Synthesis of Some New Isoxazolidines by 1,3-Dipolar Cycloaddition Reaction of Nitrones and Olefins

Akbar MOBINIKHALEDI*, Naser FOROUGHIFAR, Zahra KALATE

Department of Chemistry, University of Arak, Dr. Beheshti Ave, Arak-IRAN e-mail: akbar_mobini@yahoo.com

Received 01.08.2003

A series of new isoxazolidines **5a-j** were synthesized by 1,3-dipolar cycloaddition reaction of different nitrones with substituted olefins under reflux condition. The yields of products following recrystallization from absolute ethanol were of the order of 40%-66%. IR, NMR and mass spectroscopies were used for identification of these compounds.

Key Words: Isoxazolidine, Nitrones, 1,3-Dipolar, Cycloaddition.

Introduction

Nitrones are important synthetic intermediates that have been used extensively in organic chemistry¹⁻⁷. Some nitrones have been used for the trapping and identification of free radicals⁷, particularly in biological studies⁴. Various synthetic approaches for the synthesis of nitrones have been reported by several groups⁸⁻¹⁸. The most general approach for the preparation of nitrones is the condensation reaction between aldehydes or ketones with N-monosubstituted hydroxylamines⁸. Nitrones can react as 1,3-dipolar species with a large variety of dipolarophiles to give different products. One of the most synthetic applications of nitrones is their use as 1,3-dipoles in cycloaddition reactions to olefins for preparation isoxazolidines¹⁹. Isoxazolidines are known to possess antibacterial activity²⁰. The purpose of the present work is to synthesis some new isoxazolidines by 1,3-dipolar cycloaddition reaction of nitrones and olefins.

Experimental

Melting points (mp) were determined with an electrothermal digital melting point apparatus. IR spectra were obtained using a Galaxy series FT-IR 5000 spectrophotometer using KBr pellets. ¹HNMR spectra were recorded on Bruker 400 and 500 MHz spectrometers, using Me₄Si (TMS) as an internal standard. Mass spectra were measured with an EI (70 eV)+Q1MSLMR up LP spectrometer. Reaction courses and product mixtures were monitored using thin layer chromatography.

 $^{^{*} {\}rm Corresponding} \ {\rm author}$

Synthesis of Some New Isoxazolidines by..., A. MOBINIKHALEDI, et al.,

General procedure for preparation of nitrones

Nitrones **3a-e** were synthesized using the condensation reaction between corresponding aldehydes and N-phenylhydroxylamine in ethanolic solution⁸.

General procedure for preparation of isoxazolidines

The appropriate nitrone 3 (0.01 mol) was dissolved in dry benzene or toluene (3 mL) and the corresponding olefin 4 (0.01 mol) was added. The reaction mixture was refluxed for 10-30 h. Concentration of the solution under vacuum gave the crude product, which was then recrystallized from ethanol.

5-(4-Chlorophenyl)-2,3-diphenyl-isoxazolidine (5a)

mp 91-93 $^{\circ}\mathrm{C}$

IR (KBr): $v = 3100, 2900, 1600, 1487, 1300, 1100, 821, 765 \text{ cm}^{-1}$

¹HNMR (CDCl₃): δ (ppm) = 2.3 (m, 2H, H-4), 3.0 (dd, J = 9.1, 7.9 Hz, 1H, H-3), 4.7 (dd, J = 9.1, 7.9 Hz, 1H, H-5), 7.4 (m, 14H, H_{arom}).

¹³CNMR (CDCl₃): δ (ppm) = 40.1, 64.3, 85.5, 116.2, 122.5, 126.9, 128.0, 128.2, 132.6, 133.8, 142.0, 146.1. Ms: (m/z %) = 311 (M⁺, 32%), 222 (6%), 194 (18%), 180 (42%), 131 (23%), 90.7 (100%), 76.2 (38%).

