Crystal Structure of Nitrato($2,2^{\prime}, 2^{\prime \prime}$-terpyridyl)platinum(II) Hydrogen Dinitrate, $\left[\mathrm{Pt}(\right.$ terpy $\left.) \mathrm{ONO}_{2}\right]\left[\mathrm{H}\left(\mathrm{ONO}_{2}\right)_{2}\right]$

Abdurrahman ŞENGÜL
Department of Chemistry, Faculty of Arts and Sciences, Karaelmas University
67100 Zonguldak-TURKEY
e-mail: sengul@karaelmas.edu.tr

Received 24.03.2005

The title compound, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{Pt}$, consists of $\left[\mathrm{Pt}(\text { terpy }) \mathrm{ONO}_{2}\right]^{+}$cation and $\left[\mathrm{H}\left(\mathrm{ONO}_{2}\right)_{2}\right]^{-}$anion, in which 2 nitrate groups are linked by a strong hydrogen bond [$\mathrm{O} \cdots \mathrm{O} 2449(1) \AA$]. In the cation, the terpyridine is coordinated to Pt as a tridentate ligand and the fourth position is occupied by the nitrate ion's oxygen. The coordination around Pt is square-planar. The coordinated nitrate moiety adopts a distorted trigonal-planar configuration. It belongs to the space group P $\overline{1}$ with $a=8.605(2), b=10.220(3)$ $\AA, c=10.517(2) \AA$ and $\alpha=89.51(1), \beta=82.78(2), \gamma=76.90(2)^{\circ}$.

Key Words: X-ray structure, terpyridine, hydrogen, nitrate, platinum, complex.

Introduction

Hydrogen-bonded species of the type (XHX) ${ }^{-}$are fairly common and new examples occur frequently ${ }^{1}$. Although there have been several studies on the salts that contain hydrogen dinitrate (HDN), the number of compounds studied using X-ray and neutron data is rather limited, and those known from diffraction works containing HDN anions are listed in Table 1.

Two distinct conformations are known for the anions (I and II) as follows:

(I)

(II)

A preliminary infrared and Raman investigation of CsHDN has been published together with the X-ray structure determination ${ }^{2}$. A quasi-tetrahedral coordination of the proton was postulated in this

Crystal Structure of Nitrato($2,2^{\prime}, 2^{\prime \prime}$-terpyridyl)platinum(II) Hydrogen Dinitrate,..., A. ŞENGÜL
work, similar to the one proposed previously for the HDN ion in the $\left[\mathrm{Rhpy}_{4} \mathrm{Br}_{2}\right]^{+}$complex ${ }^{4}$. The subsequent neutron diffraction investigation of CsHDN has shown that the tetrahedral coordination was foreshadowed by orientational disorder and the HDN ion has in fact structure \mathbf{I} containing a short linear hydrogen bond with an O \cdots O contact of about $2.5 \AA^{3}$. Structure II was derived from the X-ray diffraction of tetraphenylarsonium hydrogen dinitrate crystals ${ }^{6}$. The 2 nitrate groups are coplanar and the $\mathrm{O} \cdots \mathrm{O}$ contact is also short. Recently, the single crystal X-ray structure of 9-cyano-10-methylacridinium hydrogen dinitrate has shown that the HDN ion contains a short linear hydrogen bond with O \cdots O contact of $2.440(4) \AA$, as in other inorganic and organic compounds containing this anion ${ }^{7}$. Thus the existence of 2 types of HDN ions has been demonstrated.

Table 1. Structures of hydrogen dinitrate salts.

