An Atropisomeric Chiral 2,2'-bipyridyl-3,3'-dicarboxylic Acid and Corresponding Platinum(II) Complex

Abdurrahman ŞENGÜL
Department of Chemistry, Zonguldak Karaelmas University, Zonguldak-TURKEY
e-mail:abdurrahmans2002@yahoo.co.uk

Received 06.05.2004

Abstract

$2,2^{\prime}$-Bipyridyl-3,3'-dicarboxylic acid ($\mathrm{H}_{2} \mathrm{BDC}$) spontaneously resolves on crystallization from water, giving monohydrated crystals of the space group $P 2_{1} 2_{1} 2_{1}$. In any individual crystal, all the atropisomericskewed molecules are of one hand; however, on dissolution in water, optical activity is lost. Strong hydrogen bonding leads to a helical structure, via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ links, and 3 further strong bonds between water and carboxylate groups produce a framework structure. The $\mathrm{p} K_{a}$ values measured for $\mathrm{H}_{2} \mathrm{BDC}$ (3.18 ± 0.04 and 4.59 ± 0.02 at $20 \pm 1^{\circ} \mathrm{C}$, in dilute aqueous solution) agree with the zwitterionic form. The reaction of $\mathrm{H}_{2} \mathrm{BDC}$ with potassium tetrachloroplatinate(II) in water gives $\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{BDC}\right) \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. The complex was characterized by elemental analysis and spectroscopic techniques.

Key Words: Platinum complexes, 3, 3^{\prime}-dicarboxyl-2,2'-bipyridine ligand, Crystal structure, Spontaneous resolution, Hydrogen bonding.

Introduction

$2,2^{\prime}$-Bipyridine and its derivatives have been receiving considerable attention, largely because of their intrinsic properties and also because of their ability to form coordination compounds with metal ions ${ }^{1}$. The recent focus on this type of compound is derived from the fact that dicarboxy derivatives form rigid rod aromatic polymers. These compounds have found applications as high performance thermoplastics ${ }^{2}$. The chiral atropisomeric quaternized $2,2^{\prime}$-bipyridyl-3, 3^{\prime}-dicarboxylic acid functions as an acceptor for lightinduced electron transfer systems ${ }^{3}$. Crystal structure and antitumor activity studies of the complex cis$\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{BDC}\right) \mathrm{Cl}_{2} \cdot 2 \mathrm{DMF}$ have been previously reported ${ }^{4}$.

Spontaneous resolution of racemic compounds leads to conglomerates of crystals of pure enantiomers. A list of some 200 organic conglomerates is available ${ }^{5}$. None involve a case of a classical atropisomeric bi-aryl, enantiomeric resolution due to restricted rotation about the single bond between 2 aromatic rings. We report the first such case, for bi-nicotinic acid.

In metal complexes of bi-nicotinic acid, coordination occurs either in a bidentate fashion through pyridine nitrogen atoms ${ }^{6}$ or in a tridentate fashion through pyridine nitrogen atoms and an oxygen atom of
carboxylate ${ }^{7}$. As part of our study of the metal complexes of skewed bipyridyls ${ }^{8,9}$ we report the coordinating properties of $2,2^{\prime}$-bipyridyl- $3,3^{\prime}$-dicarboxylic acid with platinum(II).

Experimental

Materials and methods

All chemicals were reagent grade and were used as purchased without further purification. Non-aqueous solvents were dried before use. 1,10-Phenanthroline, potassium permanganate, potassium tetrachloroplatinate, standard sodium hydroxide solution, and sodium hydroxide pellets were purchased from Aldrich. Air and moisture sensitive $\mathrm{D}_{2} \mathrm{O}, \mathrm{NaOD}$ and DCl were purchased from Aldrich and kept in a reaction flask under dry nitrogen gas.

UV-visible spectra were obtained using a Kontron Instruments Uvikon 930 spectrophotometer for the ligand and a Perkin-Elmer UV/VIS spectrometer Lambda 20 for the complex. IR spectra (given as cm^{-1}) were recorded on a Nicolet 510 FT-IR spectrometer (4000-400) using fluorolube mulls between KBr disks for the ligand and on a Perkin-Elmer 783 infrared spectrophotometer (4000-250) using a Nujol mull between CsI disks for the complex. Proton NMR spectra were recorded on a Bruker WM360 spectrometer for the ligand and on a Bruker DPX400 spectrometer for the complex. Thermogravimetric results were obtained using a Stanton Redcroft TG-750 temperature programmed thermogravimetric balance with sample weights between 5 and 10 mg . The samples were heated in air at a rate of $15^{\circ} \mathrm{min}^{-1}$. Melting points were measured using a Reichert hot stage microscope.

All temperatures are in ${ }^{\circ} \mathrm{C}$.

