mathrm{H}-3), 5.90(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}-1$ ', J=7.0, $4.6,1.2 \mathrm{~Hz}$), 5.11 (bt, 1H, H-3', J=7.4 Hz), $3.95(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{OMe}$), 2.64-2.39 (m, 2H, H-2'), 2.09 ($\mathrm{s}, 3 \mathrm{H}$, H-2"), 1.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-5$ '), 1.56 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-6$ '). ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.5$ (C-1 or C-4), 183.3 (C-1 or C-4), 169.5 (C-1"), 154.0 (C-5 or C-8), 153.0 (C-5 or C-8), 148.2 (C-2), 135.6 (C-4'), 133.3 (C-6), 120.5 (2C, Ar-C), 120.1 (Ar-C), 118.1(C-3'), 69.7 (C^{\prime} '), 56.9 (C5" or C8"), 56.8 (C5" or C8"), 32.8 (C2'), 25.8 (C5'), 20.9 (C-2"), 17.9 (C-6'). EI-MS (m/e) 358.1 (${ }^{+}$, 18), 316.1 (100), 301 (42), 207 (40), 115 (15), 77 (12). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are in agreement with data given in the literature. ${ }^{13}$

Results and Discussion

n-Hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts of O. argentatum were subjected to chromatographic separation by a gradient solution with hexane-EtOAc. Similar fractions were collected and combined. As a result of repeated TLC experiments, 4 compounds 1-4 were purified (Figure).

1

3

2

4
Figure

Characterization of compounds 1-4 was performed by extensive NMR studies plus EI-MS. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 - 3}$, characteristic phenolic OH protons of $\mathbf{1 - 3}$ are seen as broad singlets between δ 12.40 and $\delta 12.65 \mathrm{ppm} . \mathrm{H}_{6}$ and H_{7} protons of $\mathbf{1 - 4}$ are seen as singlets between $\delta 7.16$ and $7.30 \mathrm{ppm} . \mathrm{H}_{3}$ protons of compounds $\mathbf{1 - 4}$ arise between $\delta 6.65$ and 6.98 ppm . In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{1 - 4}$, the peaks belonging to side chains were similar to each other. Olefinic protons of 4-methyl-pent-3-en-1-yl groups in 1-4 give triplet-like signals between $\delta 5.11 \mathrm{ppm}$ and $\delta 5.14 \mathrm{ppm}$. Characteristic methyl singlets of 4-methyl-pent-3-en-1-yl groups are seen at $\delta 1.67-1.70 \mathrm{ppm}$ and $\delta 1.56-1.59 \mathrm{ppm}$. In addition, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and mass

Naphthoquinones from the Roots of Onosma argentatum Hub.-Mor. (Boraginaceae), U. ÖZGEN, et al.,
spectra confirmed the structures. Racemic synthesis and characterization of dimethoxy shikonin/alkannine acetate $\mathbf{4}$ were previously reported by Torii et al. ${ }^{13}$ The literature indicated that $(+)-\mathbf{4}$ was isolated for the first time from nature.

References

1. A. El-Shazly, M. El-Domiaty, L. Witte and M. Wink, Biochem. Syst. Ecol., 26, 619-636 (1998).
2. I. Morimoto, T. Kishi and S. Ikegami, Tetrahedron Lett., 4737-4739 (1965).
3. N. Kırımer, B. Bozan and K.H.C. Başer, Fitoterapia, 66, 499-500 (1995).
4. V.P. Papageorgiou, A. Winkler, A.N. Sagredos and G.A. Digenis, Planta Med., 35, 56-60 (1979).
5. R.K. Khajuria and S.M. Jain, Indian J. Chem. B, 32 (B), 390-391 (1993).
6. A. El-Shazly, A. Abdel-Ghani and M. Wink, Biochem. Syst. Ecol., 31, 477-485 (2003).
7. E. Sezik, E. Yeşilada, M. Tabata, G. Honda, Y. Takaishi, T. Fujita, T. Tanaka and Y. Takeda, Econ. Bot., 51, 195-211 (1997).
8. P.H. Davis, Flora of Turkey and the East Aegean Islands, Vol 6, Edinburgh University Press, Edinburgh, 1988.
9. U. Özgen, P.J. Houghton, Y. Ogundipe and M. Coşkun, Fitoterapia, 74, 682-685 (2003).
10. V.P. Papageorgiou, Planta Med., 37, 185-187 (1979).
11. C.C. Shen, W.J. Syu, S.Y. Li, C.H. Lin, G.H. Lee, C.M. Sun, J. Nat. Prod., 65, 1857-1862 (2002).
12. I. Morimoto and Y. Hirata, Tetrahedron Lett., 3677-3680 (1966).
13. S. Torii, K. Akiyama, H. Yamashita and T. Inokichi, Bull. Chem. Soc. Jpn., 68, 2917-2922 (1995).

[^0]: * Corresponding author