	Conformation	X-ray/neutron	Reference
$\mathrm{CsH}\left(\mathrm{NO}_{3}\right)_{2}$	I	X and n	2,3
trans- $\left[\mathrm{Rhpy}_{4} \mathrm{Cl}_{2}\right] \mathrm{H}\left(\mathrm{NO}_{3}\right)_{2}$	I	n	4
trans- $\left[\mathrm{Rupy}_{4} \mathrm{Cl}_{2}\right] \mathrm{H}\left(\mathrm{NO}_{3}\right)_{2}$	I	X	5
$\mathrm{Ph}_{4} \mathrm{AsH}\left(\mathrm{NO}_{3}\right)_{2}$	II	X	6
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2}^{+} \cdot \mathrm{H}\left(\mathrm{NO}_{3}\right)_{2}^{-}$	II	X	7

The infrared and Raman spectra of oligonitric acid adducts have also been investigated, and only one crystal structure has been determined, that of $\mathrm{NH}_{4} \mathrm{NO}_{3} \cdot 2 \mathrm{HNO}_{3}^{8}$.

A large number of HDN anions and oligonitric acid adducts have been proposed as components of the troposphere and stratosphere ${ }^{1}$.

Due to the stereochemical duality of the HDN ion and the controversy about hydrogen bonding, collecting further examples of the existence of the ion will surely prove to be beneficial.

Instrumentation

The unit cell parameters and intensity data were recorded at 150 K on a Delft Instruments FAST TV area detector diffractometer using the routines ENDEX, REFINE and MADONL in the MADNES software ${ }^{9}$; details of the procedures are described elsewhere ${ }^{10}$. Data reduction: ABSMAD ${ }^{11}$, program to solve structures: SHELXS86 ${ }^{12}$, and program to refine structures: SHELXL93 ${ }^{13}$. H atoms were paced geometrically and refined with a 'riding model' with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{i s o}(\mathrm{H})=1.2 U_{e q}$. WinGX ${ }^{14}$ version 1.64 .05 and SHELXL93 were used to prepare the material for publication. Further details concerning data collection and refinement are given in Table 2.

Synthesis

To a solution of $[\mathrm{Pt}($ terpy $) \mathrm{Cl}] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{15}(2.4 \mathrm{~g}, 4.5 \mathrm{mmol})$ in water $\left(100 \mathrm{~cm}^{3}\right)$ was added silver nitrate (1.52 $\mathrm{g}, 9 \mathrm{mmol}$) in water (ca. $5 \mathrm{~cm}^{3}$) and the mixture heated at reflux for 2 h . The white precipitate of silver chloride was filtered through Celite and the filtrate cooled to room temperature. The trace amount of silver chloride was removed by centrifuge 3 times. The pH of the resulting clear yellow solution was adjusted to $5-6$ with nitric acid and the excess of sodium nitrate in water $\left(10 \mathrm{~cm}^{3}\right)$ was added with vigorous stirring. The yellow-orange precipitate was collected by filtration, washed with ether, and air-dried. Crystallization from a 1:1 mixture of conc. nitric acid and water yielded orange-red crystals.

Crystal Structure of Nitrato($2,2^{\prime}, 2^{\prime \prime}$-terpyridyl)platinum(II) Hydrogen Dinitrate,..., A. ŞENGÜL

Table 2. Crystallographic data and details of the structure refinement.

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{Pt}$
Formula weight	615.40
Temperature	$150(2) \mathrm{K}$
Wavelength	$0.71069 \AA$
Crystal system	Triclinic
Space group	$\mathrm{P} \overline{1}$
Unit cell dimensions	$a=8.605(2) \AA, b=10.220(3) \AA, c=10.517(2) \AA$
	$\alpha=89.51(1)^{\circ}, \beta=82.78(2)^{\circ}, \gamma=76.90(2)^{\circ}$
V	$893.5(4) \AA^{3}$
Z	2
Density (calculated)	$2.287 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$7.922 \mathrm{~mm}{ }^{-1}$
$F(000)$	588
Crystal	Orange; needle
Crystal size (mm)	$0.24 \times 0.18 \times 0.10$
θ range for data collection	$2.05-25.01^{\circ}$
Index ranges	$-9 \leq h \leq 6,-11 \leq k \leq 11,-11 \leq l \leq 10$
Reflections collected	4027
Independent reflections	$2568\left[R_{i n t}=0.0398\right]$
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints $/$ parameters	$2568 / 0 / 281$
Goodness-of-fit on F^{2}	1.094
Final R indices [I $>2 \sigma(\mathrm{I})]$	$R 1=0.0263, w R 2=0.0640$
R indices (all data)	$R 1=0.0277, w R 2=0.0643$
Largest diff. peak and hole	$1.491 \mathrm{and}-1.483 \mathrm{e} \AA \AA^{-3}$