Synthesis

$3,3^{\prime}$-dicarboxy-2, $\mathbf{2}^{\prime}$-bipyridine $\left[\mathrm{H}_{2} \mathrm{BDC}\right]$,(I; bi-nicotinic acid)

The modification ${ }^{10}$ of the original method of Inglet and Smith ${ }^{11}$ has advantages in terms of simplicity and yield. 1,10-Phenanthroline monohydrate ($16 \mathrm{~g}, 0.08 \mathrm{~mol}$) and sodium hydroxide ($6.4 \mathrm{~g}, 0.16 \mathrm{~mol}$) were dissolved in water $\left(700 \mathrm{~cm}^{3}\right)$ under reflux. After cooling the homogeneous solution but before it started to solidify, solid potassium permanganate $(38 \mathrm{~g}, 0.24 \mathrm{~mol})$ was added very slowly with vigorous stirring. The mixture was set to reflux for 3 h . The precipitated manganese dioxide was removed by filtration, the filtrate evaporated to approximately $300 \mathrm{~cm}^{3}$ on a rotary evaporator, and its pH was adjusted to ~ 2 with concentrated hydrochloric acid. Decolorizing charcoal was added and the solution was boiled and filtered, the filtrate being concentrated to $200 \mathrm{~cm}^{3}$. The precipitated bi-nicotinic acid was collected, washed with ethanol and water and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ in a desiccator. Successive crystallizations from water gave white crystals that looked cubic ($14 \mathrm{~g}, 70 \%$), m.p. 262 (decomp.). Literature $258^{10}, 260^{11}, 250-252^{12}$. Found: C, 58.6; H, 3.3; N, 11.4. Calc. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$ (anhydrous): C, $59.02 ; \mathrm{H}, 3.30 ; \mathrm{N}, 11.47 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}, d/ppm): $8.65\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{6,5}=4.75 \mathrm{~Hz}, \mathrm{H} 6, \mathrm{H} 6^{\prime}\right) ; 8.24\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{4,5}=7.78 \mathrm{~Hz}, \mathrm{H} 4, \mathrm{H} 4^{\prime}\right) ; 7.50\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6}=\right.$ $\left.4.75 \mathrm{~Hz}, \mathrm{~J} 4,5=7.78 \mathrm{~Hz}, \mathrm{H} 5, \mathrm{H}^{\prime}\right) ; 12.92(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{COOH})$. IR spectrum (cm^{-1}): $3085 \mathrm{~m}, 3000-2500 \mathrm{br}, 2572$ $\mathrm{w}, 1714 \mathrm{~s}, 1588 \mathrm{~s}, 1570 \mathrm{w}, 1440 \mathrm{~s}$ and 1400 m . The electronic spectrum showed absorption at $269 \mathrm{~nm}(\varepsilon=$ $\left.8580 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ [Lit. ${ }^{13} 270 \mathrm{~nm}\left(\varepsilon=8530 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$]. There was a shift to a shorter wavelength (265 nm) upon the addition of alkali.

$\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{BDC}\right) \mathrm{Cl}_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (II)

A hot aqueous solution $\left(100 \mathrm{~cm}^{3}\right)$ of bi-nicotinic acid ($1.3 \mathrm{~g}, 5 \mathrm{mmol}$) was added to a hot solution $\left(15 \mathrm{~cm}^{3}\right)$ of potassium tetrachloroplatinate ($2 \mathrm{~g}, 4.8 \mathrm{mmol}$). The mixture was heated and stirred for 90 min . The orange precipitate was collected by filtration and washed with water, ethanol and diethyl ether. The crude product was recrystallized from aqueous methanol to yield 2.2 g of the 85% pure yellow-orange crystalline product dichloro-3, 3^{\prime}-dicarboxy-2, 2^{\prime}-bipyridylplatinum(II) monohydrate. Found: C, 27.2; H, 1.9; N, 5.8. Calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cl}_{2} \mathrm{Pt}: \mathrm{C}, 27.29 ; \mathrm{H}, 1.91 ; \mathrm{N}, 5.30 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, \mathrm{~d} / \mathrm{ppm}\right): 8.69\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{6,5}=4.85\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{6,4}=1.54 \mathrm{~Hz}, \mathrm{H} 6, \mathrm{H}^{\prime}\right) ; 8.27\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{4,5}=7.89 \mathrm{~Hz}, \mathrm{~J}_{4,6}=1.54 \mathrm{~Hz}, \mathrm{H} 4, \mathrm{H} 4^{\prime}\right) ; 7.54\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{5,6}=\right.$ $\left.4.85 \mathrm{~Hz}, \mathrm{~J}_{5,4}=7.89 \mathrm{~Hz}, \mathrm{H} 5, \mathrm{H} 5^{\prime}\right)$. IR spectrum $\left(\mathrm{cm}^{-1}\right): 3530-3460 \mathrm{~d}, \mathrm{~m}, 3088 \mathrm{~m}, 1720 \mathrm{~s}, 1585 \mathrm{~s}, 1420 \mathrm{~s}$, $1320 \mathrm{~m}, 1276 \mathrm{~m}, 1125-1107 \mathrm{~d}, \mathrm{~m}, 864 \mathrm{~m}, 822 \mathrm{~m}, 754 \mathrm{~m}, 516 \mathrm{~m}, \mathrm{br}, 330 \mathrm{~m}$. The last 2 values were obtained using a Nujol mull between CsI disks. The electronic spectrum (in water at 25) showed absorption at 255 $\mathrm{nm}\left(\varepsilon=19800 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 324 \mathrm{~nm}\left(\varepsilon=7900 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 335 \mathrm{~nm}\left(\varepsilon=7800 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$, $388 \mathrm{~nm}\left(\varepsilon=2800 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$. In DMSO absorption was found at 423, 331 and 271 nm .