2,3-Diphenyl-4-ethoxycarbonyl-5-methylisoxazolidine (5b)

IR (KBr): $v = 3086, 2980, 1732, 1599, 1489, 1030, 754, 698 \text{ cm}^{-1}$ ¹HNMR (CDCl₃): δ (ppm) = 1.0 (t, J = 7.5 Hz, 3H, CH₃, ester), 1.3 (d, J = 7.0 Hz 3H, CH₃), 3.1 (m, 1H,

H-4), 4.0 (q, J = 7.5 Hz, 2H, CH₂O), 4.5 (dd, J = 9.1, 7.8 Hz, 1H, H-3), 5.0 (d, 1H, J = 8.0 Hz, H-5), 7.1 (m, 10H, H_{arom}).

¹³CNMR (CDCl₃): δ (ppm) = 14.2, 17.0, 54.4, 60.6, 67.5, 76.6, 124.9, 125.1, 125.2, 126.4, 127.9, 128.1, 130.9, 144.5, 170.4.

 $Ms: (m/z \%) = 311 (M^+, 32\%), 222 (6\%), 194 (18\%), 180 (42\%), 131 (23\%), 90.7 (100\%), 76.2 (38\%).$

5-Cyano- 2,3-diphenyl isoxazolidine (5c)

IR (KBr): $v = 3061, 2361, 1597, 1280, 1100, 781, 760 \text{ cm}^{-1}$

¹HNMR (CDCl₃): δ (ppm) = 2.7 (m, 2H, H-4), 4.2 (t, J = 7.9 Hz, 1H, H-3), 4.8 (t, J = 7.9 Hz, 1H, H-5), 7.2 (m, 10H, H_{arom}).

¹³CNMR (CDCl₃): δ (ppm) = 34.1, 64.7, 67.1, 116.9, 121.9, 123.2, 127.2, 128.2, 129.9, 130.2, 140.3, 146.7. Ms: (m/z %) = 250 (M⁺, 100%), 224 (28%), 196 (28%), 180 (30%), 105 (22%), 90.7 (5%).

3-(2-Hydroxyphenyl)- 5-methoxycarbonyl -2-phenylisoxazolidine (5d)

IR (KBr): $v = 3061, 2361, 1751, 1570, 1468, 1280, 1033, 784 \text{ cm}^{-1}$

¹HNMR (CDCl₃): δ (ppm) = 2.8 (m, 2H, H-4), 3.6 (s, 3H, -OCH₃), 4.6 (m, 2H, H-3 and H-5), 6.9 (m, 9H, H_{arom}).

148

¹³CNMR (CDCl₃): δ (ppm) = 39.9, 51.5, 57.8, 75.3, 117.1, 118.6, 116.5, 122.0, 128.2, 128.3, 128.9, 147.4, 157.7, 171.9. Ms: (m/z %) = 299 (M⁺, 22%), 267 (3%), 210 (4%), 198 (34%), 196(13%), 90.7 (100%).

4-Ethoxycarbonyl-3-(2-hydroxyphenyl)-5-methyl-2-phenylisoxazolidine (5e)

mp 108-110 °C IR (KBr): $v = 3352, 2982, 2868, 1705, 1597, 1487, 1300, 1100, 766 \text{ cm}^{-1}$ ¹HNMR (CDCl₃): δ (ppm) = 1.1 (t, J = 7.5 Hz, 3H, CH₃ ester), 1.5 (d, J = 7.0 Hz 3H, CH₃), 3.4 (m, 1H, H-4), 4.1 (q, J = 7.5 Hz, 2H, -CH₂O), 4.6 (d, J = 8.0 Hz, 1H, H-3), 5.1 (d, J = 8.0 Hz, 1H, H-5), 7.1 (m, 9H, H_{arom}). ¹³CNMR (CDCl₃): δ (ppm) = 14.3, 16.9, 55.6, 59.9, 60.6, 75.6, 120.2, 117.5, 119.0, 125.0, 125.1, 127.7, 128.0, 128.6, 145.8, 157.5, 170.4. Ms: (m/z %) = 327 (M⁺, 52%), 210 (11%), 196 (100%), 131 (36%), 90.7(4%), 44.6 (17%).