$\mathrm{UV} / \mathrm{Vis}$ in water $\left(\mathrm{C}=4.06 \times 10^{-5} \mathrm{M}\right) \lambda_{\max }(\mathrm{nm}), \varepsilon\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right): 342\left(13.4 \times 10^{3}\right), 327\left(15.3 \times 10^{3}\right)$, $278\left(29.9 \times 10^{3}\right), 249\left(35.9 \times 10^{3}\right)$.

Results and Discussion

The molecular structure and packing diagram of the $\left[\mathrm{Pt}(\right.$ terpy $\left.) \mathrm{ONO}_{2}\right]\left[\mathrm{H}\left(\mathrm{ONO}_{2}\right)_{2}\right]$ are depicted in Figures 1 and 2, respectively. Selected bond lengths and angles of the compound are presented in Table 3. Final atomic coordinates and equivalent isotopic displacement parameters are given in Table 4.

The title compound was prepared from the chloro complex by halide abstraction with silver nitrate in aqueous solution and subsequent recrystallization from concentrated nitric acid to yield orange crystals

Crystal Structure of Nitrato($2,2^{\prime}, 2^{\prime \prime}$-terpyridyl)platinum(II) Hydrogen Dinitrate, ..., A. ŞENGÜL

Figure 1. A drawing of the title compound with atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown by the dashed line.

Figure 2. A packing diagram. Hydrogen bonds and $\mathrm{Pt} \cdots \mathrm{Pt}$ contacts are shown by the dashed lines. Symmetry code: (i) -x, -y, -z.

Crystal Structure of Nitrato($2,2^{\prime}, 2^{\prime \prime}$-terpyridyl)platinum(II) Hydrogen Dinitrate,..., A. ŞENGÜL

Table 3. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

Pt1-N2	1.916(5)
Pt1-N1	$2.014(5)$
Pt1-N3	2.031(5)
Pt1-O1	2.043(4)
N4-O1	1.318(7)
N4-O2	1.224(6)
N4-O3	1.238(6)
N5-O4	1.302(6)
N5-O5	1.193 (6)
N5-O6	$1.277(6)$
N6-O7	1.311(7)
N6-O8	1.233(7)
N6-O9	1.223(7)
N1-Pt1-N2	81.6(2)
N1-Pt1-N3	162.6(2)
N2-Pt1-N3	81.1(2)
N1-Pt1-O1	95.9(2)
N2-Pt1-O1	175.0(2)
N3-Pt1-O1	101.5(2)
N4-O1-Pt1	117.2(3)
O1-N4-O2	116.6(5)
O2-N4-O3	124.0(5)
O1-N4-O3	119.4(5)
O4-N5-O5	119.7(5)
O4-N5-O6	116.8(5)
O7-N6-O8	117.9(5)
O8-N6-O9	125.6(5)
O7-N6-O9	116.5(5)

Crystal Structure of Nitrato($2,2^{\prime}, 2^{\prime \prime}$-terpyridyl)platinum(II) Hydrogen Dinitrate,..., A. ŞENGÜL

Table 4. Atomic coordinates $\left[\times 10^{4}\right]$, equivalent isotropic displacement parameters $\left[\AA^{2} \times 10^{3}\right]$ and site occupancy factors. Ueq is defined as one-third of the trace of the orthogonalized U ij tensor.