Determination of $\mathbf{p} K_{a}$ Values

A gently stirred aqueous solution ($50 \mathrm{~mL}, 0.01 \mathrm{M}$) of bi-nicotinic acid was titrated with aqueous sodium hydroxide $(0.1 \mathrm{M})$ at 20 ± 1; very slowly using 0.1 mL increments. pH was measured 30 s after each addition using a Mettler-Toledo AG analytical pH meter. The $\mathrm{p} K_{a}$ values obtained using the "overlapping method" ${ }^{14}$ were 3.18 and 4.59. The diagram as shown in Figure 1 describes the nature of the stoichiometric species present in the aqueous solution of bi-nicotinic acid. It was obtained using the species program ${ }^{15}$.

Figure 1. The nature of the stoichiometric species present in aqueous solution of bi-nicotinic acid.

Solubility of $\mathrm{H}_{2} \mathrm{BDC}$

Bi-nicotinic acid (1.25 g) was stirred with water $(100 \mathrm{~mL})$ at 25 ± 0.5 and the pH recorded every 30 min until no further change was observed. After 21 h , this pH was found to be 2.70 . The saturated aqueous solution was filtered: the dried undissolved solid weighed and found to be 0.9 g . This meant 0.35 g had dissolved, with a solubility of $0.013 \mathrm{~mol} . \mathrm{dm}^{-3}$. The solute concentrations calculated from the final pH and from the absorption of the final filtered solution agree, giving a value of $0.012 \mathrm{~mol} . \mathrm{dm}^{-3}$.

X-ray structure determination

X-ray data were collected at $-153{ }^{\circ} \mathrm{C}$ on a Delft Instruments FAST TV area detector. X-rays were produced by a rotating anode generator using $\mathrm{Mo}_{\mathrm{o}}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71069 \AA)$ and controlled by a Micro Vax 3200 workstation driven by MADNES ${ }^{16}$ software. Data collection was performed using the ABSMAD ${ }^{17}$ program. The unit cell dimensions were determined from 5304 reflections with setting angles of between 2.49° and $25.40^{\circ} \theta$. The crystal system was determined to be orthorhombic and the space group was uniquely determined to be $P 2_{1} 2_{1} 2_{1}$. Relevant data collection parameters are given in Table 1. The structure was solved by direct methods (SHELXS97 ${ }^{18}$) and refined on F^{2} (anisotropic for all non-H atoms) using SHELXL93^{19}, with all 1866 unique items of data. H atoms were refined freely with $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distances in the range $0.90(3)-1.00(3) \AA$ and $U_{\text {iso }}$ values in the range $0.005(5)-0.053(9) \AA^{2}$. Final $\mathrm{R}\left[\mathrm{F}^{2}>\sigma\left(\mathrm{F}^{2}\right)\right]=0.0361$, $R w($ all data $)=0.083$.

Table 1. Crystallographic data and details of the structure refinement.

Empirical formula	$\mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
Formula weight	262.22
Temperature	$120(2) \mathrm{K}$
Wavelength	$0.71069 \AA$
Crystal system	Orthorhombic
Space group	$P 2_{1} 2_{1} 2_{1}$
Unit cell dimensions	$a=8.2730(10) \AA, b=8.4420(10) \AA, c=16.769(4) \AA \alpha=90^{\circ}$,
	$\beta=90^{\circ}, \gamma=90^{\circ}$
V	$1171.2(3) \AA^{3}$
Z	4
Density (calculated)	$1.487 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.118 \mathrm{~mm}{ }^{-1}$
$F(000)$	544
Crystal	$\mathrm{Clear} ; \mathrm{block}$
Crystal size (mm)	0.28 x 0.14 x 0.14
θ range for data collection	$2.43-25.03^{\circ}$
Index ranges	$-7 \leq h \leq 9,-8 \leq k \leq 9,-18 \leq l \leq 18$
Reflections collected	5204
Independent reflections	$1866\left[R_{\text {int }}=0.0639\right]$
Completeness to $\theta=25.03^{\circ}$	93.1%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.952 and 0.742
Refinement method	Full-matrix least-squares on F_{2}
Data / restraints $/$ parameters	$1866 / 0 / 212$
Goodness-of-fit on F^{2}	1.012
Final R indices $\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R 1=0.0361, w R 2=0.0821$
R indices (all data)	$R 1=0.0393, w R 2=0.0830$
Largest diff. peak and hole	0.233 and -0.233 e $\AA \AA^{-3}$