MS: (II/2%) = 327 (M⁺, 32%), 210 (11%), 190 (100%), 131 (30%), 90.7(4%), 44.0 (17)

2,5-Diphenyl-3-(4-nitrophenyl)isoxazolidine (5f)

mp 120-122 $^{\circ}\mathrm{C}$

IR (KBr): $v = 3047, 1597, 1470, 1348, 1028, 850, 692 \text{ cm}^{-1}$

¹HNMR (CDCl₃): δ (ppm) = 2.4 (m, 2H, H-4), 3.2 (dd, J = 9.1, 7.8 Hz, 1H, H-3), 5.1 (dd, J = 9.1, 7.8 Hz, 1H, H-5), 7.6 (m, 14H, H_{arom}).

¹³CNMR (CDCl₃): δ (ppm) = 38.7, 64.5, 85.8, 116.4, 121.8, 124.8, 124.0, 128.7, 129.3, 132.9, 137.4, 145.9, 147.2.

Ms: $(m/z \%) = 346.5 (M^+, 1\%), 192 (5\%), 90.7 (100\%), 76.3 (63\%).$

5-Methoxycarbonyl-3-(4-nitrophenyl)-2-phenylisoxazolidine (5g)

IR (KBr): v = 2955, 1730, 1597, 1529, 1340, 1207, 1109, 856, 758 cm⁻¹ ¹HNMR (CDCl₃): δ (ppm) = 2.5 (m, 2H, H-4), 3.8 (s, 3H, -OCH₃), 4.4 (t, J = 8.1 Hz, 1H, H-3), 5.0 (t, J = 8.1 Hz, 1H, H-5), 7.7 (m, 9H, H_{arom}). ¹³CNMR (CDCl₃): δ (ppm) = 35.6, 51.4, 64.2, 75.3, 116.7, 121.7, 128.3, 136.8, 145.9, 146.0, 146.1, 171.9.

 $Ms: (m/z \%) = 328 (M^+, 84\%), 312 (71\%), 241 (2\%), 225 (9\%), 101(12\%), 90.7 (100\%), 76.3 (61\%).$

3-(4-Bromophenyl)-2,5-diphenylisoxazolidine (5h)

mp 119-121 $^{\rm o}{\rm C}$

IR (KBr): $v = 3100, 2900, 2342, 1487, 1257, 1000, 758, 500 \text{ cm}^{-1}$

¹HNMR (CDCl₃): δ (ppm) = 2.3 (m, 2H, H-4), 3.1 (dd, J = 9.1, 7.8 Hz, 1H, H-3), 5.0 (dd, J = 9.1, 7.8 Hz, 1H, H-5), 7.2 (m, 14H, H_{arom}).

 $^{13}\text{CNMR}$ (CDCl₃): δ (ppm) = 36.2, 64.7, 78.6, 116.1, 122.6, 123.7, 124.6, 125.7, 126.9, 128.5, 129.5, 129.7, 133.1, 139.1.

Ms: $(m/z \%) = 379 (M^+, 0.5\%), 273 (25\%), 192.1 (10\%), 90.7 (100\%), 76.2 (58\%).$

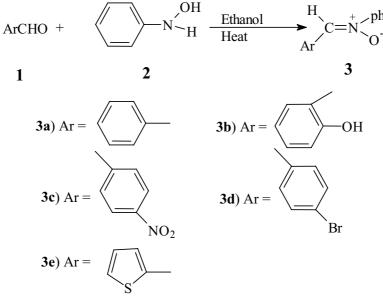
Synthesis of Some New Isoxazolidines by..., A. MOBINIKHALEDI, et al.,

3-(4-Bromophenyl)-5-(4-chlorophenyl)-2-phenylisoxazolidine (5i)

IR (KBr): $v = 3100, 1595, 1487, 1300, 1010, 817 \text{ cm}^{-1}$

¹HNMR (CDCl₃): δ (ppm) = 2.45 (m, 2H, H-4), 3.3 (dd, J = 9.0, 7.8 Hz, 1H, H-3), 5.1 (dd, J = 9.0, 7.8 Hz, 1H, H-5), 7.3 (m, 13H, H_{arom}).