Atom	x	y	z	$U_{e q}$
Pt1	$-801(1)$	$1260(1)$	$-785(1)$	$14(1)$
O1	$-2403(5)$	$63(4)$	$-813(4)$	$21(1)$
O2	$-4340(6)$	$-422(5)$	$-1706(5)$	$38(1)$
O3	$-3125(5)$	$1070(4)$	$-2582(4)$	$25(1)$
O4	$-1255(5)$	$3858(4)$	$-3001(4)$	$25(1)$
O5	$-3525(5)$	$4163(4)$	$-1781(4)$	$30(1)$
O6	$-3420(5)$	$3608(4)$	$-3787(4)$	$29(1)$
O7	$-18(5)$	$2923(4)$	$-5122(4)$	$26(1)$
O8	$1865(6)$	$3897(5)$	$-4691(5)$	$35(1)$
O9	$2116(6)$	$2757(5)$	$-6481(5)$	$38(1)$
N1	$-1904(6)$	$2305(5)$	$820(5)$	$16(1)$
N2	$740(6)$	$2319(5)$	$-614(4)$	$12(1)$
N3	$755(6)$	$600(5)$	$-2386(5)$	$15(1)$
N4	$-3328(6)$	$252(5)$	$-1738(5)$	$20(1)$
N5	$-2782(6)$	$3868(5)$	$-2814(5)$	$23(1)$
N6	$1384(7)$	$3213(5)$	$-5448(5)$	$26(1)$
C1	$-3344(7)$	$2279(6)$	$1452(6)$	$21(1)$
C2	$-3956(8)$	$3056(6)$	$2546(6)$	$23(1)$
C3	$-3059(7)$	$3867(6)$	$3018(6)$	$23(1)$
C4	$-1569(7)$	$3898(6)$	$2367(6)$	$19(1)$
C5 15	$-997(7)$	$3110(6)$	$1268(5)$	$16(1)$
C6	$516(7)$	$3118(6)$	$450(5)$	$15(1)$
C7	$1664(7)$	$3822(6)$	$637(6)$	$17(1)$
C12	$3070(7)$	$1023(6)$	$-3653(6)$	$16(1)$
C8	$3016(7)$	$3694(6)$	$-275(6)$	$20(1)$
C9	$3201(7)$	$2884(6)$	$-1370(6)$	$18(1)$
C10	$2028(7)$	$2190(6)$	$-1512(5)$	$15(1)$
C11	$2000(7)$	$1247(5)$	$-2553(6)$	$15(1)$
C13	$-513(6)$	$-3264(6)$	$18(1)$	

suitable for X-ray analysis. The cation consists of tridentate terpy coordinated to the platinum with an oxygen atom of the nitrate ion completing the coordination as shown in Figure 1. The coordination geometry around the platinum center is distorted square-planar as a result of the constraints of the terpy ligand. The average deviation of the platinum, oxygen and 3 nitrogen atoms from the best plane through all 5 atoms is $0.04(3) \AA$, with a maximum of $0.06(1) \AA$ for N 2 . The Pt-N2 distance, $1.916(5) \AA$, is slightly shorter than the distances of platinum to the other 2 nitrogen atoms, N1 with 2.014(5) \AA, and N3 with 2.031(5) \AA. This pattern commonly occurs in the structure of analogous terpyridyl platinum complexes ${ }^{15}$. The N-Pt-N angles of $81.6(2)^{\circ}$ and $81.1(2)^{\circ}$ in $\left[\mathrm{Pt}(\right.$ terpy $\left.) \mathrm{ONO}_{2}\right]\left[\mathrm{H}\left(\mathrm{ONO}_{2}\right)_{2}\right]$ are significantly smaller than the theoretical 90° values expected for a square-planar complex. This effect is also seen in $[\mathrm{Pt}(\operatorname{terpy}) \mathrm{Cl}] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{15}$, where these angles are $79.9(2)^{\circ}$ and $81.0(2)^{\circ}$.