Results and Discussion

X-ray structure

An ORTEP ${ }^{20}$ drawing of the $\mathbf{I} \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Figure 2 and the unit cell diagram is shown in Figure 3. The crystal parameters and details of data collection are summarized in Table 1. The atomic coordinates
and equivalent isotropic thermal parameters are listed in Table 2. Bond lengths and angles are provided in Table 3. Strong hydrogen bonded interactions are shown in Table 4.

Figure 2. An ORTEP drawing of the title compound with H atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

Figure 3. The packing diagram. The intra- and intermolecular hydrogen bonds are shown by dashed lines.
As shown in Figure 2, the individual molecules are skewed, with a dihedral angle, ϕ, of $78.5(1)^{\circ}$. This is a common feature for many bi-aryls, particularly those substituted at the positions next to the link between rings. For example, ϕ is $42.9(1)^{\circ}, 23.6(1)^{\circ}$ and $53.2(2)^{\circ}$ respectively for \mathbf{I} with $\mathrm{X}=\mathrm{NO}_{2}{ }^{21}$, CN 22 and $\mathrm{CO}_{2} \mathrm{CH}_{3}{ }^{23}$. However, these three $2,2^{\prime}$-bipyridyls are not enantiomorphic: their space groups are
$P 2_{1} / c, P \overline{1}$ and $P b c n$ respectively. In the present case, the space group is $P 2_{1} 2_{1} 2_{1}$: therefore, in a given single crystal, all the molecules of bi-nicotinic acid have the same optical hand.

Table 2. Atomic coordinates $\left[\times 10^{4}\right]$ and equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$. Ueq is defined as one-third of the trace of the orthogonalized $U \mathrm{ij}$ tensor.

Atom	x	y	z	$U_{e q}$
O2	$1313(2)$	$8771(2)$	$5186(1)$	$31(1)$
O1	$367(2)$	$10215(2)$	$6187(1)$	$37(1)$
O3	$865(2)$	$11271(2)$	$3602(1)$	$34(1)$
O4	$2829(2)$	$10175(2)$	$2872(1)$	$29(1)$
N1	$-2848(2)$	$9727(2)$	$3843(1)$	$26(1)$
N2	$-1099(2)$	$6680(2)$	$3934(1)$	$22(1)$
C1	$-1516(2)$	$9377(2)$	$4265(1)$	$20(1)$
C2	$-3903(3)$	$10753(3)$	$4156(1)$	$31(1)$
C3	$-3697(3)$	$11470(3)$	$4879(1)$	$27(1)$
C4	$-2342(2)$	$11095(3)$	$5318(1)$	$23(1)$
C5	$-1223(2)$	$10025(2)$	$5016(1)$	$20(1)$
C6	$231(2)$	$9680(3)$	$5525(1)$	$22(1)$
C7	$-491(2)$	$8152(2)$	$3865(1)$	$20(1)$
C8	$-355(3)$	$5479(3)$	$3567(1)$	$25(1)$
C9	$1031(3)$	$5681(3)$	$3128(1)$	$27(1)$
C10	$1660(3)$	$7183(3)$	$3046(1)$	$25(1)$
C11	$895(3)$	$8457(3)$	$3411(1)$	$20(1)$
C12	$1510(2)$	$10119(3)$	$3318(1)$	$23(1)$
O100	$992(29$	$7027(2)$	$7543(1)$	$32(1)$

The crystal structure (see Table 4) data show intermolecular hydrogen bonding between the basic nitrogen and carboxylic proton of molecules in the bipy complex. Additionally, there is strong intermolecular hydrogen bonding between the water molecules and the carboxylic and nitrogen atoms of the acid. The strong hydrogen bond with the water molecule is $\mathrm{O}(4)-\mathrm{H}(40) \cdots \mathrm{O}(100)$. The shortest distance between a ring nitrogen atom $\mathrm{N}(2)$ and carboxylic proton $\mathrm{H}(20)$ of an adjacent pyridine ring is 1.725 (3) \AA with an angle of $179.24(3)^{\circ}$. This shows that there is strong linear hydrogen bonding within this system, as can be seen in the packing diagram in Figure 3. The other important structure forming short contacts are shown in Table 4. All indications are that the hydrogen bonds stabilize the molecule as a chiral structure in the solid state.