¹³CNMR (CDCl₃): δ (ppm) = 40.3, 64.4, 85.6, 116.3, 122.0, 123.7, 127.0, 128.5, 129.7, 130.4, 131.6, 132.7, 134.0, 141.1, 146.1.


Ms: $(m/z \%) = 414.9 (M^+, 4.3\%), 306.9 (4\%), 273.9 (3.8\%), 226 (1.1\%), 191 (10\%), 168 (6.6\%), 139 (6.5\%), 103 (6.8\%).$

5-(4-Chlorophenyl)-2-phenyl-3-thienylisoxazolidine (5j)

mp 103-105 °C IR (KBr): $v = 3086, 2939, 1597, 1486, 1300, 1093, 821, 760 \text{ cm}^{-1}$ ¹HNMR (CDCl₃): δ (ppm) = 2.4 (m, 2H, H-4), 3.2 (dd, J = 9.0, 7.8 Hz, 1H, H-3), 5.2 (t, J = 8.0 Hz, 1H, H-5), 7.4 (m, 12H, H_{arom}). ¹³CNMR (CDCl₃): δ (ppm) = 33.7, 65.1, 88.2, 116.0, 122.6, 127.2, 127.6, 128.0, 129.6, 131.1, 133.9, 135.0, 148.6. Ms: (m/z %) = 341 (M⁺, 0.05%), 233 (0.47%), 111 (9%), 90.7 (100%), 76.2 (64%).

Results and Discussion

Nitrones **3a-e** were prepared according to the published method as far as $possible^8$ (Scheme 1). The condensation reaction between the appropriate aldehyde and phenylhydroxylamine offered the desired nitrones in good yields. In each case only the Z-isomer was detected using NOE experiments (Table 1). An enhancement was observed in the difference spectra upon irradiation of the azomethine proton of the nitrone and the phenyl ring protons.

Scheme 1

ъ

1	Nitrone 3	Rt (h)	Yield (%)
benzaldehyde	C,N-diphenylnitrone $3a$	12	78
salicylaldehyde	C-(2-hydroxyphenyl)-N-phenylnitrone 3b	2	47
<i>p</i> -nitrobenzaldehyde	C-(4-nitrophenyl)-N-phenylnitrone 3 c	2	85
<i>p</i> -bromobenzaldehyde	C-(4-bromophenyl)-N-phenylnitrone 3d	2	89
2-thiophenecarboxaldehyde	C-(2-thiophenyl)-N- phenylnitrone $3e$	2	78

Table 1. Reaction time and yields on the formation of nitrones.

Rt = reaction time

1,3-Dipolar cycloaddition reaction of nitones to olefins (Scheme 2), which was carried out under reflux condition and different times, afforded isoxazolines **5a-j** in average yield and high selectivity (Table 2).

$$3a-e + \binom{R_1}{R_2} \xrightarrow{Ar}_{ph} \binom{R_1}{N_0^2} \xrightarrow{R_2}^{R_1} + \binom{R_1}{ph} \binom{R_2}{N_0^2} \xrightarrow{R_2}^{R_2} + \binom{R_1}{ph} \binom{R_1}{N_0^2} \xrightarrow{R_1}^{R_2} \xrightarrow{R_1}^{R_1} \xrightarrow{R_2}^{R_2} \xrightarrow{R_2}^{R$$

Scheme 2

Table 2. Reaction time and yields on the formation of isoxazolidines.