The nitrate is coordinated to platinum through 1 oxygen atom. The Pt-O bond length of 2.043(4) \AA is comparable to those found in cis-bis(DMSO)dinitratopaltinum(II) ${ }^{16}, 2.040(9)$ and $2.059(9) \AA$, and in bis(bipyridyl)dinitratoplatinum(II) ${ }^{17}, 2.036(6)$ and $2.031(5) \AA$. The N-Pt-O angles in the $\left[\mathrm{Pt}(\right.$ terpy $\left.) \mathrm{ONO}_{2}\right]$ $\left[\mathrm{H}\left(\mathrm{ONO}_{2}\right)_{2}\right]$ are $101.5(2)$ and $95.9(2)^{\circ}$, again reflecting the strain caused by the terpy chelation, and are comparable to the N-Pt-S angles in the $[\mathrm{Pt}($ terpy $)(\mathrm{HET})] \mathrm{NO}_{3}^{18}$ ($\mathrm{HET}=2$-hydroxyethanethiolate or mercaptoethanol) of $100.4(1)^{\circ}$ and $98.1(2)^{\circ}$. The best mean plane calculated through the platinum atom, oxygen atom and terpy ligand shows some puckering of the py rings. The dihedral angles between the metal square plane and the py rings of $\mathrm{N} 1, \mathrm{~N} 2$ and N 3 are $7.6(3)^{\circ}, 6.7(3)^{\circ}$ and $5.6(3)^{\circ}$, respectively. The bond lengths and angles for the coordinated nitrate in the present compound are comparable to those found in [Pt(bpy) $\left.\left(\mathrm{NO}_{3}\right)_{2}\right] 0.5\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}^{17}$. In both structures, the bond distance of the coordinated O atom to the N atom O1-N4 is greater than the other O-N bond distances O3-N4 and O2-N4. The O3 atom has a longer O-N bond, which may be due to intermolecular interactions. The nitrate adopts a distorted trigonal-planar conformation, deviating from the theoretical 120° for the ideal trigonal-planar conformation. The free nitrate ion in the $[\mathrm{Pt}($ terpy $)(\mathrm{HET})] \mathrm{NO}_{3}^{18}$ adopts a trigonal-planar configuration with a small deviation of less than $0.025(6) \AA$.

The analogous compound $[\mathrm{Pt}(\text { terpy })(\mathrm{HET})]^{+}$is known to bind to DNA by intercalation. In this compound, the hydrogen bonding ability is facilitated by the mercaptoethanol ligand. The head-to-tail stacking of the 2 cations related by a center of inversion is common to the structures of $[\mathrm{Pt}(\operatorname{terpy}) \mathrm{Cl}] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{15}$ and $[\mathrm{Pt}($ terpy $)(\mathrm{HET})] \mathrm{NO}_{3}^{18}$, and the red form of $\left[\mathrm{Pt}(\mathrm{bpy}) \mathrm{Cl}_{2}\right]^{19}$. Hydrogen bonding to the phosphates and bases is possible ${ }^{18}$. The tendency to self-stack is an indication of ability to intercalate ${ }^{18}$. The Pt -Pt separation found here, $3.185(2) \AA$, is significantly shorter than the values of $3.57(1), 3.39(4)$ and $3.45(5) \AA$ for the other head-to-tail stacked complexes, namely $[\mathrm{Pt}($ terpy $)(\mathrm{HET})] \mathrm{NO}_{3}^{18}$ and $[\mathrm{Pt}($ terpy $) \mathrm{Cl}] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{15}$, and the red form of $\left[\mathrm{Pt}(\text { bpy }) \mathrm{Cl}_{2}\right]^{19}$, respectively.