Although the bond angles for $\mathbf{I} \cdot \mathrm{H}_{2} \mathrm{O}$ are very close to those for the protonated bipyridine ${ }^{24}$ it is not a zwitterion in solid state, since the hydrogen bonds between the oxygen and the nitrogen atoms are not equidistant. The O-H distance, in this case, is about $0.9 \AA$ and the $\mathrm{N} \cdots \mathrm{H}$ is about $1.7 \AA$. This clearly indicates that $2,2^{\prime}$-bipyridyl- $3,3^{\prime}$-dicarboxylic acid in the crystal state is an uncharged molecule. The selected bond lengths and angles are given in Table 3.

Spontaneous resolution and the Kuhn effect

Upon dissolution of the single crystals in water, the optical activity is lost. As found for other spontaneous resolutions, where the chiral equilibrium in solution is kinetically labile (e.g., the preparation solution of $\left.\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{PtS}_{17}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)^{25}$ or for the related cases where the symmetric solution yields handed crystals (e.g., $\left.\mathrm{NaClO}_{3}\right)^{26}$, our batches of a few dozen relatively large crystals usually have a preponderance of one
enantiomorph. The most direct analogy to the present observations lies in the remarkable early observations by Kuhn and Albrecht on 4, 4^{\prime}-dinitrodiphenic acid ${ }^{27}$. Kuhn and Albrecht found that when solutions of $4,4^{\prime}$-dinitrodiphenic acid (with, of course, no rotation) and levorotatory solutions of (-) quinine were mixed, the rotation became strongly positive and a single diastereoisomeric salt could be crystallized in high yield (ca. 80%). They took this to stem from an asymmetric induction in solution, stabilizing one hand of the diacid.

Table 3. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

O2-C6	$1.309(3)$
O2-H20	$0.90(3)$
O1-C6	$1.203(3)$
O3-C12	$1.207(3)$
O4-C12	$1.324(3)$
O4-H40	$0.92(4)$
N1-C2	$1.336(3)$
N1-C1	$1.343(3)$
N2-C8	$1.336(3)$
N2-C7	$1.345(3)$
C1-C7	$1.497(3)$
C6-O2-H20	$113.0(19)$
C12-O4-H40	$108.3(18)$
C2-N1-C1	$118.13(19)$
C8-N2-C7	$119.28(18)$
N1-C1-C5	$122.19(19)$
N1-C1-C7	$112.36(18)$
C5-C1-C7	$125.30(18)$
C1-C5-C6	$125.19(18)$
O1-C6-O2	$123.84(19)$
O1-C6-C5	$121.73(18)$
O2-C6-C5	$114.42(19)$
N2-C7-C11	$121.54(19)$
N2-C7-C1	$112.82(17)$
C11-C7-C1	$125.48(19)$
O3-C12-O4	$124.0(2)$
O3-C12-C11	$124.18(19)$
O4-C12-C11	$111.8(2)$
H102-O100-H101	$107(39)$

Table 4. The hydrogen bonds.

Donor-H $\cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}(\AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left(^{\circ}\right)$
$\mathrm{O} 2-\mathrm{H} 20 \cdots \mathrm{~N} 2^{i}$	$0.903(3)$	$1.725(3)$	$2.628(2)$	$179(3)$
$\mathrm{O} 4-\mathrm{H} 40 \cdots \mathrm{O} 100^{i i}$	$0.920(3)$	$1.718(3)$	$2.614(3)$	$164(3)$
$\mathrm{O}^{i} 00-\mathrm{H} 101 \cdots \mathrm{O}^{i i}$	$0.901(3)$	$1.962(3)$	$2.853(2)$	$169(3)$
$\mathrm{O} 100-\mathrm{H} 102 \cdots \mathrm{N1}^{i}$	$0.914(3)$	$2.017(3)$	$2.917(3)$	$168(2)$

The symmetry code: $($ i $) \mathrm{x}+1 / 2,3 / 2-\mathrm{y},-\mathrm{z}+1$, (ii) $-\mathrm{x}+1 / 2,-\mathrm{y}+2, \mathrm{z}-1 / 2,(i i i)-\mathrm{x}, \mathrm{y}-1 / 2,-\mathrm{z}+3 / 2$
The skewed conformation of $\mathbf{I} \cdot \mathrm{H}_{2} \mathrm{O}$ in aqueous solution (albeit with equal concentrations of right and left enantiomers), is not unexpected, although the preferential assemblage of homochiral molecules into an enantiomorphic unit cell is.