Nitrone 3	Olefin 4	Isoxazolidine 5	Rt(h)	$M.P^{\bullet}$ (°C)	Yield (%)
3a	p-chlorostyrene	5a	10	91-93	60
3a	ethyl crotonate	$5\mathrm{b}$	23	-	43
3a	acrylonitrlile	5c	21	-	63
3b	methyl acrylate	5d	30	-	40
3b	ethyl crotonate	$5\mathrm{e}$	10	108-110	57
3c	styrene	$5\mathrm{f}$	13	120-122	66
3c	methyl acrylate	$5\mathrm{g}$	21	-	50
3d	styrene	$5\mathrm{h}$	27	119-121	48
3 d	p-chlorostyrene	5i	27	-	55
3 e	p-chlorostyrene	5j	25	103-105	64

Rt = reaction time

•Compound with no m.p was an oily product

Yields of the products were in the order of 40%-66%, as summarized in Table 2. The selectivity of most nitrone cycloadditions to mono-substituted olefins was such that the 5-substituted isoxazolidine **5** was

Synthesis of Some New Isoxazolidines by..., A. MOBINIKHALEDI, et al.,

preferentially formed as the major isomer. However using 1,2-disubstituted olefin such as ethyl crotonate in reaction with **3b** gave the isoxazolidine **5e** with the more electron-withdrawing substituent, CO_2Et , on the 4 position. The stereoselectivity of this 1,3- dipolar cycloaddition reaction may be influenced by both electronic and steric effects²¹. In the reactions where electron-withdrawing groups were present on the nitrone, isoxazolidine **6** was also formed as the minor product, which was separated by flash column chromatography. Such an isomer was found in the 1,3- dipolar cycloaddition reaction of C-(4-nitrophenyl)-N-phenylnitrone **3c** with methyl acrylate.

References

- 1. G.R. Delpierre and M. Lamchen, Quqrt. Rev, 19, 329 (1965).
- 2. J. Hamer and A. Macaluso, Chem. Rev, 64, 473 (1964).
- 3. R. Huisgen, Angew. Chem. Int. Ed. Engl, 2, 565 (1963).
- K. Hensley, J.M. Carney, C.A. Stewart, T. Tabafabaie, Q. Pye and R.A. Floyd, Int. Rev. Neurobiol, 40, 299 (1999).
- 5. D.S.C. Black, R.F. Crozier and V.C. Davis, Synthesis, 205 (1975).
- 6. J.P. Freeman, Chem. Rev, 83, 241 (1983).
- 7. R.H.D. Barton and J.M. Beaton, J. Am. Chem. Soc, 82, 2641 (1960).
- S.R. Sandler and W. Karo, Organic Functional Group Preparations, 2nd ed, Academic Press, San Diego, Vol 3, pp. 351-376 (1989).
- 9. H. Mitsui, S. Zenki, T. Shiota, and S-I. Murahashi, J. Chem. Soc. Chem. Commun, 874 (1984).
- 10. S. Cicchi, M. Corsi and A. Goti, J. Org. Chem, 64, 7243 (1999).
- 11. R.W. Murray and M. Singh, J. Org. Chem, 55, 2954 (1990).
- 12. W.W. Zajac.Jr., T.R. Walters and M.G. Darcy, J. Org. Chem, 53, 5856 (1988).
- 13. S-I. Murahashi, T. Shiota and Y. Imada., Org. Synth, 70, 265 (1991).
- 14. A.H. Fenselau, E.H. Hamamura and J.G. Moffatt, J. Org. Chem, 35, 3546 (1970).
- 15. M. Nojima, K. Takeuchi, E. Fukui and N. Tokura, J. Che. Soc; Perkin. Trans, 1, 2202 (1976).
- 16. P.A.S. Smith and S.E. Gloyer, J. Org. Chem, 40, 2508 (1975).
- 17. S-I. Murahashi, H. Mitsui, T. Shiota, T. Tsuda and S.J. Watanabe, J. Org. Chem, 55, 1736 (1990).
- 18. S. Yamazaki, Bull. Chem. Soc. Jpn, 70, 877 (1997).
- 19. P.C. Dennis, Advances in Cycloaddition, Vol 3, 1993.
- 20. D.P.A. Iannazzo, V. Pistara, A. Rescifina and R. Romeo. Tetrahedron, 58, 581 (2002).
- 21. A. Banerji and P. Sengupta, J. Indian Inst. Sci, 81, 313 (2000).