The crystal structure consists of $\left[\mathrm{Pt}(\text { terpy }) \mathrm{NO}_{3}\right]^{+}$and $\mathrm{H}\left(\mathrm{NO}_{3}\right)_{2}^{-}$anions that sit between the layers (Figure 2). In the crystalline phase, there is an ordered arrangement of the HDN. The dihedral angle between the planes of the 2 nitrate groups is $22.5(4)^{\circ}$, smaller than those of $96(3)$ and $91(4)^{\circ}$ found in trans$\left[R h p y{ }_{4} \mathrm{Cl}_{2}\right] \mathrm{H}\left(\mathrm{NO}_{3}\right)_{2}$. The O7-H7-O6 bond between the nitrate groups constitutes a significantly smaller bending with a value of $175.7(6)^{\circ}$, which is comparable to those found in the other inorganic compounds containing HDN ion. The $\mathrm{O} 4 \cdots \mathrm{O}$ distance for the hydrogen bond is 2.449 (1) \AA [symmetry code: -x, $1-\mathrm{y}$, $1-\mathrm{z}]$, similar to those found in trans- $\left[\mathrm{Rhpy}_{4} \mathrm{Cl}_{2}\right] \mathrm{H}\left(\mathrm{NO}_{3}\right)_{2}, 2.461(18)$ and $2.480(18) \AA$, and in the 9-cyano-

Crystal Structure of Nitrato($2,2^{\prime}, 2^{\prime \prime}$-terpyridyl)platinum(II) Hydrogen Dinitrate,..., A. ŞENGÜL

10 -methylacridinium hydrogen dinitrate, $2.440(4) \AA$. It is possible that in all cases the hydrogen dinitrate ion can be described as 2 nitrate groups linked by a very short and possibly symmetric hydrogen bond.

Acknowledgments

The author thanks Zonguldak Karaelmas University and the EPSRC for their support of this work, and is indebted to Dr. Dai Hibbs for the X-ray crystal structure analysis. I wish to thank Professor Robert D. Gillard for his supervision and guidance.

References

1. R.D. Gillard and S.H. Mitchell, Polyhedron 6, 1885-1889 (1987)
2. J.M. Williams, N. Dowling, R. Gunde, D. Hadzi and B. Orel, J. Am. Chem. Soc. 98, 1581-1582 (1976).
3. J. Roziere, M.-T. Roziere-Bories and J.M. Williams, Inorg. Chem. 15, 2490-2494 (1976).
4. J. Roziere, M.S. Lehmann and J. Potier, Acta Cryst. B35, 1099-1102 (1979).
5. N.S. Al-Zamil, E.H.M. Evans, R.D. Gillard, D.W. James, T.E. Jenkins, R.J. Lancashire, and P.A. Williams, Polyhedron 1, 525-534 (1982).
6. B.D. Faithful and S.C. Wallwork, J. Chem. Soc. Chem. Commun. 1211-1213 (1967).
7. O.M. Huta, I.O. Patsaj, A. Konitz, J. Meszko and J. Blazejowski, Acta Cryst. C58, o295-o297 (2002).
8. J.R.C. Duke and F.J. Llewellyn, Acta Cryst. 3, 305-311 (1950).
9. .W. Pfugrath and A. Messerschmidt, MADNES. Distributed by Delft Instruments, Delft, The Netherlands, 1989.
10. J.A. Darr, S.R. Drake, M.B. Hursthouse and K.M.A. Malik, Inorg. Chem. 32, 5704-5708 (1993).
11. A.I. Karaulov, ABSMAD. Program for FAST Data Processing. University of Wales, Cardiff, Wales, U.K., 1991.
12. G.M. Sheldrick, Acta Cryst. A46, 467-473 (1990).
13. G.M. Sheldrick, SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany, 1993.
14. L.J. Farrugia, J. Appl. Cryst. 32, 837-838 (1999).
15. A. Şengül, Turk. J. Chem. 28, 667-672 (2004).
16. D. Boström, R. Strandberg, B. Norén and A. Oskarsson, Acta Cryst. C47, 2101-2104 (1991).
17. B.A. Elknidi, PhD Thesis, University of Wales, Cardiff, U.K., 1994.
18. K.W. Jennette, T.J. Gill, J.A. Sadownick and S.J. Lippard, J. Am. Chem. Soc. 98, 6159-6168 (1976).
19. R.S. Osborn and D. Rogers, J. Chem. Soc. Dalton Trans. 1002-1004 (1974).