An Atropisomeric Chiral 2,2'-bipyridyl-3,3'-dicarboxylic Acid and..., A. ŞENG U U L

We measured the values of $\mathrm{p} K_{a}$ for bi-nicotinic acid as 3.18 and 4.59, and so dilute solutions contain chiefly the anion \mathbf{I}, where $\mathrm{X}=\mathrm{COO}^{-}$. Even when a handed single crystal is dissolved directly in alkali (NaOH) so that presumably the di-anion is formed as it dissolves, no optical rotation is measurable. The repulsion between the nitrogen lone pairs and the negatively charged carboxylate is, therefore, not enough to prevent racemization.

IR spectra

The infrared spectrum of crystalline $\mathbf{I} \mathrm{H}_{2} \mathrm{O}$ shows a broad very strong absorption between 3100 and 2500 cm^{-1}, arising from the very strong hydrogen bonding of all OH units. No absorption is apparent at frequencies higher than $3150 \mathrm{~cm}^{-1}$. A sharp band at $3100 \mathrm{~cm}^{-1}$ is superimposed on the broad absorption, which presumably arises from aromatic CH stretching modes. In the deutero-isotopomer, $\left[\right.$ bipy $\left.-\left(\mathrm{CO}_{2}\left[{ }^{2} \mathrm{H}\right]\right)_{2} \cdot\left[{ }^{2} \mathrm{H}\right]_{2} \mathrm{O}\right]$, this is shifted to $2300-1850 \mathrm{~cm}^{-1}$. The band at $1724 \mathrm{~cm}^{-1}$ is assigned to the $\mathrm{C}=\mathrm{O}$ stretching of the protonated carboxylic acid. The infrared spectrum of $\mathbf{I I}$ is identical to $\mathbf{I} \mathrm{H}_{2} \mathrm{O}$ with the exception of 2 bands at 516 and $330 \mathrm{~cm}^{-1}$. The broad band at $516 \mathrm{~cm}^{-1}$ is probably due to lattice water. The strong band at $330 \mathrm{~cm}^{-1}$ is assigned to the $\mathrm{Pt}-\mathrm{Cl}$ stretching vibration, and is thus similar to that of the red form of $\left[\mathrm{Pt}(\right.$ bipy $\left.) \mathrm{Cl}_{2}\right]$ and cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, which also show only one band due to $(\mathrm{Pt}-\mathrm{Cl})^{28}$.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra

Two doublets at 8.6 and 8.2 ppm for the $6,6^{\prime}$ and $4,4^{\prime}$ protons and a doublet of doublets at 7.5 ppm for the $5,5^{\prime}$ protons are consistent with the presence of 2-fold symmetry in solution. A very broad resonance at 12.92 ppm is assigned to the 2 exchanging protons. Coordination of bi-nicotinic acid to platinum(II) through its nitrogen atoms is revealed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, showing that the molecule has C_{2} symmetry in solution, having 3 peaks in the downfield region, which is characteristic of bipyridyl ring resonance. Therefore the coordination around the Pt atom is essentially square-planar with the 4 coordination sites occupied by 2 Cl atoms and 2 N atoms of the chelating bipyridyl ligand.

UV-visible spectra

Bi-nicotinic acid exhibits only 1 band in the ultraviolet region, due to a large twist in the molecule, in contrast with bipyridine, which exhibits 2 bands. The shift in the ultraviolet spectrum upon the addition of alkali observed for bi-nicotinic acid can be assigned to the zwitterionic form ${ }^{14}$.

Accordingly, the higher melting point of bi-nicotinic acid compared to diphenic acid may be due to its occurrence as an internal salt or to hydrogen bonding as depicted in the unit cell diagram. Bi-nicotinic acid does not melt quickly but decomposes gradually, which is very common for all zwitterions such as amino acids. TGA shows that bi-nicotinic acid undergoes decarboxylation at 318 ± 20 with a mass loss of about 36%, which corresponds to 2 moles of carbon dioxide. This provides an advantage for the synthesis of regioselectively deuterated bipyridine isotopomer ${ }^{8}$.

The electronic absorption spectrum of II in water (it is not soluble in chloroform or dichloromethane) is compared with $\left[\mathrm{Pt}(\right.$ bipy $\left.) \mathrm{Cl}_{2}\right]$ in chloroform. The bands between 350 and 400 nm are characteristic of square-planar coordination for the bipy and phen complexes of $\mathrm{Pt}(\mathrm{II})$; they are also present in the spectrum
of $\left[\mathrm{Pt}(\text { bipy }) \mathrm{Cl}_{2}\right]^{29}$. Houlding and Miskowski ${ }^{30}$ reported that the MLCT absorption of $\left[\mathrm{Pt}\left(3,3^{\prime}-\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2^{-}}\right.\right.$ bipy $) \mathrm{Cl}_{2}$] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ occurs at $444 \mathrm{~nm}\left(\varepsilon=3030 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$, which is within the energy range of the band at $388 \mathrm{~nm}\left(\varepsilon=2800 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ for II in water. This band shifts $\left(2100 \mathrm{~cm}^{-1}\right)$ to the lower energy in dimethylsulfoxide. The lowest energy band in the spectra of $\left[\mathrm{Pt}(\mathrm{L}) \mathrm{X}_{2}\right](\mathrm{L}=$ bipy, substituted bipy, where $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I) shifts ca. $4000 \mathrm{~cm}^{-1}$ to a lower energy upon going from aqueous to chloroform solution ${ }^{31}$ and ca. $3000 \mathrm{~cm}^{-1}$ due to electron-withdrawing groups on the bipyridine ${ }^{30}$.

Binding properties of bi-nicotinic acid, $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{BDC}\right) \mathrm{Cl}_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (II)

In the absence of steric effects, chelated bipy molecules are essentially planar ${ }^{8}$. When methyl substituents are placed in the $3,3^{\prime}$-positions of bipy, the molecule can still act as a chelating ligand but with a concomitant increase in the dihedral angle between the pyridyl rings to $30-35^{\circ}{ }^{10}$. If the size of the $3,3^{\prime}$-substituents is increased, a point will be reached where the ring closure step will be unlikely and monodentate coordination will result. Inglet and Smith ${ }^{11}$ attempted to prepare iron(II) complexes of bi-nicotinic acid but since there was no color change when solutions of these compounds were mixed, they concluded that complex formation with this molecule was not possible. Furthermore, Gillard ${ }^{13}$ reported the preparation of $\left[\mathrm{Ru}(\mathbf{I})_{3}\right]^{2+}$ with lower optical purity, $(5 \% \mathrm{~L}-(+)$ hand $)$, than $\left[\mathrm{Ru}(\text { bipy })_{3}\right]^{2+}(60 \% \mathrm{~L}-(-)$ hand $)$ or $\left[\mathrm{Ru}(\text { phen })_{3}\right]^{2+},(35 \% \mathrm{~L}-(-)$ hand). This low optical purity was attributed to the non-coplanarity of bi-nicotinic acid resulting from geometry unfavourable for complexation. The structure of $\left[\mathrm{Cu}(\mathbf{I}) \mathrm{Cl}_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ published by Goddard ${ }^{6}$ shows that bi-nicotinic acid is coordinated to the copper through its nitrogen atoms. The planar pyridine rings are twisted by about 30° relative to one another around the $2,2^{\prime}$-bond. Coordination around the copper atom is approximately square-planar with 2 chloride atoms and the nitrogen atoms of the bi-nicotinic acid occupying the 4 coordination sites. The other published structure of a copper(II) complex with bi-nicotinic acid, by Zhong ${ }^{7}$, revealed polymeric chains of $\left[\mathrm{Cu}(\mathbf{I})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ units. Each copper(II) ion pair is bridged by a di-anion of bi-nicotinic acid in a tridentate fashion through its 2 pyridine nitrogen atoms and 1 carboxylate oxygen atom. The dihedral angle between the two pyridine ring planes is 28.7°. It is clear that bi-nicotinic acid acts as a non-planar chelating ligand in both complexes. In the present case, coordination of bi-nicotinic acid to platinum(II) through its nitrogen atoms is revealed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, showing that the molecule has C_{2} symmetry. This is confirmed by means of the spectroscopic techniques mentioned above. All data are in good agreement with the reported values for the analogous complexes. The possible intermolecular hydrogen bonding between the two carboxyl OH groups of neighboring units could lead to the formation of a 1-dimensional polymer, as found for the $\mathrm{Pt}\left(3,3^{\prime}-\left(\mathrm{HOH}_{2} \mathrm{C}\right)\right.$-bipy $) \mathrm{Cl}_{2}{ }^{4}$.

Conclusions

In contrast to other skewed bipyridyls, particularly those substituted at the $3,3^{\prime}$-positions, the preferential assemblage of homochiral molecules into an enantiomorphic unit cell is observed for $2,2^{\prime}$-bipyridyl-3, 3^{\prime} dicarboxylic acid. The single crystal X-ray structure shows very strong intermolecular hydrogen bondings between the basic nitrogen and carboxylic proton of molecules in the bipy and a very strong one with the water molecule involved.

The ligand exists as a zwitterion in dilute aqueous solution at $\mathrm{pH} \sim 4$ but as an unprotonated ligand in the solid. Upon dissolution of single handed crystals in water, optical activity is lost.

An Atropisomeric Chiral $2,2^{\prime}$-bipyridyl-3,3'-dicarboxylic Acid and..., A. SSENGÜL

The helicate coordinated to Pt atoms adopts a square-planar geometry. Many attempts to obtain (1:2) complex ions with platinum(II) met with failure, presumably due to a large twist of the planar pyridine rings.

Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 187887 for compound I. Copies of this information may be obtained free of charge from: The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgements

This work was supported by Zonguldak Karaelmas University and the EPSRC. The author is indebted to Dr. D.S. Hughes and Prof. M.B. Hursthouse for the X-ray crystal structure analysis. I also wish to express my gratitude to Prof. R.D. Gillard for his helpful advice and continuing support.

References

1. E.D. McKenzie, Coord. Chem. Rev. 6, 187-216 (1971)
2. S.C. Yu, S. Hou and W. K. Chan, Macromolecules 33, 3259 -3273 (2000).
3. M. Wörner, G. Greiner and H. Rau, J. Phys. Chem. 99, 14161-14166 (1995).
4. J. Yoo, J-H. Kim, Y.S. Sohn and Y. Do, Inorg. Chim. Acta 263, 53-60 (1997).
5. J. Jacques, A. Collet and S.H. Wilen, Enantiomers, Racemates and Resolutions, John Wiley Interscience, New York, 1981.
6. R. Goddard, B. Hemalatha and M.V. Rajasekharan, Acta Crystallogr. C46, 33-35 (1990).
7. Z.J. Zhong, X.-Z. You and Q. C. Yang, Polyhedron 13, 1951-1955 (1994).
8. A. M.F. Gameiro, R.D. Gillard, N.H. Rees, J. Schulte and A. Sengul, Croatica Chemica Acta 74, 641-665 (2001).
9. A. Sengul, M.B. Hursthouse, S.J. Coles and R. D. Gillard, Acta Crystallogr. C54, 661-662 (1998).
10. S. Dholakia, R.D. Gillard and F.L. Wimmer, Polyhedron 4, 791-795 (1985).
11. G.F. Smith and F.P. Richter, Phenanthroline and Substituted Phenanthroline Indicators. The G. Frederick Smith Chemical Company, Columbus, Ohio, 1944.
12. B.Z. Shan, Q. Zhao, N. Goswami, D.M. Eichhorn and D.P. Rillema, Coord. Chem. Rev. 211, 117-144 (2001).
13. R.D. Gillard and R.E.E. Hill, J. Chem. Soc., Dalton 1217-1236 (1974).
14. A. Albert and E.P. Sergeant, The Determination of Ionization Constants. Chapman \& Hall, London, $2^{\text {nd }}$ edn, 1971.
15. G.W. Quinn and D.M. Taylor, NSPEC. A Chemical Speciation Program, 1991.
16. J.W. Pflugrath and A. Messerschmidt, MADNES. Version 11 September 1989. Delft Instruments, Delft, The Netherlands, 1989.
17. A.I. Karaulov, ABSMAD. Program for Fast Data Processing; University of Wales, Cardiff, 1992.
18. G.M. Sheldrick, SHELX97. Release 97-2. Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
19. G.M. Sheldrick, SHELX93. Program for the Refinement of Crystal Structure. University of Göttingen, Germany, 1993.
20. N. Michael Burnett and C.K. Johnson, ORTEP III: Oak Ridge. Thermal Ellipsoid Plot Program for Structure Illustrations. Oak Ridge National Laboratory Report ORNL-6895, 1996.
21. C.R. Rice, J.D. Wallis and D.C. Povey, Acta Crystallogr. C48, 1988-1991 (1992).
22. P.N.N. Baxter, J.A. Connor, D.C. Povey and J.D. Wallis, J. Chem. Soc., Chem. Commun. 1135-1137 (1991).
23. C.D. Rice, K.J. Robinson and J.D. Wallis, Acta Crystallogr. C49, 1980-1982 (1993).
24. L.L. Meritt Junior and E.D. Schroeder, Acta Crystallogr. 9, 801-804 (1956).
R.D. Gillard and F.L. Wimmer, J. Chem. Soc., Chem. Commun. 936-937 (1978).
25. R.D. Gillard and J.D.P. De Jesus, J. Chem. Soc., Dalton Trans. 1779-1782 (1979).
R. Kuhn and O. Albrecht, Ann. Chem. 455, 272-299 (1927) and cf E.E. Turner and M.M. Harris, Quart. Revs. 1, 299-330 (1948).
26. E. Bielli, P.M. Gidney, R.D. Gillard and B.T. Heaton, J. Chem. Soc., Dalton Trans. 2133-2139 (1974).
27. S. Wimmer, P. Castan, F.L. Wimmer and N.P. Johnson, J. Chem. Soc., Dalton Trans. 403-412 (1989).
28. V.M. Miskowski, V.H. Houlding, C.-M. Che and Y. Wang, Inorg. Chem. 32, 2518-2524 (1993).
29. V.M. Miskowski and V.H. Houlding, Coord. Chem. Rev. 111, 145-152 (1991).
